PYTHAGOREAN TRIPLES CONTAINING FIBONACCI NUMBERS:
 SOLUTIONS FOR $\boldsymbol{F}_{\boldsymbol{n}}^{\mathbf{2}} \pm \boldsymbol{F}_{\boldsymbol{k}}^{\mathbf{2}}=\boldsymbol{K}^{\mathbf{2}}$
 MARJORIE BICKNELL-JOHNSON
 A. C. Wilcox High School, Santa Clara, CA 95051

1. INTRODUCTION

When can Fibonacci numbers appear as members of a Pythagorean triple? It has been proved by Hoggatt [1] that three distinct Fibonacci numbers cannot be the lengths of the sides of any triangle. L. Carlitz [8] has shown that neither three Fibonacci numbers nor three Lucas numbers can occur in a Pythagorean triple. Obviously, one Fibonacci number could appear as a member of a Pythagorean triple, because any integer could so appear, but $F_{3(2 m+1)}$ cannot occur in a primitive triple, since it contains a single factor of 2 . However, it appears that two Fibonacci lengths can occur in a Pythagorean triple only in the two cases 3-4-5 and 5-12-13, two Pell numbers only in 5-12-13, and two Lucas numbers only in 3-4-5. Further, it is strongly suspected that two members of any other sequence formed by evaluating the Fibonacci polynomials do not appear in a Pythagorean triple.

Here, we define the Fibonacci polynomials $\left\{F_{n}(x)\right\}$ by

$$
\begin{equation*}
F_{0}(x)=0, \quad F_{1}(x)=1, \quad F_{n+1}(x)=x F_{n}(x)+F_{n-1}(x), \tag{1.1}
\end{equation*}
$$

and the Lucas polynomials $\left\{L_{n}(x)\right\}$ by

$$
\begin{equation*}
L_{n}(x)=F_{n+1}(x)+F_{n-1}(x) \tag{1.2}
\end{equation*}
$$

and form the sequences $\left\{F_{n}(\alpha)\right\}$ by evaluating $\left\{F_{n}(x)\right\}$ at $x=\alpha$. The Fibonacci numbers are $F_{n}=F_{n}(1)$, the Lucas numbers $L_{n}=L_{n}(1)$, and the Pell numbers $P_{n}=F_{n}(2)$.

While it would appear that $F_{n}(\alpha)$ and $F_{k}(\alpha)$ cannot appear in the same Pythagorean triple (except for 3-4-5 and 5-12-13), we will restrict our proofs to primitive triples, using the well-known formulas for the legs a and b and hypotenuse c,

$$
\begin{equation*}
a=2 m n, \quad b=m^{2}-n^{2}, \quad c=m^{2}+n^{2}, \tag{1.3}
\end{equation*}
$$

where $(m, n)=1, m$ and n not both odd, $m>n$. We next list Pythagorean triples containing Fibonacci, Lucas, and Pell numbers. The preparation of the tables was elementary; simply set $F_{k}=a, F_{k}=b, F_{k}=c$ for successive values of k and evaluate all possible solutions.

Table 1
PYTHAGOREAN TRIPLES CONTAINING $F_{k}, 1 \leq k \leq 18$

m	n	$2 m n$	$m^{2}-n^{2}$	$m^{2}+n^{2}$	
2	1	4	$3=F_{4}$	$5=F_{5}$	
3	2	12	$5=F_{5}$	$13=F_{7}$	
3	1	6	$8=F_{6}$	10	(not primitive)
4	1	$8=F_{6}$	15	17	
7	6	84	$13=F_{7}$	85	
5	2	20	$21=F_{8}$	29	
11	10	220	$21=F_{8}$	221	
5	3	30	16	$34=F_{9}$	(not primitive)
17	1	$34=F_{9}$	288	290	(not primitive)
8	3	48	$55=F_{10}$	73	
28	27	1512	$55=F_{10}$	1513	
8	5	80	39	$89=F_{11}$	
45	44	3960	$F_{11}=89$	3961	
37	35	2590	$144=F_{12}$	2594	(not primitive)
20	16	640	$144=F_{12}$	656	(not primitive)
15	9	270	$144=F_{12}$	306	(not primitive)
13	5	130	$144=F_{12}$	194	(not primitive)
9	8	$144=F_{12}$	17	145	
72	1	$144=F_{12}$	5183	5185	
36	2	$144=F_{12}$	1292	1300	(ot primitive)
24	3	F_{12}	567	585	(not primitive)
18	4	F_{12}	308	340	(not primitive)
12	6	F_{12}	108	180	(not primitive)
13	8	208	105	$233=F_{13}$	
117	116	27144	$233=F_{13}$	27145	
16	11	352	135	$377=F_{14}$	
19	4	152	345	$377=F_{14}$	
189	188	71064	$377=F_{14}$	71065	
21	8	336	$377=F_{14}$	505	
21	13	546	272	$610=F_{15}$	(not primitive)
23	9	414	448	$610=F_{15}$	(not primitive)
305	1	$610=F_{15}$	93024	93026	(not primitive)
61	5	$610=F_{15}$	3696	3746	(not primitive)
494	493	487084	$987=F_{16}$	487085	
166	163	54116	$987=F_{16}$	54125	
34	13	884	$987=F_{16}$	1325	
74	67	9916	$987=F_{16}$	9965	
34	21	1428	715	$1597=F_{17}$	
799	798	1275204	$1597=F_{17}$	1275205	
647	645	834630	$2584=F_{18}$	834634	(not primitive)
325	321	208650	$2584=F_{18}$	208666	(not primitive)
53	15	1590	$2584=F_{18}$	3034	(not primitive)
55	21	2310	$2584=F_{18}$	3466	(not primitive)
1292	1	$2584=F_{18}$	1669263	1669265	
646	2	$2584=F_{18}$	417312	417320	(not primitive)
323	4	$2584=F_{18}$	104313	104345	

