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mean precedes the minor mean twice as often as the minor mean precedes the 
major mean. Example 1 is a section of chant conforming to the M:m propor-
tion, 

Ky-n - e e _ | e _ j _ s o n 

Example 1* 

Example 2 shows the proportion in reverse. 

l̂ y—•-* •-* • ' *-* *,* • " » „ *j " a • , + ^ 
C h r i s - te e - l e - i - s o n 

Example 2* 

Twenty-one sections have phrase divisions occurring at the arithmetic mean. 
The same method was applied to the next larger formal unit, i.e., the 

three repetitions of each exclamation. In 30 chants there are 90 such units. 
<t> is found in 53 (.59) of these units. Where the musical phrase either falls 
short of the exact mean or extends beyond it, a tolerance of .02 of the to-
tal number of pitches was maintained in defining the unit as a golden sec-
tion. 

A performance of an entire chant includes nine sections as shown in Dia-
gram 1. An analysis of the 30 chants revealed that 20 (.66) exhibit the 
golden section proportion. In more than half of the cases, the mean occurs 
at the end of the first or at the beginning of the second "Christe eleison." 

CONCLUSION 

At this stage, these findings tend to establish the presence of the gol-
den section in one of the earliest notated forms of Western music, i.e., the 
"Kyrie" chants. To establish the presence of the golden section in chants 
other than the "Kyrie," requires further analysis of the general body of 
Gregorian chant. 
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INTRODUCTION 

Let F(n), L(n) denote the nth Fibonacci and Lucas numbers, respectively. 
(This slightly unconventional notation is used to avoid the need for second-
order subscripts.) Consider the equation 

(0) F(m) = GP, 

"Source: Liber Usualis (Desclee & Co., Tournai [Belb.], 1953), p. 25. 
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where p is prime and m > 2, so that c > 1. (The restriction on m eliminates 
from consideration the trivial solutions which arise because cp=c if o = 1, 
o = 0, or c - -1 and p is odd.) 

The complete solution of (0) was given for p = 2 by J. H. E. Cohn [1] and 
by 0. Wyler [4], and for p == 3 by H. London and R. Finkelstein [3]. In this 
article, we consider (0) for p >_ 5. It follows from Theorem 1 that if a non-
trivial solution exists, then one exists such that m is odd. In Theorem 2, 
we give some necessary conditions for the existence of such a solution. 

PRELIMINARIES 

We will need the following definitions and formulas; r, s denote odd in-
tegers such that (p, s) = 1. 

V^ZyiObLon 7: If q is a prime, then z(q) is the Fibonacci entry point of 
q, i.e., z(q) = min{m: q\F(jn)} . 

V^l^wUtLoyi 2: If q is a prime, then y (q) is the least prime divisor of 
z(q). 

(1) If (x, y) = 1 and xy = zn, then a? = un and y = vn, where (u, v) = 1 and 
wi> = z. 

(2) F(2n) = F(n)L(n). 
/o\ /n/ \ r/\\ (2 if n = 0 (mod 3) 

(3) (*(n), L(n)) = j x ±f „ ̂  0 (mod 3) 
(4) F(n) = 2r «-* n = 3 (mod 6) ++ L(n) = 4s. 
(5) If (a:, y) = 1 < x, and xmy = zn, then n|/7?. 

(6) F(n) = 2kr9 k > 1 «-> k >_ 3, 3^2fc"2|n •*-> L(n) = 2s. 

(7) 2|F(w) «-* 3|n. 

(8) 3|F(n) •<-• 4|n. 

(9) (F(n), F(kn)/F(n))\k. 

(10) t odd -* (F(t), F(3t)/F(t)) = 1. 

(11) £ > 0 -* F(£) < F(6t). 

(12) ^|F(w) -> s(q) Im. 

(13) F(2n + 1) = F(n)2 + F(n + I) 2. 

(14) c, n odd •+ cn = c (mod 8). 

Re.maA.kA: (1) through (8) and (11) through (14) are elementary and/or well-
known; for proof of (9), see [2], Lemma 16; (10) follows from (8) and (9). 

THE MAIN THEOREMS 

For a given prime, p, let m = m(p) >2 be the least integer such that, by 
assumption, (0) has a nontrivial solution. By inspection, 

777(2) = 12 and 7??(3) = 6. 

Tk&Ofim 7: If m = 2n > 2 is the least integer such that F(m) = cv, where 
p is prime, then either (i) m = 6, p = 3, or (ii) m = 12, p = 2. 

Cctt>& J —If n £ 0 (mod 3), then by hypothesis, (1), (2), and (3), we have 
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F(n) = bp. If b > 1, we have a contradiction, since n < m. If b = 1, then 
hypothesis ->n = 2->m = 4-> F(m) = 3, a contradiction. 

