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D i v i s i b i l i t y p r o p e r t i e s of t he F i b o n a c c i sequence {Fn} a r e w e l l known, 
i n c l u d i n g t h e p r o p e r t y of g r e a t e s t common d i v i s o r s , 

\^m s ^n ' ~ ^ (m, n) ' 

Here the derivation of the greatest common divisor of a sequence pair is ex-
tended to the Fibonacci polynomials, the Morgan-Voyce polynomials, the Cheby-
shev polynomials, and more general polynomials from a problem of Schechter [1] . 
Moreover, all of these polynomials have coefficients which lie along rising 
diagonals of Pascal's triangle, and all of these polynomials satisfy (um(x), 
un(x)) = U(m nx(x) with suitable adjustment of subscripts. 

1. INTRODUCTION 

The Morgan-Voyce polynomials in [2], [3], and [4] are defined by 

BQ(x) = 1, Bx(x) = x + 2; bQ(x) = 1, b1(x) = x + 1, 
and 

Bn(x) = bn.±(x) + (1 + x)Bn-!(x), 

(1.1) bn(x) = xBn_1{x) + bn_±(x), 

Bn(x) = Bn.±(x) + bn(x). 

It is easy to show that B_x(x) = 0, and b_1(x) = 1. These mixed recurrences 
could be solved for pure recurrences as each separately satisfies 

(1.2) un+2(x) = (x + 2)un+1(x) - un(x), 

with uQ = 1 and ul = x + 2, and uQ = 1 and u1 = x + 1, respectively. 
If one lists these polynomials, 

b0(x) = 1 
B0(x) = 1 
b1(x) = x + 1 
Bl(x) = x + 2 
b2(x) = x2 + 3x + 1 
Bz(x) = x1 + kx + 3 
b3(x) = x3 + 5x2 + 6x + 1 
BAx) = x3 + 6x2 + 10^ 4- 4 

Clearly, we see that the coefficients of this double sequence lie along the 
rising diagonals of Pascal's triangle. 

The Fibonacci polynomials are 

(1.3) f0(x) = 0, f.ix) = 1, fn+2{x) = xfn+1(x) + fn(x), 

and we list the first few of these polynomials: 

fx(x) = 1 
fz(x) = x 
f3(x) = x2 + 1 
fn(x) = x3 + 2x 
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f5(x) = xh + 3x2 + 1 
fe(x) = x5 + kx2 + 3x 
f7(x) = xe + 5xh + 6x2 + 1 
f8(x) = x7 + 6x5 + lÔ r3 + kx 

Once again, we see that the coefficients lie along the rising diagonals of 
Pascal's triangle. 

It can be shown that [3], [4] 

bn(x2) = f2n + 1 (x) 
(1.4) 

xBn(x2) = f2n + 2 (x), 

and the fact that coefficients lie on the rising diagonals of Pascal's tri-
angle follows from that property for the Fibonacci polynomials. The Fibonacci 
polynomials obey 

(1.5) /„+„(*) = (x2 + 2)fn + 2(x) - fn(x), 
which agrees with (1.2) when x is replaced by x throughout. 

Next, we are interested in finding the greatest common divisor of a pair 
of Fibonacci polynomials. 

lh<lOK<m 1.1: For F ibonacc i po lynomia l s , 

(fm(x)> fnW) = f(m,n) (#)-

Vtioofa: Rewrite the recursion (1.3) for the Fibonacci polynomials, 

fm + 1(x) - xfm(x) = fm_±(x)9 

and set (fm(x), fm + 1(x)) = d(x) . Then, since d(x)\fm(x) and d(x) \fm + 1 (x) , we 

must have d(x) \fm_ ± (x). In turn, fm(x) - xfm_1(x) = fm_2(x) implies that 

d(x)\f _ (x) 9 and, continuing, finally d(x)\f1(x) = 1. Therefore, d(x) = 1, 

and Theorem 1.1 holds for n = m + 1, or, 

(1-6) (/„(*>> /n + i ^ » = 1-
From [5], we also have 

(1.7) /p + r(a0 = fP-i(x)fr(x) + /p(a0/r + 1 (*), 

and 

(1 .8) /m ( # ) ! / „ (#) i f a n d only i f 777 | n . 
Next, let c = (m, ri) , and let c?(̂ ) = (fm(x), fn(x)). Since c\m and c\n, 

