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1. INTRODUCTION

When can Fibonacci numbers appear as members of a Pythagorean triple?
It has been proved by Hoggatt [1] that three distinct Fibonacci numbers can-
not be the lengths of the sides of any triangle. L. Carlitz [8] has shown
that neither three Fibonacci numbers nor three Lucas numbers can occur in a
Pythagorean triple. Obviously, one Fibonacci number could appear as a member
of a Pythagorean triple, because any integer could so appear, but Fj3(sm+1)
cannot occur in a primitive triple, since it contains a single factor of 2.
However, it appears that two Fibonacci lengths can occur in a Pythagorean
triple only in the two cases 3-4 -5 and 5-12-13, two Pell numbers only in
5-12-13, and two Lucas numbers only in 3 -4 -5. Further, it is strongly
suspected that two members of any other sequence formed by evaluating the
Fibonacci polynomials do not appear in a Pythagorean triple.

Here, we define the Fibonacci polynomials {F, (z)} by

(1.1) Folx) =0, Fi(x) =1, Fu(x) =xF,(x) + F,_;(x),
and the Lucas polynomials {I,(x)} by
(1.2) L,(x) = Fp e (x) + F,_(x)

and form the sequences {F, (a)} by evaluating {F,(x)} at x = a. The Fibonacci
numbers are F, = F,(1l), the Lucas numbers L, = L,(1), and the Pell numbers
B, = F,(2).

While it would appear that F,(a) and F; (¢) cannot appear in the same
Pythagorean triple (except for 3-4-5 and 5-12-13), we will restrict our
proofs to primitive triples, using the well-known formulas for the legs a and
b and hypotenuse c,

(1.3) a=2mm, b=m?>-n?c=m*+n?,

where (m,n) = 1, m and n not both odd, m > n. We next list Pythagorean tri-
ples containing Fibonacci, Lucas, and Pell numbers. The preparation of the
tables was elementary; simply set F, = a, F} = b, F, = c for successive values
of k and evaluate all possible solutions.
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Table 1
PYTHAGOREAN TRIPLES -CONTAINING F%, 1 <k<18

m n 2mn m? - n? m? + n?

2 1 4 3 =F, 5 = Fq4

3 2 12 5 = Fs 13 = 7y

3 1 6 8 = Fg 10 (not primitive)
4 1 8 = Fg 15 17

7 6 84 13 = Fy 85
5 2 20 21 = Fy 29
11 10 2220 21 = Fyq 221
5 3 30 16 34 = Fq (not primitive)
17 1 34 = Fy 288 290 (not primitive)
8 3 48 55 = FlO 73
28 27 1512 55 = Fig 1513
8 5 80 39 89 = Fy,
45 44 3960 Fip = 89 3961
37 35 2590 144 = Fq, 2594 (not primitive)
20 16 640 144 = Fi, 656 (not primitive)
15 9 270 144 = Fy, 306 (not primitive)
13 5 130 144 = Fy, 194 (not primitive)
9 8 144 = Fy, 17 145

72 1 144 = Fy, 5183 5185

36 2 144 = Fy, 1292 1300 (10t primitive)
24 3 Fis 567 585 (ot primitive)
18 4 Fiy 308 340 (not primitive)
12 6 Fis 108 180 (not primitive)
13 8 208 105 233 = Fq4
117 116 27144 233 = F3 27145
16 11 352 135 377 = Fqy
19 4 152 345 377 = Fy,
189 188 71064 377 = Fqy 71065

21 8 336 377 = Fq, 505
21 13 546 272 610 = Fis (not primitive)
23 9 414 448 610 = F;i5 (not primitive)
305 1 610 = Fy; 93024 93026 (not primitive)
61 5 610 = Fi5 3696 3746 (not primitive)
494 493 487084 987 = Fig 487085
166 163 54116 987 = Fiq 54125
34 13 884 987 = Fy¢ 1325

