So,

$$
\begin{aligned}
y(n+1)+1 & =3 x(n+1)-y(n)+1 \\
& =3(x(n+1)+1)-(y(n)+1)-1 \\
& =3 f(2 n+3) f(2 n+4)-f(2 n+2) f(2 n+3)-1 \\
& =2 f(2 n+3) f(2 n+4)+f(2 n+3)(f(2 n+2)+f(2 n+3)) \\
& =2 f(2 n+3) f(2 n+4)+(2 n+2) f(2 n+3)-1 \\
& =2 f(2 n+3) f(2 n+4)+f(2 n+2) f(2 n+4) \\
& =f(2 n+3) f(2 n+4)+f^{2}(2 n+4) \\
& =f(2 n+4) f(2 n+5),
\end{aligned}
$$

completing the proof.

REFERENCES

1. W. H. Mills, "A Method for Solving Certain Diophantine Equations," Proc. Amer. Math. Soc. 5 (1954):473-475.
2. James C. Owings, Jr., "An Elementary Approach to Diophantine Equations of the Second Degree," Duke Math. J. 37 (1970):261-273.

* 关前

THE DIOPHANTINE EQUATION $N b^{2}=c^{2}+N+1$

DAVID A. ANDERSON and MILTON W. LOYER
Montana State University, Bozeman, Mon. 59715
Other than $b=c=0$ (in which case $N=-1$), the Diophantine equation $N b^{2}=c^{2}+N+1$ has no solutions. This family of equations includes the 1976 Mathematical 01ympiad problem $a^{2}+b^{2}+c^{2}=a^{2} b^{2}$ (letting $N=a^{2}-1$) and such problems as $6 b^{2}=c^{2}+7, a^{2} b^{2}=a^{2}+c^{2}+1$, etc.

Noting that $b^{2} \neq 1$ (since $N \neq c^{2}+N+1$), one may restate the problem as follows:

$$
\begin{aligned}
N b^{2} & =c^{2}+N+1 \\
N b^{2}-N & =c^{2}+1 \\
N\left(b^{2}-1\right) & =c^{2}+1 \\
N & =\left(c^{2}+1\right) /\left(b^{2}-1\right) .
\end{aligned}
$$

Thus the problem reduces to showing that, except as noted, $\left(c^{2}+1\right) /\left(b^{2}-1\right)$ cannot be an integer. [This result domonstrates the interesting fact that $c^{2} \not \equiv-1\left(\bmod b^{2}-1\right)$, i.e., that none of the Diophantine equations $c^{2} \equiv 2$ $(\bmod 3), c^{2} \equiv 7(\bmod 8)$, etc., has a solution.]

It is well known [1, p. 25] that for any prime $p, p \mid c^{2}+1 \Rightarrow p=2$ or $p=4 m+1 . *$

$$
\begin{aligned}
b^{2}-1 \mid c^{2}+1 \Rightarrow b^{2}-1 & =2^{s}\left(4 m_{1}+1\right)\left(4 m_{2}+1\right) \cdots(4 m+1) \\
& =2^{s}(4 M+1) \\
b^{2} & =2^{s}(4 M)+2^{s}+1
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& s \neq 0, \text { since } s=0 \Rightarrow b^{2}=4 M+2 \\
& \Rightarrow b^{2} \text { is even } \\
& \Rightarrow b \text { is even } \\
&(b / 2)(b) \text { is even } \\
& \text { but }(b / 2)(b)=b^{2} / 2=2 M+1 \text {, which is odd } \\
& s>0 \Rightarrow b^{2} \text { is odd } \\
& \Rightarrow b \text { is odd, so let } b=2 k+1 \\
&(2 k+1)^{2}= 2^{s}(4 M)+2^{s}+1 \\
& 4 k^{2}+4 k+1= 2^{s}(4 M)+2^{s}+1 \\
& 4\left(k^{2}+k-2^{s} M\right)= 2^{s} \\
& \Rightarrow s \geq 2 \\
& \Rightarrow 4 \text { is a factor of } b^{2}-1 \\
& \Rightarrow 4 \mid c^{2}+1 \\
& \Rightarrow c^{2}+1=4 n \\
& \Rightarrow c^{2}=4 n-1 \\
& \Rightarrow c^{2} \text { is odd } \\
& \Rightarrow \text { is odd, so let } c=2 h+1 \\
&(2 h+1)^{2}= 4 n-1 \\
& 4 \hbar^{2}+4 \hbar+1=4 n-1 \\
& 4 \hbar^{2}+4 h+2=4 n \\
& 2 h^{2}+2 h+1=2 n
\end{aligned}
$$
\]

But this is a contradiction (since the right-hand side of the equation is even, and the left-hand side of the equation is odd). So, $\left(c^{2}+1\right) /\left(b^{2}-1\right)$ cannot be an integer, and the Diophantine equation $N b^{2}=c^{2}+N+1$ has no nontrivial solution.

Following through the above proof, one can readily generalize

$$
N b^{2}=c^{2}+N+1
$$

to

$$
N b^{2}=c^{2}+N(4 k+1)+1
$$

Just letting $N=1$, one includes in the above result such Diophantine equations as

$$
b^{2}-c^{2}=6, \quad b^{2}-c^{2}=10,
$$

and, in general,

$$
b^{2}-c^{2} \equiv 2(\bmod 4)
$$

REFERENCE

1. I. M. Niven \& H. S. Zuckerman, Theory of Numbers (New York: Wiley, 1960).

[^0]: *The result of this article is not merely a special case of this theorem [e.g., according to the theorem $\left(c^{2}+1\right) / 8$ could be an integer].