by (1.8), /e (a;) |/m(ar) and fa{x)\fn(x) implies that fa(x)\d(x). Since c = (rn, 

ri) , by the Euclidean algorithm, there exist integers a and 2? such that c = 
3??7 + bn. Since c <_ m, m9 n > 0, a £ 0 or b £ 0. Suppose a £ 0 and let & = -a. 
Then bn = c + km applied to (1.7) gives 

fhn (*) = fa + km(x) = fc.1(x)fkm(x) + fo(x)fkm + 1(x). 

By ( 1 . 8 ) , fn(x)\fbn(x) and fm (x)\fkm (x), and s i n c e d(ff) | / n (x) and <2(#) | / m (#) , 

we have d(x) \fc (x)fkm + 1(x) . But (/fc (a?) , /few + 1 ( a0 ) = 1 by ( 1 . 6 ) , w h i c h i m p l i e s 
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that (d(x) , fkm + 1(x)) = 1, and d(x)\fa(x). Also, since fc(x)\d(x), d(x) = 

fa(x), or (fm (x) , fn(x)) = /(m > n ) (x) , concluding the proof, which is similar 

to that by Michael [6] for Fibonacci numbers. Also see [7] and [8]. 

2. POLYNOMIALS FROM A PROBLEM BY SCHECHTER 

Next, we consider some polynomials arising from a problem by Schechter 
[1] and their relationships to the Fibonacci polynomials and the Morgan-Voyce 
polynomials. Consider the sequence defined by Sl = 1, S2 = m, and 

!

Sk = mSk_1 + Sk_2, k even, 

Sk = nSk_x + Sk_2, k odd. 
We now list the first few polynomials in m and ft, and compare to the Morgan-
Voyce polynomials. 

Sl(m, n) = bQ(mn) 

S2(m, ri) = m = mB0(mn) 

S3(m, n) = mn + 1 = b1(mn) 

Sh(jn9 ri) = m(mn + 2) = mBl(mn) 

S5(m, ri) = (mn)2 + 3mn + 1 = b2(mn) 

S6(m, ri) = m[(mn)2 + kmn + 3] = mB2(mn) 

Thus, it appears that 

!

S2k + 2 (jn, n) = mBk(mn) , 
s2k + i (m> n ) = bk(mn). 

Now, from (1.4), we have mnBk(m2n2) = f2k+2(mn)» thus, 

(2.3) S2k^2(m2, n2) = m2Bk(m2n2) = % f2k+2 (mn). 

For example, Sh(m2, n2) = m2 (m2n2 + 2), Bl (m2n2) = m2n2 + 2, and fh (mn) = (mn) 3. + 
2777ft, and we see that 

Sk(m2, n2) = m2B1(m2n2) = ^(mn) (m2n2 + 2) 

Next, we state and prove a matrix theorem in order to derive further re-
sults for the polynomials Sk(m, ri). 

Th2.0A.rn 2.1: Let A = (j o)' 5 = (l o) * T h e n' 

/ bk(xy) xBk_1(xy)\ 
(AB)k = 

\yBk_1(xy) bk_±(xy) ) 

where bk(x) and Bk(x) are the Morgan-Voyce polynomials. 
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{AB) -\o 1/ i 
XyB.^xy) b_x(xy) , 

l / , i v / b Axy) xBn(xy)\ 

(AB) =/^ + l *\ = f ̂  ^ M 
Assume that (AB)k has the form of the theorem. Then, 

( xybk(xy) + xyBk_1(xy) + bk(xy) x[(xy + l ^ . i G r z / ) + fcfc_i0c7/)r 

ybk(xy) + yBk_1(xy) xyBk_x(xy) + fck-1(a:z/) , 

( fcfc-iO*^) xBk{xy) 

yBk(xy) bk(xy) 
by applying the mixed recurrences of (1.1), completing a proof by induction. 