74 67 9916 987 = Fy, 9965
34 21 1428 715 1597 = Fq4

799 798 1275204 1597 = Fi4 1275205

647 645 834630 2584 = Fig 834634 (not primitive)
325 321 208650 2584 = Fiq 208666 (not primitive)
53 15 1590 2584 = F. 4 3034 (not primitive)
55 21 2310 2584 = F4 3466 (not primitive)
1292 1 2584 = Fyg 1669263 1669265

646 2 2584 = Fi4 417312 417320 (not primitive)
323 4 2584 = Fg 104313 104345
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Table 1 (continued)
m n 2mn m? - n? m? + n?
76 17 2584 = Fig4 5487 6065
68 19 2584 = Fi4 4263 4985
38 34 2584 = F,q 288 2600 (not primitive)
Fpa1 Fn 2FnFn+1 Fn—an+2 F2n+l
2F, Fr-1 FE+1
Fen (Fén = 4)/4  (F&n + 4)/4
(Egmil = D/2 Py (Fgmtl +1)/2
Frer Fror 2R B Fox Fi + 2F, 1 Frpy
Table 2
PYTHAGOREAN TRIPLES CONTAINING Lk, 1 <k<18
m n 2mn m? - n? m? + n?
2 1 4 = L, 3 =1, 5
4 3 24 7 = L, 25
6 5 60 11 = Ls 61
9 1 18 = L 80 82 (not primitive)
5 2 20 21 29 = L,
15 14 420 29 = Ly 421
24 23 1104 47 = Lg 1105
20 18 720 76 = Lg 724 (not primitive)
19 2 76 = Lq 357 365
38 1 76 = Lq 1443 1445
62 61 7564 123 = Lj, 7565
22 19 836 123 = Ly 845
100 99 19800 199 = L, 19801
23 7 322 = L, 480 578 (not primitive)
161 1 322 = Ly, 25920 25922 (not primitive)
20 11 440 279 521 = L4
261 260 135720 521 = L, 135721
422 421 355324 843 = Ly, 355325
142 139 39476 843 = Ly, 39485
42 20 1680 1364 = L,s 2164 (not primitive)
342 340 232560 1364 = L5 232564 (not primitive)
341 2 1364 = L1s 116277 116285
62 11 1364 = L5 3723 3985
31 22 1364 = L5 471 1445
1104 1103 2435424 2207 = Lqg 2435425
1786 1785 637020 3571 = L4 6376021
2889 1 5778 = Lig 8346320 8346322 (not primitive)
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Table 2 (continued)

m n 2mn m? - n? m? + n?

963 3 5778 = Lig 927360 927378 (not primitive)

321 9 5778 = L1g 102960 103122 (not primitive)

107 27 5778 = L1s 10720 12178 (not primitive)
Table 3

PYTHAGOREAN TRIPLES CONTAINING PELL NUMBERS EZ, 1<k<38

m n 2mn m? - n? m® + n?

2 1 4 3 5 =P,

3 2 12 = P, 5 = P, 13

6 1 12 = P, 35 37

5 2 20 21 29 = P,

15 14 420 29 = P, 421

35 1 70 = Pg 1224 1226 (not primitive)
7 5 70 = Pq 24 74 (not primitive)
12 5 120 119 169 = P,

85 84 14280 169 = Py 14281

103 101 20806 408 = Py 20810 (not primitive)
53 49 5194 408 = Pg 5210 (not primitive)
204 1 408 = Pg 41615 41617

102 2 408 = Py 10400 10408 (not primitive)
51 4 408 = Py 2585 2617

68 3 408 = Py 4615 4633

34 6 408 = Py 1120 1192 (not primitive)
17 12 408 = Pg 145 433

Pn+l Pn ZPHPVL+1 Z:}rL-1Pn+Z P2n+l

We note that in 3-4 -5 and 5-12-13, the hypotenuse is a prime Fibo-
nacci number, and one leg and the hypotenuse are Fibonacci lengths. These
are the only solutions with two Fibonacci lengths where a prime Fibonacci
number gives the length of the hypotenuse. If F, is prime, then p is odd, be-
cause EbinM. If Fp is a prime of the form 4k - 1, then there are no solu-
tions to m? + n? = F,, and if Fp is a prime of the form 4k + 1, then m? + n?
has exactly one solution: m = 7 n = F,, or, the triple

k+1°
a=2FF, .. b =F 1Fiess ©C=Fypy (see [2]).