Table 1 (continued)

m	n	$2 m n$	$m^{2}-n^{2}$	$m^{2}+n^{2}$
76	17	$2584=F_{18}$	5487	6065
68	19	$2584=F_{18}$	4263	4985
38	34	$2584=F_{18}$	288	2600
F_{n+1}	F_{n}	$2 F_{n} F_{n+1}$	$F_{n-1} F_{n+2}$	$F_{2 n+1}$
		$2 F_{k}$	$F_{k}^{2}-1$	$F_{k}^{2}+1$
		$F_{6 m}$	$\left(F_{6 m}^{2}-4\right) / 4$	$\left(F_{6 m}^{2}+4\right) / 4$
		$\left(F_{3 m \pm 1}^{2}-1\right) / 2$	$F_{3 m \pm 1}$	$\left(F_{3 m \pm 1}^{2}+1\right) / 2$
F_{k+1}	F_{k-1}	$2 F_{k+1} F_{k-1}$	$F_{2 k}$	$F_{k}^{2}+2 F_{k-1} F_{k+1}$

Table 2
PYTHAGOREAN TRIPLES CONTAINING $L_{k}, 1 \leq k \leq 18$

m	n	$2 m n$	$m^{2}-n^{2}$	$m^{2}+n^{2}$	
2	1	$4=L_{3}$	$3=L_{2}$	5	
4	3	24	$7=L_{4}$	25	
6	5	60	$11=L_{5}$	61	
9	1	$18=L_{6}$	80	82	(not primitive)
5	2	20	21	$29=L_{7}$	
15	14	420	$29=L_{7}$	421	
24	23	1104	$47=L_{8}$	1105	
20	18	720	$76=L_{9}$	724	(not primitive)
19	2	$76=L_{9}$	357	365	
38	1	$76=L_{9}$	1443	1445	
62	61	7564	$123=L_{10}$	7565	
22	19	836	$123=L_{10}$	845	
100	99	19800	$199=L_{11}$	19801	
23	7	$322=L_{12}$	480	578	(not primitive)
161	1	$322=L_{12}$	25920	25922	(not primitive)
20	11	440	279	$521=L_{13}$	
261	260	135720	$521=L_{13}$	135721	
422	421	. 355324	$843=L_{14}$	355325	
142	139	39476	$843=L_{14}$	39485	
42	20	1680	$1364=L_{15}$	2164	(not primitive)
342	340	232560	$1364=L_{15}$	232564	(not primitive)
682	1	$1364=L_{15}$	465123	465125	
341	2	$1364=L_{15}$	116277	116285	
62	11	$1364=L_{15}$	3723	3985	
31	22	$1364=L_{15}$	471	1445	
1104	1103	2435424	$2207=L_{16}$	2435425	
1786	1785	637020	$3571=L_{17}$	6376021	
2889	1	$5778=L_{18}$	8346320	8346322	(not primitive)

Table 2 (continued)

m	n	$2 m n$	$m^{2}-n^{2}$	$m^{2}+n^{2}$	
963	3	$5778=L_{18}$	927360	927378	(not primitive)
321	9	$5778=L_{18}$	102960	103122	(not primitive)
107	27	$5778=L_{18}$	10720	12178	(not primitive)

Table 3
PYTHAGOREAN TRIPLES CONTAINING PELL NUMBERS $P_{k}, 1 \leq k \leq 8$

m	n	$2 m n$	$m^{2}-n^{2}$	$m^{2}+n^{2}$	
2	1	4	3	$5=P_{3}$	
3	2	$12=P_{4}$	$5=P_{3}$	13	
6	1	$12=P_{4}$	35	37	
5	2	20	21	$29=P_{5}$	
15	14	420	$29=P_{5}$	421	
35	1	$70=P_{6}$	1224	1226	(not primitive)
7	5	$70=P_{6}$	24	74	(not primitive)
12	5	120	119	$169=P_{7}$	
85	84	14280	$169=P_{7}$	14281	
103	101	20806	$408=P_{8}$	20810	(not primitive)
53	49	5194	$408=P_{8}$	5210	(not primitive)
204	1	$408=P_{8}$	41615	41617	(not primitive)
102	2	$408=P_{8}$	10400	10408	
51	4	$408=P_{8}$	2585	2617	(not primitive)
68	3	$408=P_{8}$	4615	4633	
34	6	$408=P_{8}$	1120	1192	
17	12	$408=P_{8}$	145	433	
P_{n+1}	P_{n}	$2 P_{n} P_{n+1}$	$P_{n-1} P_{n+2}$	$P_{2 n+1}$	

We note that in 3-4-5 and 5-12-13, the hypotenuse is a prime Fibonacci number, and one leg and the hypotenuse are Fibonacci lengths. These are the only solutions with two Fibonacci lengths where a prime Fibonacci number gives the length of the hypotenuse. If F_{p} is prime, then p is odd, because $F_{w} \mid F_{2 w}$. If F_{p} is a prime of the form $4 k$ - 1 , then there are no solutions to $m^{2}+n^{2}=F_{p}$, and if F_{p} is a prime of the form $4 k+1$, then $m^{2}+n^{2}$ has exactly one solution: $m=F_{k+1}, n=F_{k}$, or, the triple

$$
a=2 F_{k} F_{k+1}, \quad b=F_{k-1} F_{k+2}, \quad c=F_{2 k+1} \quad(\text { see }[2]) .
$$

In either case, $F_{2 k+1}$ does not appear as the hypotenuse in a triple containing two Fibonacci numbers if $F_{2 k+1}$ is prime. These remarks also hold for the generalized Fibonacci numbers $\left\{F_{n}(\alpha)\right\}$.