Now, returning to the matrices of Theorem 2.1, since the determinant of 
AB is 1, it follows that 

(2.4) bk(xy)bk_1(xy) - xyB2
k_1 = 1. 

Returning to the polynomials Sk(m, ri) , we have also that 

71 
$2k + l mS2k 

fc _ I — • " 777 045)* = 

so that, taking determinants, 
^zk -1 . 

(2.5) S2k-iS2k + i " w^2k - 1B 

The polynomials 5^ (m, n) sire related to the Morgan-Voyce polynomials by 

$2k + i (m9 n) = bk(mn) , 

(2.6) (^2fc(w» n) = nBk_1(mn) , 

S2k(m, n) - mBk_1(mn). 

Since the polynomials Sk(m, n), the Morgan-Voyce polynomials, and the 
Fibonacci polynomials are interrelated by (1.4) and (2.3), which can be re-
written as 

Sik + i(m> n) = f2k + 1Umn), 
(2.7) ; 

171 i 
S2k(m9 n) = -7=/9. (vmn) : 
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and since the coefficients of the Fibonacci polynomials lie along the rising 
diagonals of Pascal's triangle, we can write the following theorem. 

ThdOtim 2.2: The coefficients of fk(x), bk(x) , Bk (x) , and Sk(m, ri) are 
all coefficients which lie along the rising diagonals of PascalTs triangle. 

3. DIVISIBILITY PROPERTIES OF POLYNOMIALS IN PASCAL'S TRIANGLE 

Using the relationships of §2, we can expand upon Theorem 1.1 to write a 
greatest common divisor property for Morgan-Voyce polynomials. 

Th&Ofiem 3.1: For t h e Morgan-Voyce polynomia ls bn(x) and Bn(x) , 

( i ) (Bm(x), Bn(x)) 
D (m + 1, n + l ) - l 

( i i ) (bm(x)9 bn(x)) = b{(Zm + i, 2 n + l ) - l ) / 2 (x) , 

( i i i ) (Bm(x)9 bn(x)) = b ( ( 2 m + 2 j 2 n + 1 ) _l)/2 (x). 

Vnoo{\ 
( i ) x(Bm(x2), Bn(x2)) = (f2m+2(x)9 f2n + 2(x)) = f2(ffl + 1 > n + 1 ) (*) 

= CCB(m + l t n+l)-l(%Z) 

by app ly ing ( 1 . 4 ) , Theorem 1 . 1 , and r e t u r n i n g to ( 1 . 4 ) . For x ^ 0 , ( i ) i s 
immediate by r e p l a c i n g x2 w i th x a f t e r d i v i d i n g bo th s i d e s by x. I f x = 0 , 
Bn = n + 1 , making ( i ) become (777 + 1 , n + 1) = (m + 1 , n + 1) - 1 + 1. 

Applying (1 .4 ) and Theorem 1.1 to ( i i ) , 

(£>m(x2), bn(x2)) = (f2m + 1 ( a r ) , / 2 n + 1 ( ^ ) ) 
= f(2m + l, Zn + 1) (X) = Afc + l ^ 

since the greatest common divisor of 2m + 1 and 2n + 1 is odd. Thus, 

(M*2), M**)) = bk(x2) 
by (1.4), where 2k + 1 = (2^+1, 2n + 1), so that 

fc = ((2m + 1, 2n + 1) - l)/2. 

Replacing x2 by x yields (ii). 
Finally, we observe that bn(0) = 1, so that x\bn (x), and again use (1.4) 

and Theorem 1.1: 

(Bm(x2), bn(x2)) = (xBm(x2)9 bn(x2)) 

Next, s e t (2m + 2 , 2n + 1) = 2/c + 1 , s i n c e i t must be odd, and 

(Sm(x2), M * 2 ) ) = f2k + 1(x) = b k ( x 2 ) 
where 

fe = ((2m + 2 , 2n + 1) - l ) / 2 . 

Replacing x2 by # establishes (iii), finishing the proof of Theorem 3.1. 
Returning to the polynomials Sk(m, ri), and using (2.7) with Theorem 1.1, 

gives us 

IkdOKQjm 3.2: (Si(m9 ri), Sj(m, ri)) = £(i,j) (m9 ri). 