In either case, Fjy,; does not appear as the hypotenuse in a triple contain-
ing two Fibonacci numbers if F,, ., is prime. These remarks also hold for the
generalized Fibonacci numbers {7, (a)}.

Also note that some triples contain numbers from more than one sequence.
We have, in 3 -4 -5, Fy,~[3-Fs, or Ly-L3~Fs, or Fy,-L3-P;, while 5-12-13 has
Fs-Py-F7, or P3~P,-F,, and 20 -21 -29 has Fg and L, or Fg and Py. There also
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are a few 'mear misses,' which are close enough to being Pythagorean triples
to fool the eye if a triangle were constructed: 55-70-89, 21 -34-40, and
8 -33-34. However, 3-4-5 and 5-12-13 seem to be the only Pythagorean
triples which contain two members from the same sequence.

Lastly, note that numbers of the form 4m + 2 cannot be used as members
of a primitive triple, since one leg is always divisible by four, so that
Fibonacci numbers of the form Fgi,3 are excluded from primitive Pythagorean
triples.

2. SQUARES AMONGST THE GENERALIZED FIBONACCI NUMBERS {7, (a)}

Squares are very sparse amongst the sequences {E%(a)}, beyond Fy(a) = 0
and F;(a) = 1. In the Fibonacci sequence, the only squares are 0, 1, and 144
[3]; in the lucas sequence, 1 and 4; and in the Pell sequence, 0, 1, and 169.
There are no small squares other than 0 and 1 in {Fg(a)}, 3 <ax<10; it is
unknown whether other squares exist in {F,(a)}, except when a = k?, of
course.

Cohn [3] has proved the first two theorems below, which we shall need
later.

Theorem 2.1: 1f L, = x?, then n = 1 or 3.
If L, = 22%, thenn = 0 or n = *6.
Theorem 2.2: 1If F, = x?, thenn = 0, =1, 2, or 12.
If F, = 222, then n = 0, *3, or 6.

We shall need the following lemma:
Lemma 2.1: For the Fibonacci and Lucas polynomials,
Frar (@) = Ly (@) g () + (-1, ().

Proof: Lemma 2.1 appears in [4] with only a change in notation.

We will use Lemma 2.1 with x = 2, so that F, (2) = B, and L,(2) = R,,
the Pell numbers and their related sequence.

Conjecturne 2.3: 1f P, = x%, n =0, *1, or 7.
Parntial Proof: Let Ry = P,_, + P, , so that R, = L,(2). Then
8P2 + (-1)" + 2, or, R,, = *2 (mod 8) so that R,, # K°.
Rorsr = Pox + Pogan = Pop + 2Py 40 + Py

= 2(Pypyy + Pyy) = 202M + 1)

since 2|P, if and only if 2|n. Thus, Roxs1 # K% and R, # K? for any n.
Suppose n is even. Since P,; = PRy, if n = 4p + 2, then

Rva

B, = Pops1lop4y where (Po,41,R5,41) = 1.

Then P, = K* if and only if Rpp4; = z? and Popyr = y?, but Raps1 # x%, so
P, # K*. 1f n = 4p, then

P, = P,,R,, where (P,,,R,,) = 2,

n
so P, = K* if P,, = 22 and R,, = 2y®, but since R,, = 8P * 2 = 2(X* t 1),

Rop = 2y? only for p = 0, giving P, as the only solution. Thus, B, # K? for
n even, unless n = 0.
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Since P,4g = P, (mod 8) and Pg,,; = 1 (mod 8) and Pg,z3 = 5 (mod 8),
since all odd squares are congruent to 1 (mod 8), if n is odd, n = 8n = 1 if
P, = K*. Of course, P, = k% for n = %1, *7. The conjecture is not resolved.