Also note that some triples contain numbers from more than one sequence. We have, in 3-4-5, $F_{4}-L_{3}-F_{5}$, or $L_{2}-L_{3}-F_{5}$, or $F_{4}-L_{3}-P_{3}$, while $5-12-13$ has $F_{5}-P_{4}-F_{7}$, or $P_{3}-P_{4}-F_{7}$, and $20-21-29$ has F_{8} and L_{7} or F_{8} and P_{5}. There also
are a few "near misses," which are close enough to being Pythagorean triples to fool the eye if a triangle were constructed: 55-70-89, 21-34-40, and 8-33-34. However, 3-4-5 and 5-12-13 seem to be the only Pythagorean triples which contain two members from the same sequence.

Lastly, note that numbers of the form $4 m+2$ cannot be used as members of a primitive triple, since one leg is always divisible by four, so that Fibonacci numbers of the form $F_{6 k+3}$ are excluded from primitive Pythagorean triples.

2. SQUARES AMONGST THE GENERALIZED FIBONACCI NUMBERS $\left\{F_{n}(\alpha)\right\}$

Squares are very sparse amongst the sequences $\left\{F_{n}(\alpha)\right\}$, beyond $F_{0}(\alpha)=0$ and $F_{1}(\alpha)=1$. In the Fibonacci sequence, the only squares are 0 , 1 , and 144 [3]; in the lucas sequence, 1 and 4 ; and in the Pell sequence, 0,1 , and 169. There are no small squares other than 0 and 1 in $\left\{F_{n}(\alpha)\right\}, 3 \leq \alpha \leq 10$; it is unknown whether other squares exist in $\left\{F_{n}(\alpha)\right\}$, except when $\bar{\alpha}=k^{2}$, of course.

Cohn [3] has proved the first two theorems below, which we shall need later.

Theorem 2.1: If $L_{n}=x^{2}$, then $n=1$ or 3 .
If $L_{n}=2 x^{2}$, then $n=0$ or $n= \pm 6$.
Theorem 2.2: If $F_{n}=x^{2}$, then $n=0, \pm 1,2$, or 12 .
If $F_{n}=2 x^{2}$, then $n=0, \pm 3$, or 6 .
We shall need the following lemma:
Lemma 2.1: For the Fibonacci and Lucas polynomials,

$$
F_{m+2 k}(x)=L_{k}(x) F_{m+k}(x)+(-1)^{k+1} F_{m}(x)
$$

Proof: Lemma 2.1 appears in [4] with only a change in notation.
We will use Lemma 2.1 with $x=2$, so that $F_{n}(2)=P_{n}$ and $L_{n}(2)=R_{n}$, the Pell numbers and their related sequence.

```
Conjecture 2.3: If \(P_{n}=x^{2}, n=0, \pm 1\), or \(\pm 7\).
Partial Proof: Let \(R_{k}=P_{k-1}+P_{k+1}\) so that \(R_{k}=L_{k}(2)\). Then
    \(R_{2 m}=8 P_{m}^{2}+(-1)^{m} \cdot 2\), or, \(R_{2 m}= \pm 2(\bmod 8)\) so that \(R_{2 m} \neq K^{2}\).
    \(R_{2 k+1}=P_{2 k}+P_{2 k+2}=P_{2 k}+2 P_{2 k+1}+P_{2 k}\)
        \(=2\left(P_{2 k+1}+P_{2 k}\right)=2(2 M+1)\)
```

since $2 \mid P_{n}$ if and only if $2 \mid n$. Thus, $R_{2 k+1} \neq K^{2}$ and $R_{n} \neq K^{2}$ for any n. Suppose n is even. Since $P_{2 k}=P_{k} R_{k}$, if $n=4 p+2$, then

$$
P_{n}=P_{2 p+1} R_{2 p+1} \text { where }\left(P_{2 p+1}, R_{2 p+1}\right)=1
$$

Then $P_{n}=K^{2}$ if and only if $R_{2 p+1}=x^{2}$ and $P_{2 p+1}=y^{2}$, but $R_{2 p+1} \neq x^{2}$, so $P_{n} \neq K^{2}$. If $n=4 p$, then

$$
P_{n}=P_{2 p} R_{2 p} \text { where }\left(P_{2 p}, R_{2 p}\right)=2
$$

so $P_{n}=K^{2}$ if $P_{2 p}=2 x^{2}$ and $R_{2 p}=2 y^{2}$, but since $R_{2 p}=8 P_{p}^{2} \pm 2=2\left(X^{2} \pm 1\right)$, $R_{2 p}=2 y^{2}$ only for $p=0$, giving P_{0} as the only solution. Thus, $P_{n} \neq K^{2}$ for n even, unless $n=0$.

Since $P_{m+8} \equiv P_{m}(\bmod 8)$ and $P_{8 m \pm 1} \equiv 1(\bmod 8)$ and $P_{8 m \pm 3} \equiv 5(\bmod 8)$, since all odd squares are congruent to $1(\bmod 8)$, if n is odd, $n=8 m \pm 1$ if $P_{n}=K^{2}$. Of course, $P_{n}=k^{2}$ for $n= \pm 1, \pm 7$. The conjecture is not resolved. Conjecture 2.4: If $P_{n}=5 k^{2}$, then $n=0$ or $n= \pm 3$.
Partial Proof: If $P_{n}=5 k^{2}$, then $P_{n} \equiv 5 \cdot 0 \equiv 0(\bmod 8)$, or $P_{n} \equiv 5 \cdot 1 \equiv 5$ $(\bmod 8)$, or $P_{n} \equiv 5 \cdot 4 \equiv 4(\bmod 8)$, so that $n=8 m, 8 m+4,8 m+3$, or $8 m+5$, since $P_{8 m} \equiv 0(\bmod 8), P_{8 m+4} \equiv 4(\bmod 8)$, and $P_{8 m \pm 3} \equiv 5(\bmod 8)$.