C<UZ 2 —If ft = 3 (mod 6), then (4) -> F(n) = 2p, L(n) = 4s, with rs odd. 
Now hypothesis and (2) -> F(/77) = 8PS = cp, so that (5) -»• p 13 -> p = 3. By [3] , 
we must have c=2,n=3,m=6. 

Co6e 3-If n = 0 (mod 6), let n = n0 = 2J3fet, where j, fc > 1 and (6, £) = 
1. Let m = 2~Vz0 for each i such that 1 <_ i <_ j . Let fr0 = rij = 3kt, and let 
hi = 3~^/z0 for each i such that 1 <_ i <_ k, so that t = hk. By (6), we have 
F(n) = 22+^r, L(n) = 2s, where rs is odd and (p, s) = 1. Now hypothesis, (1), 
and (2) imply r = r%9 s = SQ, with r0s0 odd and (P0 , s0) = 1. Therefore, F(n) 
= F(n0) = 22+JTQ, L{n) = L(nQ) = 2sp , ^OSO = c' Since ni = 2n^ + i, we may re-
peat our reasoning to obtain F(m) = F(rii + 1)L(ni + 1) = 2Z + J'"2'p?, L(ft̂ ) = 2s| 
for i = 0, 1, 2, ..., j - 1. By (4) we have F(hQ) = F(rij) = 2r?, L(n3-) = 4sJ; 
moreover, r^s^ = 2^ _ x is odd and (r^ , s^) = 1 for i = 1, 2, 3, ..., J. Now, 
let rj = Mo, so that F(7z0) = 2up. We have F(hi-i) = F{hi)^F{hi.{)/F{hi) for 
i = 1, 2, 3, . . . , k. By (7), (10), and (1), if i < k, we have F(hi) = 2u\, 
F{hi-i)lFQii) = v\\ if i = k, we have F(t) = F(hk) = u p, F(hk_x) /F(hk) = 2 ^ ; 
moreover, (ui, Vi) = 1 and u^Oi = u^_i is odd for i = 1, 2, 3, ..., fc. 

But (11) + F(t) < F(6t) <. F(n) < F(m) = c p - * u k = l - * t = l . If k >_ 2, 
then F(hk-1)lF(hk_1) = F(9)/F(3) = 17 = v£_ ± ->• p = 1, a contradiction. Hence, 
k = 1, ft0 = nJ = 3- I f C ^ 2> t h e n Li^o-2) = £(12) = 322 = 2s|_2 -* sf_2 = 
161 -> p = 1, a contradiction. Therefore, k = j = 1, ft = 6, m = 12, p = 2. 

Cofio&Lafiy: If (0) has a nontrivial solution for p _> 5, then it has a non-
trivial solution such that m is odd. 

VfLOO&i The proof follows directly from Theorem 1. 

Tk&Oltm 2: If F(m) = cv > 1, where the prime p ^ 5, and m is odd, then 
either (i) m = ±1 (mod 12) and c = 1 (mod 8) or (ii) m = ±5 (mod 12) and <? = 
5 (mod 8; furthermore, if q is any prime factor of c, then 2/(q) >. 5, so that 

q e {5, 13, 37, 73, 89, 97, 113, 149, 157, ...}. 

Vnooi'. If 2\c9 then 2P | op -> 2P |F(m) , so that by (6), 3*2p~2\m, contradict-
ing hypothesis. Now c is odd, so that F (m) is odd, and by (7), 3)(m. There-
fore, m E ±1 or ±5 (mod 12). If q is any prime factor of o, then 

(12) + #(4) |g(q) |TTZ. 

Since (6 , m) = 1, we must have y (q) >_ 5 . 
Co6£ ?—If w = 12t ± 1, then (13) ->• F(w?) = F ( 6 t ) 2 + F (6 t ± l^2 = c p . Now, 

F(6t) = 0 (mod 8) and F(6t ± 1) i s odd, so F(6t ± l ) 2 E l (mod 8 ) . T h e r e f o r e , 
cp E 0 + 1 El (mod 8 ) , and (14) i m p l i e s c = 1 (mod 8 ) . 

Co6e 2 —If m = 12t ± 5 , then (13) •> F(TT?) = F ( 6 t ± 3 ) 2 + F(6t ± 2 ) 2 = cp. 
Now, F ( 6 t ± 3) = 2 (mod 8) and F(6t ± 2) i s odd, so F(6t ± 2 ) 2 = 1 (mod 8 ) . 
T h e r e f o r e , c p E 4 + l E 5 (mod 8 ) , and (14) i m p l i e s c = 5 (mod 8 ) . 
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