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of all of the X;. Let E, = the expected number of tosses to observe k heads
in a row. Let Z =X; + --- + X,. Then,

Ey = E(Y + 2) = E(Y) + E(2)
= E(Y) + E(Z|Y = 1)Pr(Y = 1) + E(Z|Y = 2)Pp(¥ = 2) + -
= E(Y) + 3 E@Z|Y = m)Pr(¥ = n) = EQY) + D nEX)Pr(Y = n)
n=1

n=1

= E(Y) + E(X)EQ).
But E(Y) = the expected number of tosses to observe a head= 1/p, and E(X;) =
Ey_y. Thus Ey = 1/p + (1/p)E,_,, which yields (3).

REFERENCE

1. L. E.Dickson, History of the Theory of Numbers, Vol. I (1919; Chelsea re-
print 1966).

2. W. Feller, Introduction to Probability Theory and Its Applications, Vol.
I (New York: John Wiley & Sons, 1968).

FeReReR®

STRONG DIVISIBILITY SEQUENCES WITH NONZERO INITIAL TERM

CLARK KIMBERLING
University of Evansville, Evansville, IN 47702

In 1936, Marshall Hall [1] introduced the notion of a kth order Ilinear
divisibility sequence as a sequence of rational integers u;, U;, ..., 4
satisfying a linear recurrence relation

n

(1) Upsr = Ay g1 T oo+ Gy,

where a,, d,, ..., ay are rational integers and u,|u, whenever m|n. Some di-
visibility sequences satisfy a stronger divisibility property, expressible in
terms of greatest common divisors as follows:

(um, un) = u(m,n)

for all positive integers m and n. We call such a sequence a strong divisi-
bility sequence. An example is the Fibonacci sequence 0,1,1,2,3,5,8,....

It is well known that for any positive integer m, a linear recurrence
sequence {un} is periodic modulo m. That is, there exists a positive integer
M depemding on m and a;, a,, ..., d; such that

(2) Upey = Uy (mod m)

for all n > nylm, a,, a,, ..., axl; in particular, n, = 0 if (ax, m) = 1.
Hall [1] proved that a linear divisibility sequence {u,} with u, # 0 is
degenerate in the sense that the totality of primes dividing the terms of
{Hn} is finite. One should expect a stronger conclusion for a linear strong
divisibility sequence having u, # 0. The purpose of this note is to prove
that such a sequence must be, in the strictest sense, periodic. That is,
there must exist a positive integer M depending on a,;, a,, ..., a; such that

Unty = Uns n=20,1,
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Suppose {un} is a kth order linear strong divisibility sequence. In terms
of a generating function for {un}, we write
_H®) _ H(t)
K(t) (1 -2 = xpt) -+ (1 - x42)°
where H(t) and K(f) are polynomials with integer coefficients. Let g = x.x,
... X3 (=ay). We assume that q # O.

(3) Ug + Ut uytt + e

Lemma 1: up|q™, for m=1, 2,
Proof: The Oth m-multisection of (3) (e.g., Riordan [2]) gives
Ujm = Mlu(j—l)m - Mz“(j_z)m + -0+ (—l)k"lM%uo,
where the M; are integers. Since umlucm for e =1, 2,
U | CLR M0,

., we have

and this finishes the proof, because M; = g™.

Another proof of Lemma 1, depending on the periodicities (2), may be found
in Hall [1].

Henceforth, we assume u, # 0. Let Pis> Pys +++»p, be all the prime divi-
sors of qu,, so that we may write

_ 818 8 — %1, <2, N
q=py'p,t «o. p,t and uy = p P p e Lo prne,
Then, since Mmlqmuo for m=0, 1, 2, ..., we can write
1, L2 o, -
Z’im=pllmpz7’2 'puvm:'m—O’ l’ 2,
Consider the set 0y = {Z, 1, Z4,5, ---}> 2=1, 2, ..., v. Let lo,| be the
number of elements in 0,, with |0g| = © if 0y is an infinite set. Define a,(j)

for j =1, 2, ... inductively as follows:

a, (1) =1

1if fo,| =1
a,(2) = least w such that 2, , # %, ;, if 101| > 1
NG - D o] <4 -1
ag(Jg) =

least w such that <, , £ {ig,aluﬂ 1 <r < g - l}
if og| >4 - 1.

Thus, either the sequence a, (1), a,(2), a4(3), ... is strictly increasing and
unbounded, or else it is strictly increasing up to some point and constant
thereafter, or else it is the constant sequence 1, 1,

Lemma 2: Suppose 1 < £ <v. Then al(j)[al(j + 1) for j =1, 2,

Prood: To simplify notation, leta =az(j), b =ay(j + 1), and ¢ = (a, b).
Without loss we assume g # b. Clearly ¢ < a. Suppose 1 < ¢ < g. Then 7,
iy, a,(r) for some r < j, so that 24, . # 4,4 and Zg,c # Zg,p- From ue = (uq,
up) follows <4, . = min{Zs,q, 73,b}. This contradiction shows that ¢ = g, as
required.