If n is even, then $n=4 k$, and $P_{n}=P_{4 k}=P_{2 k} R_{2 k}$ where $\left(P_{2 k}, R_{2 k}\right)=2$ and $R_{2 k} \neq x^{2}, R_{2 k} \neq 2 x^{2}$, and $R_{2 k} \neq 5 x^{2}$ since $5 \nmid R_{2 k}$. We have $P_{4 k} \neq K^{2}$ unless $k=0$, or, $P_{n} \neq K^{2}$ when n is even, unless $n=0$.

If n is odd, then $n=8 m \pm 3$. Now, $n= \pm 3$ gives a solution. If $n \neq \pm 3$, then $n=8 m \pm 3=2 \cdot 4 \omega \pm 3$, and since $P_{-3}=P_{3}=5$, both of these give $P_{n}=-P_{3}\left(\bmod R_{4 \omega}\right)=-5\left(\bmod R_{4 \omega}\right)$ by way of Lemma 2.1 and

$$
\begin{equation*}
P_{m+2 k}=R_{k} P_{m+k}+(-1)^{k+1} P_{m} \tag{2.1}
\end{equation*}
$$

where $m= \pm 3$ and $k=4 w$. Now, if w is odd, then R_{4} divides $R_{4 w}$, and we can write, from (2.1),

$$
P_{2 \cdot 4 \omega \pm 3}=R_{4} \cdot K \cdot P_{4 \omega \pm 3}-P_{ \pm 3}
$$

so that, since $R_{4}=34, P_{n} \equiv-5(\bmod 34)$, where -5 is not a quadratic residue of 34. It is strongly suspected that -5 is not a quadratic residue of $R_{4 w}$, but the conjecture is not established if w is even.
Theorem 2.5: If $F_{n}=5 x^{2}$, then $n=0$ or $n= \pm 5$.
Proof: If n is even, $F_{n}=F_{2 k}=F_{k} L_{k}=5 x^{2}$ if $F_{k}=5 x^{2}$ and $L_{k}=y^{2}$, or $F_{k}=$ x^{2} and $L_{k}=5 k^{2}$ (impossible), which has solutions for $k=0$ only.

If n is odd, then $n \equiv 3(\bmod 4)$ or $n \equiv 1(\bmod 4)$. If $n \equiv 3(\bmod 4)$, then write $n=3+4 M=3+2 \cdot 3^{n} \cdot k$, where $2 \mid k, 3 \nmid k$, and

$$
5 F_{n} \equiv-5 F_{3} \equiv-10\left(\bmod L_{k}\right),
$$

but $L_{k} \equiv 3(\bmod 4)$ if $2 \mid k, 3 \nmid k$, so -10 is not a quadratic residue, and

$$
5 F_{n} \neq k^{2} \text { so } F_{n} \neq 5 k^{2}
$$

If $n \equiv 1(\bmod 4), n=5$ is a solution. If $n \neq 5$

$$
n=1+4 M=1+2 \cdot 3^{r} \cdot k
$$

where $2 \mid k, 3 \nmid k$, and

$$
5 F_{n} \equiv-5 F_{1} \equiv-5\left(\bmod L_{k}\right)
$$

but -5 is not a quadratic residue, and

$$
5 F_{n} \neq k^{2} \text { so } F_{n} \neq 5 K^{2} \text { when } n \text { is odd, unless } n=5
$$

Since $F_{-n}=(-1)^{n+1} F_{n}, n=-5$ is also a solution. Thus, $F_{n} \neq 5 x^{2}$ unless $n=$ $0, \pm 5$.

We will find another relationship between squares of the generalized Fibonacci numbers useful.
Theorem 2.6:

$$
F_{n}^{2}(x)=(-1)^{n+k} F_{k}^{2}(x)+F_{n-k}(x) F_{n+k}(x)
$$

Proof: For simplicity, we will prove Theorem 2.6 for Fibonacci numbers, or $\overline{\text { for } x}=1$, noting that every identity used is also an identity for the Fibonacci polynomials [4]. In particular, we use

$$
\begin{equation*}
(-1)^{n+1} F_{n}(x)=F_{-n}(x) \tag{2.2}
\end{equation*}
$$

$$
\begin{align*}
& F_{p+r}(x)=F_{p-1}(x) F_{r}(x)+F_{p}(x) F_{p+1}(x) \tag{2.3}\\
& F_{n}^{2}(x)=(-1)^{n+1}+F_{n-1}(x) F_{n+1}(x) \tag{2.4}\\
& F_{n+1}^{2}(x)+F_{n}^{2}(x)=F_{2 n+1}(x) \tag{2.5}
\end{align*}
$$

Proof is by mathematical induction. Theorem 2.6 is true for $k=1$ by Set down the theorem statement as $P(k)$ and $P(k+1)$:

$$
\begin{align*}
P(k): & F_{n}^{2}=(-1)^{n+k} F_{k}^{2}+F_{n-k} F_{n+k} \tag{2.4}\\
P(k+1): & F_{n}^{2}=(-1)^{n+k+1} F_{k+1}^{2}+F_{n-k-1} F_{n+k+1}
\end{align*}
$$

