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of all of the Xi. Let Ek = the expected number of tosses to observe k heads 
in a row. Let Z = Zx + ••• + XY. Then, 

Ek = E(Y + Z) = E(Y) + E(Z) 

= E(Y) + tf(Z|y = l)Pr(Y = 1) + #(Z|j = 2)Pr(J = 2) + . . . 

= E(Y) + J2E(Z\Y = n)Pr(Y = n) = E(Y) + Y^rLE{Xx)Pr{Y = n) 
n=l n=l 

= E(Y) + E{XX)E{Y). 

But E(Y) = the expected number of tosses to observe a head = 1/p, and E(X{) = 
E7;,.!. Thus S7?, = 1/p + (l/p)Ek_±, which yields (3). 
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In 1936, Marshall Hall [1] introduced the notion of a kth order linear 
divisibility sequence as a sequence of rational integers uQ, u19 ,.,,un9 ... 
satisfying a linear recurrence relation 

(1) un + k = alun+k_l + .- - + akun9 

where a19 a2, . . . , ak are rational integers and um\un whenever m\n. Some di-
visibility sequences satisfy a stronger divisibility property, expressible in 
terms of greatest common divisors as follows: 

(um, un) = U(m^ n) 

for all positive integers m and n. We call such a sequence a strong divisi-
bility sequence. An example is the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8,... . 

It is well known that for any positive integer m9 a linear recurrence 
sequence {un} is periodic modulo m. That is, there exists a positive integer 
M depending on m and al9 a2, . . . 9 ak such that 

(2) un+M E un (mod m) 

for all n >. n0[m9 a19 a2, . . . , ak] ; in particular, nQ = 0 if (afe, w) = 1. 
Hall [1] proved that a linear divisibility sequence {un} with uQ ^ 0 is 

degenerate in the sense that the totality of primes dividing the terms of 
{un} is finite. One should expect a stronger conclusion for a linear strong 
divisibility sequence having u0 4- 0. The purpose of this note is to prove 
that such a sequence must be, in the strictest sense, periodic. That is, 
there must exist a positive integer M depending on al9 al9 ..., ak such that 

^ n + M ~ ^n> n — \J 9 I, ... 
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Suppose {un} is a kth order linear strong divisibility sequence. In terms 
of a generating function for {un}, we write 

U ; U° + U i r + UzV + K(t) (1 - Xit)a - x2t) •-. (1 - xkt)' 
where H(t) and K(t) are polynomials with integer coefficients. Let q = x x 
. . . xk (=ak) . We assume that q ^ 0. 

Lmma 1: um\qmu0 for w = 1, 2, ... . 

Vh.00^: The 0th ̂-multisection of (3) (e.g., Riordan [2]) gives 

where the Mi are integers. Since um\uQm for <3 = 1, 2, ..., we have 

and this finishes the proof, because Mk = qm. 
Another proof of Lemma 1, depending on the periodicities (2), may be found 

in Hall [1]. 
Henceforth, we assume uQ ̂  0. Let p1, p 2 , . . . , pv be all the prime divi-

sors of quQ9 so that we may write 

q= p ^ p s
z ' ... pys» and uQ = pjl-°  p*'-' ... p*-° . 

Then, since um\qmuQ for m = 0, 1, 2, ..., we can write 

"m = Pi1" Pi'" ••• ?„""•" , m = 0, 1, 2, .... . 

Consider the set o£ = { £ £ t l5 i £j 2, . . . } , £ = 1, 2, ..., i?. Let |a£ | be the 

number of elements in C£ , with j 0" ̂ j = °°  if G£ is an infinite set. Define az(j) 
for j = 1, 2, ... inductively as follows: 

a£(l) = 1 

(l if K | = 1 
least w such that iliW H u , if | cf£ | > 1 

a£(2) = 

\a%U ~ 1) if \°z\ l i - 1 
a*( j ) ~ J least w such that i£)W £ Ui,ai{r) :1 <. r < j - l\ 

(if Kl > j - 1. 
Thus, either the sequence a£(l), a£(2), a£(3), ... is strictly increasing and 
unbounded, or else it is strictly increasing up to some point and constant 
thereafter, or else it is the constant sequence 1, 1, ... . 

Lemma 2: Suppose I <_ £ <v. Then a£(j)|a£(j + 1) for j = 1, 2, ... . 

VK00^\ TO simplify notation, let a = a£(j), b = &iU + 1) > and c = (a, b) . 
Without loss we assume a ^ b. Clearly c _<_ a. Suppose 1 <_ e < a. Then i£,c = 
ti,as(r) for some r < j, so that i£,c ̂  ̂ £,a and i%t0 i i%,b- From uc = (ua, 
Ub) follows iii0

 = niin{tj()a, ii,b}> This contradiction shows that c = a, as 
required. 