VfiOO^i If i and j are both odd, (2,7) and Theorem 1.1 give the above re-
sult immediately. If i, and j are both even, 
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(Si(m9 n), Sj(m, n)) = (S2k(m,n), S2h (m, n)) 

\vmn lK Vmn h I 

= -p=(f2k (i/™?)> f2h (S™b) = ~F=f2{k h^ff™) Vmn 2K zn Vmn ZKK>n) 

= Si{k,h) (m, n) = S(2k,2h) (m, n) = £ ( i , j ) ( m , n). 

I f i i s odd and j i s even, s i n c e S2k + 1(m, n) always ends i n t h e c o n s t a n t 

1 so t h a t Vmn)(S2k + 1 Qn9 n), and s i n c e f2k + 1 (x) a l s o ends in 1 , 

{SiQn, n), S3-(m9 n)) = (S2k + 1(m, n), S2h (m, n)) 

= (S2k + 1(m, n), /mnS2h(m, n)) 

= (/2fe + i ^ v / ^ " ) ' mf2yl^m<^)) = (f2k + 1(i/mn) > f2h(Jrnn)) 

= / ( 2 H i , 2h) ^™^ = s(2k + i, 2/2) (m9 n) = SU}j)(m, n) , 
where we can again use (2.7) because (2/c + l, 2/z) is odd, concluding the proof 
of Theorem 3.2. 

We quickly have divisibility properties for the polynomials Sk(m, n) . 

Ikdonm 3.3: S^im, n)\Sj(m, n) if and only if i\j. 

Vnoo^\ If i\j, then (i, j) = i, and 6̂ 0??, n) l̂ -(777, n) by Theorem 3.2. If 

S^(m, n)\Sj(m, n) with i )(j, then /^(^)|/. (#) where i^j, a contradiction of 
(1.8). J 

From all of this, we can also write divisibility properties for Morgan-
Voyce polynomials. 

TkzotiQM 3.4: For the Morgan-Voyce polynomials, 

Bm(x)\Bn(x) if and only if (jn + 1) | (n + 1) ; 

bm(x)\bn(x) if and only if (2m + 1)|(2n + 1); 

bm(x)\Bn(x) if and only if (2m + 1)|(n + 1). 

VKOO^: Bm(x)\Bn(x) if and only if (Bm(x), Bn(x)) = Bm(x), but 

(Bm(x), Bn(x)) = B( 
m+15rc+ 1) - 1 

by Theorem 3.1. Setting the subscripts equal, m = (m + 1, n + 1) - 1, or, 
777 + 1 = (TT? + 1, n + 1), which forces (m + 1) | (n + 1) . The case for bm(x) and 
bn(x) is entirely similar. 

In the case of bm(x) and Bn(x), Bn(x) cannot divide bm(x) for n > 0 be-
cause bm(x) always ends in the constant 1, while the constant for Bn(x) is 
greater than 1, n > 0. Since bm(x)\Bn(x) if and only if 

(bm(x), £n(a;)) = bm(x), 
and since 

(Z^O^), Bn(x)) = ̂ ((2n+2, 2m + l)-l)/2^) 

by carefully rearranging (iii) in Theorem 3.1, equating the subscripts leads 
t 0 777 = ((2n + 2 , 2777 + 1) - l ) / 2 , 
or 

2777 + 1 = (2777 + 1 , In + 2 ) . 
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Thus, (2m + 1)I(2n + 2), but since (2m + 1) is odd, we must have 

(2m + 1) | (n + 1), 

concluding the proof. 
Returning to the greatest common divisor property of the Fibonacci poly-

nomials, (fm(x) , fn(x)) = f(mtn)(x)9 we make some observations from Theorem 
3.1(i) regarding the Morgan-Voyce polynomials Bn(x). From 

(Bn(x), Bm(x)) = B ( n + 1, m + 1) -

it would follow that if B*(x) = Bn^1(x) and B*(x) = Bm_1(x), then 

(3.1) (B*(x), B*(x)) = Bfn>a) 

which sequence {B*(x)} ={0, 1, x -f 2, ...} obeys 

(3.2) B*(*) = (x + 2)£*_x(x) - B*_2(ar) 

and is in fact the Fibonacci polynomial, so to speak, for the auxiliary poly-
nomial A2 - (x + 2)X + 1 = 0, since 

where Aj and A2 are the roots. But (3.2) can also be expressed as 

U n = XU n _ ] _ — Un _ 2 

where x is replaced by (x + 2). Thus one set of polynomials with coefficients 
on diagonals of Pascal's triangle transforms into another set with the same 
property. 