Equating $P(k)$ and $P(k+1)$,

$$
\begin{aligned}
(-1)^{n+k+1}\left(F_{k+1}^{2}+F_{k}^{2}\right) & =F_{n-k} F_{n+k}+F_{n-k-1} F_{n+k+1} \\
& =(-1)^{k-n+1} F_{k-n} F_{n+k}+(-1)^{k-n+1} F_{k+1-n} F_{n+k+1}
\end{aligned}
$$

by (2.2). By (2.5) and (2.3), the left-hand and right-hand members become

$$
(-1)^{n+k+1} F_{2 k+1}=(-1)^{k-n+1} F_{2 k+1}
$$

Since all the steps reverse,

$$
(-1)^{n+k+1} F_{k+1}^{2}+F_{n-k-1} F_{n+k+1}=(-1)^{n+k} F_{k}^{2}+F_{n-k} F_{n+k}=F_{n}^{2}
$$

so that $P(k+1)$ is true whenever $P(k)$ is true. Thus, Theorem 2.6 holds for all positive integers n.

$$
\text { 3. SOLUTIONS FOR } F_{n}^{2}(\alpha)+F_{n}^{2}(\alpha)=K^{2}
$$

By Theorem-2.6, when n and k have opposite parity,

$$
\begin{equation*}
F_{n}^{2}(\alpha)+F_{k}^{2}(\alpha)=F_{n-k}(\alpha) F_{n+k}(\alpha) \tag{3.1}
\end{equation*}
$$

Since $\left(F_{n}(\alpha), F_{k}(\alpha)\right)=1=F_{(n, k)}(\alpha)$ by the results of $[5],(n, k)=1$ and opposite parity for n and k means that $(n-k, n+k)=1$ so that

$$
\left(F_{n-k}(\alpha), F_{n+k}(\alpha)\right)=1
$$

Thus, $F_{n-k}(\alpha) F_{n+k}(\alpha)=K^{2}$ if and only if both $F_{n-k}(\alpha)=x^{2}$ and $F_{n+k}(\alpha)=y^{2}$. We would expect a very limited number of solutions, then, since squares are scarce amongst $\left\{F_{n}(\alpha)\right\}$.

Since one leg is divisible by 4 in a Pythagorean triple, one of n or k is a multiple of 6 if a is odd, and a multiple of 2 if a is even; thus, n and k cannot both be odd. Also, n and k cannot both be even, since $F_{2}(\alpha)$ is a factor of $F_{2 m}(\alpha)$ and $F_{2}(\alpha)>1$ for all sequences except $F_{n}(1)=F_{n}$.

Restated,

Theorem 3.1: Any solution to $F_{n}^{2}(\alpha)+F_{k}^{2}(\alpha)=K^{2}$ in positive integers, $\alpha \geq 2$, occurs only for such values of n and k that $F_{n-k}(\alpha)=x^{2}$ and $F_{n+k}(\alpha)=y^{2}$.
Conjecture 3.2: $F_{n}^{2}(2)+F_{k}^{2}(2)=K^{2}, n>k>0$, where $F_{n}(2)=P_{n}$, the nth Pell number, has the unique solution $n=4, k=3$, giving 5-12-13.
Proof: Apply Theorems 3.1 and Conjecture 2.3.
Theorem 3.3: If $F_{n}^{2}+F_{k}^{2}=K^{2}, n>k>0$, then both n and k are even.
Proof: Apply Theorems 3.1 and 2.2 .
Theorem 3.4: If $F_{n}^{2}+F_{k}^{2}=K^{2}, n>k>0$, then $F_{10}=55, F_{8}=21, F_{18}=2584$, $F_{6}=8$, and $F_{4}=3$ each divide either F_{n} or F_{k}, and 13 is the smallest prime factor possible for K.

Proof: Since 3 divides one leg of a Pythagorean triple, F_{4} divides F_{k} or F_{n}. Since 4 divides one leg of a Pythagorean triple, and the smallest F_{n} divisible by 4 is F_{6}, F_{6} divides F_{k} or F_{n}. That F_{10} divides either F_{n} or F_{k} follows by examining the quadratic residues of 11 . The quadratic residues of 11 are 1, 3, 4, 5, and 9. It is not difficult to calculate

$$
\begin{aligned}
F_{10 w}^{2} & \equiv 0(\bmod 11) \\
F_{10 w \pm 2}^{2} & \equiv 1(\bmod 11) \\
F_{10 w \pm 4}^{2} & \equiv 9(\bmod 11)
\end{aligned}
$$

where we need only consider even subscripts by Theorem 3.3. Notice that $F_{10 w}^{2}+F_{10 w \pm 2}^{2} \equiv 1(\bmod 11)$ and $F_{10 w}^{2}+F_{10 w \pm 4}^{2} \equiv 9(\bmod 11)$, where 1 and 9 are quadratic residues of 11 , so that these are possible squares, but $F_{10 w \pm 2}^{2}+$ $F_{10 w \pm 4}^{2} \equiv 10(\bmod 11)$, where 10 is not a residue. $F_{10 w \pm 2}^{2}+F_{10 w \pm 2}^{2}$ produces the nonresidue 2, and similarly $F_{10 w \pm 4}^{2}+F_{10 w \pm 4}^{2} \equiv 7(\bmod 11)$, so that either $F_{n}=F_{10 w}$ or $F_{k}=F_{10 w}$. In either case, F_{10} divides one of F_{n} or F_{k}.