Lemma 3: Suppose 1 < £ < v and § > 1. If 1 <w < ay(j) = a, then

Te,w S To,a-
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Proof: If 1 <w < a, then %4, =7y, a,(r) for some r < J. Since az(r)]a,
by Lemma 2, we have Ua, (r) Iua, so that g, a, (ry < Lg,a.

Lemma 4: Suppose 1 < 2 <wvand § >1. If 1 <w <a,(j) = a, then
7:2 (w,a) = 7:2,10-
Proof: (4y, %g) = U(w,a), 80 min{iyg, 4, To,a) = g, (w,a) - Now 74, < g,
by Lemma 3, S0 Zg (u,a) = Ty, -
Lemma 5: Suppose 1 < & < v and j > 2. Suppose a = a;(j) > 2 and b is a
positive integer. Then
(Zo,ba+1s Tasbat2s =--> To,bat+a-1) = (Za,15 Ta,25 «++5 Lo,a-1)-

Proof: Suppose 1 < w < a - 1. Then (Upgyy Ug) = Ulba+w,a) = U(w,a)s SO
min{ig, basws To,a) = L2, (v,a) = Zg,» by Lemma 4. Since 7, , < i, , by defi-
nition of a, we conclude il,baﬂ) = To,uw-

Lemma 6: Suppose 1 < % < v and 2 < |0,] < » Let L= a,(|o,]), and let
b be a positive integer. Then
(To,pp+15 Ta,pp+2 ~-=> Lo,260-1) = (Lo 15 Ta,25 ==v> Lo, pp-1)-
Proof: By Lemma 5, we already know

(£g,15 ovvs To,0-1) = (Zo,0415 =v-» Tg,20-1)

(Zg,20415 +++5 T2,30-1)

= (2o, (b-1)L+1 5 +v+5 Lo,50-1)>

so it remains only to see that Zg4,; = Zg,21 = *** = 19,(p-1)L- For 1 <ec <
b - 1, we have (ucp, ug) = ug, so that mln{tg e > Ly, L} = 1g,;. Since 74 o
< Zg,1, we conclude %y, . = Zg,1-

Lemma 7: There exists a positive integer ¥ such that wu,,.= u; for j =
1,2, ..., k.

Proof: For 1 < & < v, if |o,| = =, choose j, so large that a,(j,) > k,
and if |o,| < o, let a,(j,) = az(!OQl) Let M be the least common multiple
of the numbers a;(j;), a,(g;)s --.>a,(j,), 2k. (We include 2k to ensure that
M > k in case ]01. < o for all %.)

Now, by Lemma 5, for each % with ]Oll = o, we have

(iZ,M+l5 ey iE,M+k) = (7:2,1’ ooy 7:1,7()-

This same equation holds, by Lemma 6, for each & with 2 < ‘OZI < o and clearly
holds also for 0, = 1. Therefore, for 1 < j < k, we have 24, 4, = il,j for
1 <% <w, so that uy,;=u; for 1 < j < k.

Theorem: Suppose {un}, n=20, 1, ...,is a kth order strong divisibility
sequence with u, # 0. Then the sequence {un} is periodic and has a generat-
ing function of the form H(¢)/(1 - tP), where p is the fundamental period of
{ n}. If H(Z) has no linear factor of the form 1 - r¢, where rP =1, then p
is the least possible recurrence order of {un} If

P=prp, e Py
if the prime factorization of p, then

Uy = Ul e, U e, oo U e
[o] pll pzy ptt
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for some nonzero integer U. Finally, u, = u,, and un|u0 for n =0, 1,

Proog: By Lemma 7 and the fact that {u,} is a kth order recurrent se-
quence, the sequence {un} is periodic with period M. Letting p be the funda-
mental period, we now show that the denominator of the generating function
H(t)/K(t) must be of the form 1 - £°:

H(Z)
(%)

p-1 p p+1 v
Uy + U+ o0 + Uyt + u tt + ou,t +

ug(L+ 22+ %% + o) +u e+ tP + 2 4+ o) + -
(g + Uyt + oo + up 1P D@ + 2P + 2P+ -e)

gy L
1-t°
If H(t) has no linear factors 1 - rt with »P = 1, then H(%#) has no linear
factors in common with X(¢). This means that no recurrence order for {un}
can be less than p.
We see that pfi[p and (p;*, p;j) =1 for1<<<g<t, so that

= (g +ugt + -o0 +uy,

Up = Uupf, up;1 e Up:,

for some integer U. For n > 1, we have u,, = up and un|unp, so that u,|up.
That u, = 4p, S0 that u,|u, for all n, follows from
Ao = Uy = QuUzp_1 — *++ = A,

= Up+ k™ Aplpry-1 T~ Grlp4a

= AglUp .
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The Bernoulli numbers B,, may be defined by

B, =1

m-1
1 -(m-+1>
= E . . > .
B m + 1i=0 7 By (m > 0)

By the Kummer congruence, we have [2, p. 78 (3.3)],

€8]

r
, B 4 :
1y (T miiw - re
(2) 2% (-1 (i>n1+iw = 0 mod pre,
i=
with w: = p®~3(p - 1), where » > 1, ¢ > 1, m > re, p prime such that p-—l*m.

With » = 1 we get, in particular