This property of transforming one set of polynomials whose coefficients 
are on diagonals of Pascal's triangle to another set of polynomials with co-
efficients also on diagonals of Pascal's triangle is shared by the Chebyshev 
polynomials {Tn(x)} [9] of the first kind, defined by TQ(x) = 1, Tx(x) = x, 
and 

(3.3) Tn + 1(x) = 2xTn(x) - Tn_±(x), 
since 
(3.4) Tn{Tm(x)) = Tm(Tn(x)) = Tmn(x). 

The property (3.4) is easy to prove from the Binet form associated with the 
auxiliary polynomial 

(3.5) A2 - 2x\ + 1 = 0, 

with roots Ax and A2. 
The Chebyshev polynomials {Un (x)} of the second kind are UQ(x) = 1, and 

Ul(x) = 2x, 
(3.6) Un + 1(x) = 2xUn(x) - Un_±(x). 

First, to establish (3.4), we prove by induction that 

(3.7) 

We prove only one part, since the second part is entirely similar. Since, 

£/-i(aO = 0, and TQ(x) = 1, A^ = Tn(x) + / ( x 2 - l)Un_1(x) for n = 0. Assume 

Ax 

xl 

= Tn(x) + /(x2 • 

= Tn(x) - /(x2 • 

- lJUn^iix) , 

- !)£/„_! ( a ) . 
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t h a t Ai = Tk(x) + / O r 2 - ±)Uk_1(x) and x\ + 1= Tk + 1(x) + / \ x 2 - 1) U (x). 
Then, by ( 3 . 5 ) , 

Ai + 2 = 2xXk
1
+1 - x\ = (2xTk + 1(x) - Tk(x)) + /(x2 - 1) (2xUk + 1(x) - Uk(x)) 

= Tk+2(x) + / ( x 2 - l)Uk + 1(x), 

using (3.4) and (3.6), establishing the form of Xl in (3.7) by mathematical 
induction. 

Notice that, since AXA2 = 1, by multiplying the forms of A^ and A2 from 
(3.7), we can derive 

(3.8) T2(x) - 1 = (ar2 - l)^_i(x). 

Also, by adding in (3.7), we can establish 

(3.9) Tn(x) = (Ar+ Xn
2)/2. 

Now, Xl(x) = x + /x^ - 1. Replace x by Tm(x) 9 and the root becomes 

A^Gc)) = Tm(x) + A2(^) - 1, 
satisfying the auxiliary polynomial (3.5), so that 

X2(Tm(x)) - 2Tm(x)X1{Tm(x)) + 1 = 0. 
That is, 

A2 (Tm (x) ) + 1 
Tm(x) = 2X1(Tm(x)) = [ Ai^-( x )) + 1 A I ( ^ W ) ] / 2 . 

But X1XZ = 1, so 

Tm(x) = [A^f r)) + A2(Tm(x))]/2. 

Referring back to (3.9), we write 

Ax = Xm
l{Tm{x)) and A* = A 2 ( T m ( * ) ) . 

Now, 

^ n W = U 7 n + A 2
n ] / 2 = [(A?)n + (A*) n ] / 2 = [Xi(Tw(a?)) + Xn

2(Tm(x))]/2, 

so that Tmn(x) = Tn(Tm(x)) and similarly, Tmn(x) = Tm(Tn(x)), finishing the 
proof of (3.4). 