Similarly, we examine the quadratic residues of 7 , which are $0,1,2$, and 4. We find

$$
\begin{aligned}
F_{8 m}^{2} & \equiv 0(\bmod 7) \\
F_{8 m \pm 2}^{2} & \equiv 1(\bmod 7) \\
F_{8 m \pm 4}^{2} & \equiv 2(\bmod 7)
\end{aligned}
$$

where $F_{8 m}^{2}+F_{8 m \pm 2}^{2} \equiv 1(\bmod 7)$ and $F_{8 m}^{2}+F_{8 m \pm 4}^{2} \equiv 2(\bmod 7)$ are possible squares but $F_{8 m \pm 2}^{2}+F_{8 m \pm 4}^{2} \equiv 3(\bmod 7)$ is not a possible square. But, $F_{8 m}^{2}$ and $F_{8 m \pm 4}^{2}$, or $F_{8 m}^{2}$ and $F_{8 m^{*}}^{28 m \pm 4}$ or $F_{8 m \pm 4}^{2}$ and $F_{8 m^{*} \pm 4}^{2}$, cannot occur in the same primitive triple, since they have common factor $F_{4} \cdot F_{8 m \pm 2}^{2}$ and $F_{8 m * \pm 2}^{2}$ cannot be in the same triple, because F_{4} divides one leg, and neither subscript is divisible by 4. Thus, $F_{8 m}$ is one leg in the only possible cases, forcing F_{8} to be a factor of F_{n} or of F_{k}.

Using 17 for the modulus, with quadratic residues $0,1,2,4,8,9,13$, 15, 16, we find

$$
\begin{aligned}
F_{18 m}^{2} & \equiv 0(\bmod 17) \\
F_{18 m \pm 2}^{2} & \equiv 1(\bmod 17) \\
F_{18 m \pm 4}^{2} & \equiv 9(\bmod 17) \\
F_{18 m \pm 6}^{2} & \equiv 13(\bmod 17) \\
F_{18 m \pm 8}^{2} & \equiv 16(\bmod 17)
\end{aligned}
$$

Now, $F_{18 m}^{2}$ can be added to any of the other forms to make a quadratic residue (mod 17). $F_{18 m \pm 2}^{2}+F_{18 m \pm 2}^{2} \equiv 2(\bmod 17)$, but one subscript must be divisible by 6. $F_{18 m \pm 2}^{2}+F_{18 m \pm 4}^{2} \equiv 10(\bmod 17)$ is not a residue. $F_{18 m \pm 2}^{2}+F_{18 m \pm 6}^{2} \equiv 14$ (mod 17) is not a residue. $F_{18 m \pm 2}^{2}+F_{18 m \pm 8}^{2} \equiv 0(\bmod 17)$, but one subscript must be divisible by $6 . F_{18 m \pm 4}^{2}+F_{18 m \pm 6}^{2} \equiv 5(\bmod 17)$ is not a residue, while $F_{18 m \pm 4}^{2}+F_{18 m \pm 8}^{2} \equiv 8(\bmod 17)$, but one subscript must be divisible by 6 . $F_{18 m \pm 4}^{2}+F_{18 m \pm 4}^{2}$ and $F_{18 m_{ \pm} \pm 8}^{2}+F_{18 m \pm 8}^{2}$ are also discarded because one subscript is not divisible by 6. $F_{18 m \pm 6}^{2}+F_{18 m \pm 6}^{2}$ have a common factor of F_{6} so cannot be in the same primitive triple, and $F_{18 m \pm 6}^{2}+F_{18 m \pm 8}^{2}$ produce the nonresidue 12 (mod 17). The only possibility, then, is that $F_{18 \mathrm{~m}}$ appears as one 1 eg , or that F_{18} divides either F_{n} or F_{k}.

Since K cannot have any factors in common with F_{n} or with F_{k}, we note that the prime factors $2,3,5,7$, and 11 occur in $F_{10}, F_{8}, F_{18}, F_{6}$, and F_{4}, but 13 does not, making 13 the smallest possible prime factor for K.
Theorem 3.5: If $F_{n}^{2}+F_{k}^{2}=K^{2}, n>k>0$, has a solution in positive integers, then the smallest leg $F_{k} \geq F_{50}$, which has 11 digits.
Proof: Consider the required form of the subscripts n and k in the light of Theorem 3.4. Because $4 \mid F_{n}$ or $4 \mid F_{k}$, and both subscripts are even, we can write $F_{6 m}^{2}+F_{2 p}^{2}$, where $p=3 j \pm 1$, making the required form $F_{6 m}^{2}+F_{6 j \pm 2}^{2}$. Since 3 divides one subscript or the other, 4 divides one subscript or the other, leading to
(i) $F_{6 m}^{2}+F_{12 \omega \pm 4}^{2}$, for j odd,
and to
(ii) $F_{12 m}^{2}+F_{12 \omega \pm 2}^{2}$, for j even.

First, consider (i). Since $F_{8}=21$ divides one leg or the other, F_{8} must divide $F_{12 w \pm 4}$ to avoid a common factor of $F_{4}=3$, so w is odd, making $F_{6 m}^{2}+F_{24 q \pm 8}^{2}$ the required form. Next, F_{18} divides a leg. If F_{18} divides $F_{12 \omega \pm 4}$, then $F_{6} \mid F_{12 \omega \pm 4}$, but $6 \nmid(12 \omega \pm 4)$. So, $F_{18} \mid F_{6 m}$, making the required form become $F_{18 m}^{2}+F_{249 \pm 8^{\circ}}^{2}$. Next, since F_{10} divides a leg, we obtain the two final forms,

$$
\text { (1) } F_{90 m}^{2}+F_{24 q \pm 8}^{2} \text { or (2) } F_{18 m}^{2}+F_{120 s \pm 40}^{2} .
$$

Next, consider (ii). Since $F_{8}=21$ divides a leg, we must have $F_{8} \mid F_{12 m}$ to avoid a common factor of $F_{4}=3$, making the form become $F_{24 m}^{2}+F_{12 w \pm 2}^{2}$. Also, F_{18} divides a leg, but must divide $F_{24 m}$ to avoid a common factor of F_{6}, making the form be $F_{72 m}^{2}+F_{12 m \pm 2}^{2}$. Since we also have F_{10} as the divisor of a leg, we have the two possible final forms

$$
\text { (3) } F_{360 r}^{2}+F_{12 \omega \pm 2}^{2} \text { or (4) } F_{72 m}^{2}+F_{60 p \pm 10}^{2} \text {. }
$$

Now, if F_{k} is the odd leg, then $F_{k}=m^{2}-n^{2}$, and the even leg is $F_{n}=$ $2 m n$. The largest value for $2 m n$ occurs for $(m+n)=\dot{F}_{k}$ and $(m-n)=1$, so we do not need to know the factors of F_{k}. Solving to find the largest values of m and n, we find $m=\left(F_{k}+1\right) / 2$ and $n=\left(F_{k}-1\right) / 2$, making the largest possible even leg $F_{n}=2 m n=\left(F_{k}^{2}-1\right) / 2$. We have available a table of Fibonacci numbers $F_{n}, 0 \leq n \leq 571$ [6].