Conjecture 2.4: 1f P, = 5k?, then n = 0 or n = 3,
Partial Proof: 1If P, = 5k*, then P, =5 « 0 = 0 (mod 8), or P, =5 + 1 =5
(mod 8), or P, =5 * 4 = 4 (mod 8), so that n = 8m, 8n+4, 87 +3, or 8m+5,

since Py, = 0 (mod 8), Pgysy = 4 (mod 8), and Pg,:3 = 5 (mod 8).
If n is even, then n = 4k, and PF, = Py, = P, R,, where (Py ,R,;) = 2

and R, # 2, R, # 2x?, and R,, # 5x” since 5/R,;. We have P,, # K* unless

k =0, or, P, # K* when n is even, unless n = 0.

If n is odd, then n = 8m *3. Now, n = %3 gives a solution. If n # *3,
then w = 8n £ 3 =2 ¢« 4w £ 3, and since P_3= P3 =5, both of these give
P, = -P; (mod R,,) = -5 (mod Ruw) by way of Lemma 2.1 and

(2.1) Pryox = BPrsr -1**'p,

where m = #3 and k = 4w. Now, if w is odd, then R, divides wa, and we can
write, from (2.1),

P =R, «K-P

243 w3 T Pr3

so that, since R, = 34, P, = -5 (mod 34), where -5 is not a quadratic residue
of 34. It is strongly suspected that -5 is not a quadratic residue of R,,,
but the conjecture is not established if w is even.

Theorem 2.5: If F, = 5x%, then n = 0 or n = *5.

Proof: 1If n is even, F, = F, = F,L, = 5x° if F, = 5x% and Ly = y?, or F, =
x“ and Ly = 5k? (impossible), which has solutions for k = O only.

If n is odd, then # = 3 (mod 4) or n =1 (mod 4). If n = 3 (mod 4),
then write n = 3 + 4M = 3 + 2 + 3" « k, where 2|k, 3/k, and

5F, = =5F, = -10 (mod L),
but Ly = 3 (mod 4) if 2[k, 3*k, so -10 is not a quadratic residue, and
5F, # k? so F, # 5k2.
If n =1 (mod 4), n =5 is a solution. If n # 5
n=1+4u=1+2 3" «FL,
where 2!@, 3*k, and
5F, = -5F, = -5 (mod Ly),
but -5 is not a quadratic residue, and

5F, # k% so F, # 5K when 7 is odd, unless n = 5.

Since F_, = (-1)"*!'F,, n = -5 is also a solution. Thus, F, # 5x2 unless n =
0, #£5.

We will find another relationship between squares of the generalized
Fibonacci numbers useful.

Theorem 2.6:
F2(x) = (-1)"FF2 (@) + By g () F, 4 (@)
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Proof: For simplicity, we will prove Theorem 2.6 for Fibonacci numbers, or
for & = 1, noting that every identity used is also an identity for the Fibo-

nacci polynomials [4]. 1In particular, we use
(2.2) D" E, (@) = Fo, (@)

(2.3) Fpan(x) = Fpoy (0)F, () + Fb(x)5;+1(x)
(2.4) Fi(x) = (-1)"" + Fy 1 (@) Fyyq ()
(2.5) F7 (@) + F2(®) = Fapyy (@)

Proof is by mathematical induction. Theorem 2.6 is true for k = 1 by
(2.4) Set down the theorem statement as P(k) and P(k + 1):

P(k): F2 = (-1)"**FZ + Fy_Fpz
k+1
Pk + 1): Fﬁ = (1" F£+1 tE k1B

Equating P(k) and P(k + 1),

n+k+1 2
-1 (Fk+1

2
+ Fk) Fn—an+k + Fn-k-an+k+1

1

LR TR e GO T T R P

by (2.2). By (2.5) and (2.3), the left-hand and right-hand members become
(—l)n+k+lF2k+1 = (_l)k_n+lF2k+1-

Since all the steps reverse,

(_l)n+k+lF2

_ +k 42 _ 2
k+1 t B ko1Fuiker = -1" Fk + Py xFuer = Fy

so that P(k + 1) is true whenever P(k) is true. Thus, Theorem 2.6 holds for
all positive integers u.