LmmOL 3: Suppose 1 <. I < V and j > 1. If 1 <_ w <_ a£(j) = a, then 
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VKooi'. If 1 <. W <. a, then il}W = iZiai(r). for some v < j . Since az(r) \a9 
by Lemma 2, we have ua^r) \ua3 so that ii>ai(i>) <_izia-

Lemma, 4: Suppose 1 • <_ I <_ v and j >_ 1. If 1 <. w <. a^ij) = a, then 

Vtiooi: (uW9 ua) = U(Wta)9 so m±n{iZtW, ig,a} = ii,(w,a) • Now iitW±iita, 
by Lemma 3, so iZi(<Wya) = ^i,w 

Lmma. 5: Suppose 1 <_ £ <_'z; and j >_ 2. Suppose a = az(j) >_ 2 and H s a 
positive integer. Then 

( t i , b a + i , t [ , k + 2j •••» ^A.fca + a-l) = (^Z,ly ^ 1, 2 •> • • • s ^£,a-l)« 

VhOO&i Suppose- 1 £ w ^ a - 1. Then (w^a+w, ua) = U(ba + W,a) = "(w,a)» so 
min{^£, foa + w, ii,a) = ^£,(w,a) = ̂ £,w by Lemma 4. Since i£ > w < i£jCr by defi-
nition of a, we conclude in h , 

Lemma 6: Suppose 1 <_ £ <_ v and 2 <_ |a£| < <». Let L = a£(|a^|), and let 
b be a positive integer. Then 

(^,W + l) ^l,bL + 2 • • • J ^£,2£L-l) = (̂ Jl, 1 » ^ £ , 2 J •••J ^Jt,2>L-l)« 

Vh.00^1 By Lemma 5, we already know 

= (^£,2L+1 s • • • J ^£, 3L-1 ) 

= (^.(fc-DL + l, ---J ^ £ , £ L - l ) 5 

so it remains only to see that -£#,,£ = ii,2L = ••• = ii,(b-i)L' F o r 1 <_ <2 <. 
2> - 1, we have (wcL, wL) = uL, so that min{i£ > c L, i£jL} = £*,,L". Since i ^ c L 

< i i i L , we conclude i^5oL = ilyL* 

LQMnCL 7: There exists a positive integer M such that w M + , 
1 , 2 , ..., fc. 

P/LOO^: For 1 <. I <^ v, if \oz\ = °°, choose j £ so large that a£(j£) > k9 
and if |G£ | < °°, let az(jz) = ae(|a £|). Let M be the least common multiple 
of the numbers a1(j1) , a2(j2^ •••j^y(jy)» 2^- (We include 2fc to ensure that 
M > fc in case \oz\ < °°  for all £.) 

Now, by Lemma 5, for each I with |G£| = °°, we have 

This same equation holds, by Lemma 6, for each £ with 2 _< [G^l < °°, and clearly 
holds also for d£ = 1. Therefore, for 1 _< j _< k, we have ii,M + j = ̂ £,7- f ° r 

1 _< £ <. V, so that u M + J- = Uj for 1 <_ j _<_ /c. 

Tfieo/Lem: Suppose {un}, n = 0, 1, . . . , is a kth. order strong divisibility 
sequence with uQ £ 0. Then the sequence {wn} is periodic and has a generat-
ing function of the form H(t)/(1 - tp), where p is the fundamental period of 
{un). If H(t) has no linear factor of the form 1 - rt, where rp = 1, then p 
is the least possible recurrence order of {un}. If 

P = P l ' p 2 « . . . p t ' 

if the prime factorization of p, then 

Up = UU^e, Upe? . . . UQet 

HJ 
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for some nonzero integer U. Finally, u0 = up, and un\u0 for n = 0, 1, ... . 
VK.00^'. By Lemma 7 and the fact that {un} is a kth order recurrent se-

quence, the sequence {un) is periodic with period M. Letting p be the funda-
mental period, we now show that the denominator of the generating function 
H(t)/K(t) must be of the form 1 - tp: 

Y^r = u0 + uxt + ••• + Up.^"1 + uQtp + u1tQ + 1 + ••• 

= u0(l + tp + t2p + ...) + uxt(X + tp + t2p + ...) + ••• 

= (u0 + uYt + ••• + Mp_itp"1)(l + tp + t2p + •••) 

= (w0 + wxt + ... + Up^t9'1)- — . 
A. — "0 

If H(t) has no linear factors 1 - rt with rp = 1, then H(t) has no linear 
factors in common with K(t). This means that no recurrence order for {un\ 
can be less than p. 

We see that pf<: |p and (pfS pSj ) = 1 for 1 _< i < j <_ t, so that 

Up = tfW 8l U fll . . . U et 

for some integer U. For n 2>_ 1> we have wnp = up and wn|^np, so that un\up. 
That wo = Up, so that un\u0 for all n, follows from 

a^u0 = uk - <̂ 2w/c-i - ••• - afcu2 

= Mp+fc- ^2UP+k-l ~ ""• ~ akuP + l 

= akup. 
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The Bernoulli numbers Bm may be defined by 

(1) * » - d ^ 2 ( n : > (m>o)-
i = 0 

By the Rummer congruence, we have [2, p. 78 (3.3)], 

(2) f (-iy (r.)^i^ = o i o d p " , 

with u: = pe~1{p - 1), where r >_±, e >_ 1, m > re, p prime such that p - 1̂/7 
With r = 1 we get, in particular 