We look at the four possible forms again. In form (1), F_{90} has 19 digits, the smallest possible even leg. Possible odd legs are F_{16}, F_{32}, F_{40}, F_{56}, ... where F_{40} has 9 digits, so that $\left(F_{40}^{2}-1\right) / 2$ has less then 19 digits, making the smallest possible leg in form (1) be F_{56}. In form (2), $F_{18 m}^{2}+$ $F_{120 q \pm 40}^{2}$, the smallest leg occurs for $m=1$, known not to occur in such a triple from Table $1 ; m=2$ gives a common factor of 4 with the other subscript, making $m=3$ the smallest usable value, or the smallest possible leg F_{54}. Now, form (3) has F_{360}, a number of 75 digits, as the smallest value for the even leg, making the smallest possible odd leg greater than F_{170}, which has 36 digits. Lastly, form (4) has its smallest leg F_{50}, which has 11 digits. Comparing smallest legs in the four forms, we see that the smallest leg possible is F_{50}.
Theorem 3.6: $L_{n}^{2}+L_{k}^{2}=K^{2}, n>k>0$, has the unique solution $n=3, k=2$, or the triple 3-4-5.
Proof: Since $4 \mid I_{n}$ or $4 \mid I_{k}$, either $n=3(2 k+1)$ or $k=3(2 k+1)$, so that one subscript is odd. Since 3 divides one leg in a Pythagorean triple, one leg has to have a subscript of $2(2 k+1)$, which is even, since $L_{p} \mid I_{q}$ if and only if $q=(2 k+1) p$ (see [1]). Thus, n and k must have opposite parity. If n and k have opposite parity, then $(n-k)$ is odd. Since $L_{-n}=(-1)^{n} L_{n}$, from [1] we have both

$$
\begin{align*}
L_{n-k} L_{n+k}-L_{n}^{2} & =5(-1)^{n+k} F_{k}^{2} \tag{3.2}\\
(-1)^{n-k} L_{n-k} L_{n+k}-L_{k}^{2} & =5(-1)^{n+k} F_{n}^{2}
\end{align*}
$$

where $n-k$ is odd. Adding the two forms of (3.1),

$$
L_{n}^{2}+L_{k}^{2}=5\left(F_{k}^{2}+F_{n}^{2}\right)=5 F_{n-k} F_{n+k}
$$

by (3.1). Now, $5 F_{n-k} F_{n+k}=K^{2}$ if and only if either $F_{n-k}=5 x^{2}$ and $F_{n+k}=y^{2}$ or $F_{n-k}=y^{2}$ and $F_{n+k}=5 x^{2}$. By Theorems 2.5 and 2.2 , either $n+k=1$ and $n-k=5$ or $n-k=1$ and $n+k=5$, making the only solution $n=3, k=2$.

$$
\text { 4. SOLUTIONS FOR } F_{n}^{2}(\alpha)-F_{k}^{2}(\alpha)=K^{2}
$$

By Theorem 2.6, when n and k have the same parity,

$$
\begin{equation*}
F_{n}^{2}(\alpha)-F_{k}^{2}(\alpha)=F_{n-k}(\alpha) F_{n+k}(\alpha) \tag{4.1}
\end{equation*}
$$

As in Section $3, F_{n-k}(\alpha) F_{n+k}(\alpha)=K^{2}$ if and only if both $F_{n-k}(\alpha)=x^{2}$ and $F_{n+k}(\alpha)=y^{2}$, indicating a limited number of solutions in positive integers. Note that n and k cannot both be even if $\alpha \geq 2$, because $F_{2 p}(\alpha)$ and $F_{2 r}(\alpha)$ have the common factor $F_{2}(\alpha)$, precluding a primitive triple.
Lemma 4.1: If α is odd, $2\left|F_{3 k}(\alpha), 3\right| F_{4 k}(\alpha)$, and $4 \mid F_{6 k}(\alpha)$.
Proof: We list $F_{0}(\alpha)=0, F_{1}(\alpha)=1, F_{2}(\alpha)=\alpha, F_{3}(\alpha)=\alpha^{2}+1, F_{4}(\alpha)=\alpha^{3}+2 \alpha$, $\overline{F_{5}(\alpha)}=a^{4}+3 \alpha^{2}+1$, and $F_{6}(\alpha)=a^{5}+4 a^{3}+3 \alpha$. If α is odd, then $F_{3}(a)$ is even. If $a=2 m+1$, then

$$
\begin{aligned}
F_{4}(a) & =\left(8 m^{3}+12 m^{2}+6 m+1\right)+(4 m+2) \\
& =\left(8 m^{3}+4 m\right)+\left(12 m^{2}+6 m+3\right) \\
& =4 m\left(2 m^{2}+1\right)+3\left(4 m^{2}+2 m+1\right) \\
& =3 M+3 K=3 W
\end{aligned}
$$

since either $3 \mid m$ or $3 \mid\left(2 m^{2}+1\right)$. Also, $\alpha=2 m+1$ makes

$$
\begin{aligned}
F_{6}(\alpha) & =(2 m+1)^{5}+4(2 m+1)^{3}+3(2 m+1) \\
& =(4 K+10 m+1)+4 M+(6 m+3) \\
& =4 K+4 M+16 m+4=4 P .
\end{aligned}
$$