3. SOLUTIONS FOR F2(a) + F.(a) = K*
By Theorem-2.6, when n and k have opposite parity,
(3.1) Fi(a) + Fi(a) = F, 3 (@ Fpex(a).

Since (F,(a),Fx(a)) = 1 = F¢n, 1y (@) by the results of [5], (n,k) = 1 and op-
posite parity for n and k means that (n - k,m + k) = 1 so that

(Fp_x (@) s Fper(@)) = 1.

Thus, Fy_3(a)Fn+x(a) = K? if and only if both F,_i(a) = x? and Fy.x(a) = yZ.
We would expect a very limited number of solutions, then, since squares are
scarce amongst {Fn(a)}.

Since one leg is divisible by 4 in a Pythagorean triple, one of n or k
is a multiple of 6 if a is odd, and a multiple of 2 if a is even; thus, n
and k cannot both be odd. Also, » and k cannot both be even, since F,(a) is
a factor of Fy,(a) and F,(a) > 1 for all sequences except F, (1) = F,.

Restated,

2
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Theorem 3.1: Any solution to Fﬁ(a) + Fﬁ(a) = K? in positive integers,a > 2,
occurs only for such values of n and k that F,_;(a) = x? and Foerla) = yz.

Conjecture 3.2: FZ2(2) + Ff(2) = K*, n >k > 0, where F,(2) = P,, the nth
Pell number, has the unique solution n = 4, k = 3, giving 5-12 -13.

it

Proof: Apply Theorems 3.1 and Conjecture 2.3.
Theonem 3.3: If Ef + Fﬁ = K*, n >k > 0, then both n and k are even.
Proof: Apply Theorems 3.1 and 2.2.

Theorem 3.4: 1If Ff + Ff = K>, n > k >0, then Py, = 55, Fg = 21, F,s = 2584,
Fe¢ = 8, and /'y = 3 each divide either F, or F,, and 13 is the smallest prime
factor possible for X.

Proof: Since 3 divides one leg of a Pythagorean triple, 7, divides B, or F,.
Since 4 divides one leg of a Pythagorean triple, and the smallest F, divisi-
ble by 4 is Fg, F¢ divides F, or F,. That F;; divides either F, or F, follows
by examining the quadratic residues of 11. The quadratic residues of 11 are
1, 3, 4, 5, and 9. Tt is not difficult to calculate

Fiop =0 (mod 11)

Ffpss =1 (mod 11)
Flopey = 9 (mod 11)

where we need only consider even subscripts by Theorem 3.3. Notice that
F2s ¥ Flowso = 1 (mod 11) and F3, + Fiy, ., = 9 (mod 11), where 1 and 9 are
quadratic residues of 11, so that these are possible squares, but Ewaiz +
Flopsy = 10 (mod 11), where 10 is not a residue. F?owxz + E%omtz produces
the nonresidue 2, and similarly Efoth +'E€Owik = 7 (mod 11), so.that either
F, = Fy, or Fy, = F,;,. In either case, F,, divides one of F, or F.

Similarly, we examine the quadratic residues of 7, which are 0, 1, 2,
and 4. We find

F5 =0 (mod 7)
Fi.:, = 1 (mod 7)
FZ ., =2 (mod 7)

where E%m-+ F%miz =1 (mod 7) and Fgm‘*E%mtu Z 2 (mod 7) are possible squares

but FZ, ., + F5,., = 3 (mod 7) is not a possible square. But, F2. and F3,..,
or F%m and Fgm*, or Fﬁmiq and F%m*iq,cannot occur in the same primitive tri-
ple, since they have common factor F,. F5,., and F2,«., cannot be in the same
triple, because F, divides one leg, and neither subscript is divisible by 4.
Thus, F,, is one leg in the only possible cases, forcing Fy; to be a factor of
F, or of Fy.