Returning to divisibility properties, observe that the Chebyshev polyno-
mials of the second kind are the polynomials with the Fibonacci-like property 

xl- x\ 

where Ax and A2 are the roots of A2 - 2xX + 1 = 0. We now list the first few 
polynomials and let 

U*ix) = £/ n - i (x 

U.l{x) = 0 

U0(x) = 1 

Ux(x) = 2x 

U2(x) = hx2 -

U3(x) = 8x3 -

Uk(x) = 16a: * 

) • 

1 

4x = 

- 12a;: 

4x(2x2 -
2 + 1 

- 1) 

= U*{x) 

= U*(x) 

= U*(x) 

= U*(x) 

= U*(x) 

= U*(x) 
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U5(x) = 32;c5 - 32^3 + 6x = 2x(Sxh - 8x2 + 3) = U%(x) 

UAx) = 64* 6 - 80*4 + 24*2 - 1 = U*(x) 

It would appear that 

(3.10) U*(x)9 U*(x) = U*mtn)(x). 

That this Is indeed the case can be established very simply. Since U*(x) 
satisfies 

U*+1(x) = 2xU*(x) - C ^ . ! ^ ) , 

{[/ n (x)} i s a s p e c i a l case of t h e polynomial sequence {Un (x, y)} d e f i n e d by 
Hoggatt and Long [7] as 

(3 .11) Un+2(x, y) = xUn + 1(x9 y) + yUn(x9 y), 

where U0(x9 y) = 0 and U1{x9 z/) = 1. Note that {U*(x)} is the special case 
x = 2x and y = -1. Since 

(3.12) ( M * , 2/), M * . 2/)) = U(min)(x, y)9 

we see that (3.10) is immediate. 
We summarize as 

Tk&OSl&n 3.4: By suitable shifting of subscripts in the original defini-
tions, the Fibonacci Polynomials, the Morgan-Voyce polynomials Bn(x), the 
Chebyshev polynomials Un (x) , and the polynomials S]<(m9 n) all satisfy 

(um9 un) = U(m> n ) . 

k. A MORE GENERAL POLYNOMIAL SEQUENCE 

Define Sk(a9 b9 c9 d) by taking Sl = 1, S2 = a, 

^ = aSk_1 + bSk_l9 k even, 
(4.1) 

£fc = c5fc_! + dSk_29 k odd. 

Let S* = 1, S* = c, and define 5*(a, 2?, c, d) by taking 

S* = <?£* _ ± + dS* _ 2 , /c even, 
(4.2) 

S* = aS* ± + ^*_2, fe odd. 

Let K0 = 0 , K1 = 1 , Z n = (ae + 2) + d)Kn_1 - bdKn_2. 

T _ ^ / # &\ /<? ^ \ ( ac + b ad\ _, 
Let « = li o j ' d o ) i c dp then-

^2fc + i ^ 2 * \ / %-k + i ~ d%k daKk 

S*2k dS2k.J \oKk d(Kk - bKk_x) 

Now, {Kn} is the "Fibonacci sequence," 
Xx - X2 

7/ _ _ _ 
n Xx - A2

? 
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for the quadratic X2 - (ac + b + d)x + bd = 0, with roots X19 X2. Applying 
results [7] for {Un(x9 y)} from (3.11) and (3.12) to {Kn}, we have immediate-
ly that 

To continue, we write the first few terms of {Sk(a9 b, c9 d)}. 

S, = 1 

52 = a 

53 = ac + d 

Sh = a2c + ad + ab 

55 = a2c2 + 2acd + abo + d2 

56 = a3c2 + 2a2cd + 2a2bo + a^2 + abd + a£2 

£7 = a3o3 + 3a2c2J + 2a2bo2 + 3aad2 + 2a&c^ + ab2o + ^3 

We consider some special cases. If a - 0, then S2k + z = 0> and S2k + i ~ dk
9 

k >. 0. If fc= 0, ^2^ + 2= a(ac + d)k and S2k + 1 = (ac + d)k, & >, 0. If c = 0, 
then 52k_! = c^-i and £2k =a[(dk - bk)/ (d - b)]9 k > 1. If d = 0, then S2k = 
a(ae + b)k~1 and /Ŝ k + i = ao(aa + b)*"1

9 k >_1. The expansions of £*(a, b9 
c9 d) are not very interesting, since they are the same as those of Sk(a9 b9 
c9 d) with the roles of a and c exchanged. 