Using 17 for the modulus, with quadratic residues 0, 1, 2, 4, 8, 9, 13,
15, 16, we find

F2,, =0 (mod 17)

Foumsr = 1 (mod 17)
F2insy =9 (mod 17)
Figmse = 13 (mod 17)
Flamss = 16 (mod 17)
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Now, F?Bm can be added to any of the other forms to make a quadratic residue
(mod 17). F%sm*fz + F18m+2 = 2 (mod 17), but one subscript must be divisible

+ F?

by 6. F%smzz + F?Bmi“ Z 10 (mod 17) is not a residue. F? lemse = 14

18m+2

(mod 17) is not a residue. F%SWHZ + F%8m+ g =0 (mod 17), but one subscript

+ F?

must be divisible by 6. F? 1smze = O (mod 17) is not a residue, while

18mtL
F?Bm*‘k + Fle+8 =8 (mod 17), but one subscript must be divisible by 6.

2 2 2 . .
Flomen T F18m+u and Flgusg * Flgn: s are also discarded because one subscript
. 2 2
is not divisible by 6. Fig .. + Flg,., have a common factor of Fy so cannot

be in the same primitive triple, and F%Bmte + F%amrs produce the nonresidue
12 (mod 17). The only possibility, then, is that F.g, aPpears as one leg, or
that F,g divides either F, or Fj.

Since K cannot have any factors in common with F, or with F,, we note
that the prime factors 2, 3, 5, 7, and 11 occur in F,,, Fg, Fi4, Fg, and F,,
but 13 does not, making 13 the smallest possible prime factor for K.

Theorem 3.5: If F? + sz = K2, n >k >0, has a solution in positive inte-
gers, then the smallest leg F, > Fgj,, which has 11 digits.

Proof: Consider the required form of the subscripts # and kX in the light of
Theorem 3.4. Because 4[F or 4|Fk , and both subscripts are even, we can write
F2. + ng, where p = 35 % 1, making the required form F + F§J+2 Since 3
divides one subscript or the other, 4 divides one subscrlpt or the other,
leading to

(i) FZ, + F?, .., for j odd,

and to
2 .
(ii) F12m + Fl,,+,> for J even.
First, consider (i). Since Fg = 21 divides one leg or the other, Fy4
must divide F,, ., to avoid a common factor of F, = 3, so w is odd, making

Fgm + F2L+q+8 the required form. Next, F,, divides a leg. If F,, divides

Fiyp+ys then F6\F12w+,+, but 6)((12&7 t 4). So, Fy4 'FSM, making the required
form become F%sm + ngq,fs Next, since F,;, divides a leg, we obtain the two

final forms,
(&D) F90m + F.g_leqis or (2) Fle +F120s+uo

Next, consider (ii). Since Fy = 21 divides a leg, we must have Fg|F,,
to avoid a common factor of F, = 3, making the form become F3,, + F%,,.,.
Also, F,; divides a leg, but must divide F,,, to avoid a common factor of
Fg¢, making the form be F%zm + F§2m+2 Since we also have F,, as the divisor
of a leg, we have the two possible final forms

2
(3) Figon + F%zu:z or (4) F%Zm +t Foopeio-

Now, if F, is the odd leg, then F, = m? - n?, and the even leg is F, =
2mn. The largest value for 2mm occurs for (m + n) = F, and (m - n) = 1, so
we do not need to know the factors of F; . Solving to find the largest values
of m and n, we find m = (F, + 1)/2 and n = (Fp - 1)/2, making the largest
possible even leg F, = 2mn = (sz - 1)/2. We have available a table of Fibo-
nacci numbers F,, 0 < n < 571 [6].
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We look at the four possible forms again. In form (1), Fo, has 19 dig-
its, the smallest possible even leg. Possible odd legs are Fi5, Fg,, Fupo
Feey ... where F,; has 9 digits, so that (Fﬁ0 - 1)/2 has less then 19 digits,
making the smallest possible leg in form (1) be Fg;. In form (2), E@Sm +
E%ZOinO! the smallest leg occurs for m = 1, known not to occur in such a
triple from Table 1; m = 2 gives a common factor of 4 with the other sub-
script, making m = 3 the smallest usable value, or the smallest possible leg
Fg,. Now, form (3) has Fg,,, a number of 75 digits, as the smallest value
for the even leg, making the smallest possible odd leg greater than F,.,,
which has 36 digits. Lastly, form (4) has its smallest leg F,, which has 11
digits. Comparing smallest legs in the four forms, we see that the smallest
leg possible is Fg,.

Theorem 3.6: Li + Li = X%, n >k > 0, has the unique solution n = 3, k = 2,
or the triple 3-4-5.

Proof: Since 4|L, or 4|L;, either n = 3(2k + 1) or k = 3(2k + 1), so that
one subscript is odd. Since 3 divides one leg in a Pythagorean triple, one
leg has to have a subscript of 2(2k + 1), which is even, since Lpqu if and
only if g = (2k + 1)p (see [1]). Thus, #»n and k must have opposite parity.
If n and k have opposite parity, then (n - k) is odd. Since L_, = (-1)"L,,
from [1] we have both

(3.2) Lp-xLnsk = L3 = 5(-1)""*F2,
U F Ly gL - B2 = 51" EE,

where 7 - k is odd. Adding the two forms of (3.1),
2
L% + L% = 5(F; + F}) = 5F, _4Fp.x

by (3.1). Now, 5F,_3Fn+x = K? if and only if either Fn_x = 5x° and Fp4p = y°
or Fy_3 = yz and Fp+x = 5x2. By Theorems 2.5 and 2.2, either n + k = 1 and
n-k=50rn-k=1and n+ k =5, making the only solution n = 3, k = 2.

k. SOLUTIONS FOR F;(a) - Fi(a) = K*
By Theorem 2.6, when #n and k have the same parity,
4.1) Fi(a) - Ff(a) = Fy_ g (@) Fnsr(a).

As in Section 3, F,_p(a)F,ix(a) = K% if and only if both F, _x(a) = 2% and
Foix(a) = y?, indicating a limited number of solutions in positive integers.
Note that » and k cannot both be even if a > 2, because Fy,(a) and Fy,(a)
have the common factor F,(a), precluding a primitive triple.

Lemma 4.1: 1If a is odd, 2|Fa (a), 3|Fu(a), and 4|Fg (a).

Proof: We list Fy(a) =0, Fi(a) =1, Fy(a) =a, Fi(a) =a® + 1, Fy(a) =a® + 2a,
Fgla) = a* + 3a® + 1, and Fe(a) =q® + 4a% + 3¢. 1If g is odd, then Fi(a) is
even. If a = 2m + 1, then

F,(a) = (8m> + 12m* + 6m + 1) + (4m + 2)
8m® + 4m) + (12m® + ém + 3)
tm(2m® + 1) + 3(4m® + 2m + 1)
3M + 3K = 3W,

il
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since either 3|m or 3] @m?® + 1). Also, a = 2m + 1 makes
Fe(a) = Cm+ 1D + 40Cm + 1% +3@2n + 1)

(4K + 10m + 1) + &M + (6m + 3)

4K + 4M + 16m + 4 = 4P.

Since F,(a)|F,; (@), m > 0, the lemma follows.

Lemma 4.2: 1f aq is even, 2]F2k(a), 3‘Fuk(a), and 4|F,+k (a).

Proof: Refer to the proof of Lemma 4.1 and let ¢ = 2m. Then Fz(a) = 2m, and
rF.la) = 8m® + 4m = 4[m(2m? + 1)] = 4 +3M, and the Lemma follows as before.

Theorem 4.1: 1If Fﬁ(a) - F,f(a) = Kz, n >k > 0, has solutions 1in positive
integers, then n # 4k. If g is even, » cannot be even. If g is odd, n # 3k
and n # 4k.

Proog: Lemmas 4.1 and 4.2 show that 3IF4k(a), and since 3 divides one leg in
a Pythagorean triple, n = 4k would cause a common factor of 3, preventing a
primitive triple. For similar reasons, n # 2k if o is even, and n # 3k if a
is odd.