The special case of Sk(a9 b9 c9 d) where b = d proves fruitful. We list 
the first few terms of {Sk(a9 b9 c)} below: 

51 = 1 

52 = a 

53 = ac + b 

S^ = a2c + lab 

55 = a2c2 + 3abc + b2 

56 = a3c2 + ha2bc + 3ab2 = a(ac + b) (ac + 32?) = S2S3(ao + 3b) 

We are interested in the case b = d, or, taking Sk(a9 b, c) and S^(a, b, 
c) , so that £3 will divide S6. It is not difficult to prove by induction 
that 

( 4 . 3 ) S2k + j = Sj + lS2k + bSjS2k-l> 

( 4 . 4 ) ^ 2 ^ + i + j = Sj + iS 2k + i + bS^S2k' 
I t i s n o t h a r d t o s e e t h a t 

( 4 . 5 ) $2k+i = $*k+i a n d aS2k = cS*k-

We now prove Sj\Sjm for j odd and m odd, or, jm = 2k + 1. From (4.4), 

Sj(m + 1) = Sj + lSjm + bS^S 2k = Sj + iSjm + Z?^- 5 27c J 

since 5j = S^ for j odd. So, if Sj \Sj and 6̂  l^-^, then Sj \Sj(m + i) for j odd. 
Thus, for j and m both odd, we see that Sj\Sjm for all odd m. 

Next, suppose that j is odd and m is even; then, from (4.3), 
S2m'j + j - Sf+1S2mlj + bS-S^.j^, m = 2m'. 
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Now, i f SjlSj and Sj\S2mlj9 then Sj\S(2ml+1)j = Sj(m+1). 
Next, l e t j be even; 

S2k+2j = s*j' + iszk + bS2j'S2k-i and Ik = 2j'm. 
Since S-\S2-, and Sj\S2{jtm = S2k , we have Sj \S 2jfm + zj' ~ -Sj'o + i) • This com-
p l e t e s t h e proof t h a t i f i\j9 then S^Sj, S i n c e , a l g e b r a i c a l l y , {Si} a r e of 
i n c r e a s i n g degree i n t he two v a r i a b l e s a and c c o l l e c t i v e l y , SJ-)(Si for i < j . 
L a s t , u s ing (4 .3 ) and ( 4 . 4 ) , i t i s now s t r a i g h t f o r w a r d to show 

ThzoKQjm 4 A: Sj(a9 b> o)\Si(a9 b9 c) i f and only i f j \ i . 

We can a l s o now prove 

Jh(LOK.m 4.2: (Si(a9 b9 c), Sj(a9 b9 c)) = S^t3-)(a9 b9 c). 

VK.00^: Let P(x) be a monic polynomial of degree v + s with integral co-
efficients with two factors Q(x) and R(x) of degree v and s9 respectively. 
Then, 

br + 3P(x/b) = brQ(x/b)bsR(x/b) 

P*(x9 b) = Q*(x9 b)R*(x9 b). 

In p a r t i c u l a r , i f P(x) i s of degree p , T(x) of degree t , W(x) of degree w, and 
(P(x)9 T(x)) = J/(ar), then 

{bpP(x/b)9 btrP{xlb)) = bwW(x/b). 

For a p p l i c a t i o n to Theorem 4 . 2 : 

(4 .6 ) c2S2m{a2, b2, a2) = ac i 2 " -Y 2 B I ( ac /Z>) ; 

( 4 -7 ) . S 2 r a + 1 ( a 2 , &2, c 2 ) = fc2ffl/2m+1(ac/&). 

Co6£ 7: Both s u b s c r i p t s even. 

(o2SZm(a2, b2, a2), o2S2n(a2, b2, a2)) 

= {acb2m-xfZm(,aclb), aob2n-lfln{ae/b)) 
(2m, 2n) - 1 . = acb^m>^^f{2my2n)iac/b) 

= c2S(2mi 2 n ) ( a 2 , £ 2 , c 2 ) . 

T h e r e f o r e , 

(S2m(a2, b2, a2), S2n(a2, b2, c2)) = S ( 2 n > 2 B ) ( a 2 , b 2 , e 2 ) . 