Conjecture 4.2: Any possible solution for P2 - Pi =K%, n>k>0, occurs
only if n = 2p + 1 and k = 4w, or if P, is odd and P, is a multiple of 12,

Proog: Considering (4.1), there is no solution to P,_; = xz?, Poyx = yz if n
and k have the same parity, if Conjecture 2.3 holds. Also, #n cannot be even,
because 2\P2m and 4 divides one leg in a Pythagorean triple, precluding a
primitive triple. If k is even, then P, is even, and the even leg is divisi-
ble by 4, making P, have the form P, . Since P, = 12, P, is a multiple of
12.

Theorem 4.3: F2 - F;f = K has solutions in positive integers for n = 7, k =
5, forming the triple 5-12-13, and for n = 5, k = 4, forming the triple
3-4-5. Any other solutions occur only if #n and k have opposite parity,
where either n = 12w * 2 and k is odd, or n = 6m £ 1 and k is even.

Proof: Using (4.1) and Theorem 2.2, the only solution for F,_; = x? and
F,+x =y~ where n and k have the same parity is n = 7, k = 5, making the tri-
ple 5-12-13. If any other solutions exist, # and k have opposite parity.
It is known that n = 5, k¥ = 4 provides a solution, giving the triple 3-4-5.
If n is even, n # 3k, n # 4k, so n= 12w * 2, and k is odd. If » is odd,
n # 3k, son =6m £ 1 and k is even.

Theorem 4.4: 1f n and k have different parity, any solutions for F7 —F,f = K2
other than n = 5, k = 4, or the triple 3 -4 -5, must have n > k + 5.

Proof: F2,.q — F? = Fy-1Fn42, where (F,_1,Fn+2) = 1 or 2, so that Fy_1Fn4y =
K either if F,_, = & and Fp4p=y>, or if Fp-1 = 2> and Fnyz = 2y°. By
Theorem 2.2, there are no solutions to Fy-1 = &° and Fp4p = yz, but Fp-1 =
22% and F,,, = 2y is solved by n = 4, yielding the 3 -4-5 triple, There
are no other solutions for subscripts differing by 1. Since #n and k have
opposite parity, they differ by an odd number.

F2,y = Ff = 4F, 1F,., # K* unless n = 0 or -1 by Theorem 2.2,

Thus, the hypotenuse has a subscript at least five greater than the leg.
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Theorem 4.5: Fﬁ(a) —Ei(a) = ¥? has no solution in positive integers if F,(a)
is prime.

P&OOﬁ: See the discussion at the end of Section 1.

Theonem 4.6: If Li-—Li = X%, n > k > 0, has solutions in positive integers,
then either n = 4m and k is odd, or n = 6p + 1 and k is even.

P&ooﬁ: We parallel the proof of Theorem 3.6, except here we take n and k
with the same parity, so that n + k is even, and subtract:

Dy tDpar = D = SC1FF
(-1)""*L, _3Lpex - LE = 5(-1)"**F

2 2
1% - 1}

5(F2 = F?) = 5F, _3Fpup = K°

if and only if F,_, = 52% and Fovn = yz, or Fu4x = 502 and Fn_x = y By
Theorem 2.5, the only solution for » and k the same parity is n - k = 0,
which does not solve our equation.

If n and k¥ do not have the same parity, consider n even. Then, n = 4k
or n = 4k + 2, but n = 4k + 2 is impossible because the hypotenuse would have
the factor 3 in common with a leg. Thus,n = 4k, and k is odd. If » is odd,
then n = 6p * 1 to avoid a factor of L, = 3, and k is even.

2

Conjecturne: The only solutions to Fﬁ(a) iff(a) =K%, n >k >0, in positive
integers, are found in the two Pythagorean triples 3 -4 -5 and 5-12-13. If
a > 3 and a # k%, the only squares in {Fn(a)} are 0 and 1.

I wish to thank Professor L. Carlitz for suggesting reference [9] and
for reading this paper.
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