Ca6£ 2: Both s u b s c r i p t s odd. 

( S 2 m + 1 ( a 2 , Z?2, a2), S2n + 1(a2, b2, a2)) 

= (b2mf2m+1(ac/b), b2nf2n+l(aa/b)) 

= $ (2m + l, 2n + l) ($ s D , <3 ) . 

Ca6£ 3: One s u b s c r i p t odd, one s u b s c r i p t even. 

(c2S2m(a2
9 b2

9 c2)9 S2n+1(a2
9 b2 , c 2 ) ) 

= (acb^-^Jac/b), b2nf2n + 1(ao/b)) 
_ h(2m, 2n + l)-1 n (rr^/h^ 

= S (2m, Zn+1) i.CC 9 b 9 O ) 9 
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since (ao9 b) = 1. Also, since (o2, S2n+1) = 1, 

(c2S2m(a2, b2, c2)9 S2n+1(a2, b2, o2)) 

= (S2m(a2, b2, c2)9 S2n+1(a2, b2, o2)) 

= ^(2/n, 2n+l) (& , & 2 , C2) , 

finishing the proof of Theorem 4.2 by replacing a2 with a, Z?2 with b9 and <? 
with e. 

Let f*(x) be a modified Fibonacci polynomial, with 

fn to) = /„ to), n odd, 

f2(x) = , n even. 

Listing the first few values, 

/*(*) =.1 

f^W = 1 
f*s(x) = x2 + 1 

f*(x) = x2 + 2 

/*(#) = ̂  + 3jr2 + 1 

f%(x) = ^ + kx2 + 3 
/ * t o ) = ^ 6 + 5X4 + 6x2 + 1 

/*(a?) = x 6 + 6 ^ + 10;c2 + 4 . 

Here , 

fn + 2 <*> = f*+l ( ^ ) + fn^ ' n e v e n ' 

/*+2 to) = *2/*+ 1 (x) + / ; t o ) , n odd. 

This is {Sk(a, b, o, d)} with a = b = d = 1, o - x2. Thus, by Theorem 4.2, 

(/•*(*), /* (x) ) = / f m > n ) ( x ) . 
Let Vk(x) be a modified Morgan-Voyce polynomial defined by 

v2n+2(x) = Bn(x), v2n+1(x) = bn(x). 

The first few values for {vk(x)} are 

= b0(x) 

= B0(x) 

= bx(x) 

= Bito) 

v5(x) = x2 + 3x + ± = 2? 2 to) 
y 6 t o ) = x 2 + 4x + 3 = S 2 t o ) 
y 7 t o ) = a:3 + 5x2 + 6^ + 1 = b3(x) 

vQ(x) = x3 + 6x2 + lOx + 4 = to + 2) to2 + 4^ + 2) = B3(x) 

vi to) 
y2to) 
z;3to) 
7^ to) 

= l 

= l 

= x + 1 

= a; + 3 
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Since Vk(x) satisfies 

( vn(x) = vn_1{x) + vn_2(x), n even, 

( vn(x) = xvn_±(x) + vn_2(x), n odd, 

this is {Sk(a, b, c, d)} with a = b = d = 1 and c = x* Then, by Theorem 4.2, 

(vn (x), vm(x)) = v 
(m,n) 
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THE GOLDEN SECTION IN THE EARLIEST NOTATED WESTERN MUSIC 

PAUL LARSON 
Temple University, Philadelphia, PA 19122 

The persistent use of the golden section as a proportion in Western Art 
is well recognized. Architecture, the visual arts, sculpture, drama, and po-
etry provide examples of its use from ancient Greece to the present day. No 
similar persistence has been established in music. One possible reason is that 
what ancient Greek music has survived is of such a fragmentary nature that it 
is not possible to make reliable musical deductions from it. However, begin-
ning with the early Middle Ages a large body of music has survived in manu-
scripts that from ca. 10th century can be read and the music can be performed. 
This body of music is known as Roman liturgical chant or, more commonly, as 
Gregorian chant. These chants have not previously been analyzed from the 
standpoint of the golden section. Acknowledging the probability of the pres-