Since $F_{m}(\alpha) \mid F_{m k}(\alpha), m>0$, the lemma follows.
Lemma 4.2: If α is even, $2\left|F_{2 k}(\alpha), 3\right| F_{4 k}(\alpha)$, and $4 \mid F_{4 k}(\alpha)$.
Proof: Refer to the proof of Lemma 4.1 and let $a=2 m$. Then $F_{2}(a)=2 m$, and $\overline{F_{4}(\alpha)}=8 m^{3}+4 m=4\left[m\left(2 m^{2}+1\right)\right]=4 \cdot 3 M$, and the Lemma follows as before.

Theorem 4.1: If $F_{n}^{2}(\alpha)-F_{k}^{2}(\alpha)=K^{2}, n>k>0$, has solutions in positive integers, then $n \neq 4 k$. If a is even, n cannot be even. If a is odd, $n \neq 3 k$ and $n \neq 4 k$.
Proof: Lemmas 4.1 and 4.2 show that $3 \mid F_{4 k}(\alpha)$, and since 3 divides one leg in a Pythagorean triple, $n=4 k$ would cause a common factor of 3 , preventing a primitive triple. For similar reasons, $n \neq 2 k$ if a is even, and $n \neq 3 k$ if a is odd.
Conjecture 4.2: Any possible solution for $P_{n}^{2}-P_{k}^{2}=K^{2}, n>k>0$, occurs only if $n=2 p+1$ and $k=4 \omega$, or if P_{n} is odd and P_{k} is a multiple of 12 .
Proof: Considering (4.1), there is no solution to $P_{n-k}=x^{2}, P_{n+k}=y^{2}$ if n and k have the same parity, if Conjecture 2.3 holds. Also, n cannot be even, because $2 \mid P_{2 m}$ and 4 divides one leg in a Pythagorean triple, precluding a primitive triple. If k is even, then P_{k} is even, and the even leg is divisible by 4, making P_{k} have the form $P_{4 \omega}$. Since $P_{4}=12, P_{4 \omega}$ is a multiple of 12.

Theorem 4.3: $F_{n}^{2}-F_{k}^{2}=K^{2}$ has solutions in positive integers for $n=7, k=$ 5, forming the triple 5-12-13, and for $n=5, k=4$, forming the triple 3-4-5. Any other solutions occur only if n and k have opposite parity, where either $n=12 w \pm 2$ and k is odd, or $n=6 m \pm 1$ and k is even.
Proof: Using (4.1) and Theorem 2.2, the only solution for $F_{n-k}=x^{2}$ and $\overline{F_{n+k}}=y^{2}$ where n and k have the same parity is $n=7, k=5$, making the triple 5-12-13. If any other solutions exist, n and k have opposite parity. It is known that $n=5, k=4$ provides a solution, giving the triple 3-4-5. If n is even, $n \neq 3 k, n \neq 4 k$, so $n=12 w \pm 2$, and k is odd. If n is odd, $n \neq 3 k$, so $n=6 m \pm 1$ and k is even.
Theorem 4.4: If n and k have different parity, any solutions for $F_{n}^{2}-F_{k}^{2}=K^{2}$ other than $n=5, k=4$, or the triple 3-4-5, must have $n \geq k+5$.
Proof: $F_{n+1}^{2}-F_{n}^{2}=F_{n-1} F_{n+2}$, where $\left(F_{n-1}, F_{n+2}\right)=1$ or 2 , so that $F_{n-1} F_{n+2}=$ $\overline{K^{2}}$ either if $F_{n-1}=x^{2}$ and $F_{n+2}=y^{2}$, or if $F_{n-\frac{1}{2}}=2 x^{2}$ and $F_{n+2}=2 y^{2}$. By Theorem 2.2, there are no solutions to $F_{n-1}=x^{2}$ and $F_{n+2}=y^{2}$, but $F_{n-1}=$ $2 x^{2}$ and $F_{n+2}=2 y^{2}$ is solved by $n=4$, yielding the $3-4-5$ triple. There are no other solutions for subscripts differing by 1 . Since n and k have opposite parity, they differ by an odd number.

$$
F_{n+3}^{2}-F_{n}^{2}=4 F_{n+1} F_{n+2} \neq K^{2} \text { unless } n=0 \text { or }-1 \text { by Theorem } 2.2
$$

Thus, the hypotenuse has a subscript at least five greater than the leg.

Theorem 4.5: $\quad F_{n}^{2}(\alpha)-F_{k}^{2}(\alpha)=K^{2}$ has no solution in positive integers if $F_{n}(\alpha)$ is prime.

Proof: See the discussion at the end of Section 1.
Theorem 4.6: If $L_{n}^{2}-L_{k}^{2}=K^{2}, n>k>0$, has solutions in positive integers, then either $n=4 m$ and k is odd, or $n=6 p \pm 1$ and k is even.
Proof: We parallel the proof of Theorem 3.6, except here we take n and k with the same parity, so that $n+k$ is even, and subtract:

$$
\begin{aligned}
L_{n-k} L_{n+k}-L_{n}^{2} & =5(-1)^{n+k} F_{k}^{2} \\
(-1)^{n-k} L_{n-k} L_{n+k}-L_{k}^{2} & =5(-1)^{n+k} F_{n}^{2} \\
L_{n}^{2}-L_{k}^{2} & =5\left(F_{n}^{2}-F_{k}^{2}\right)=5 F_{n-k} F_{n+k}=K^{2}
\end{aligned}
$$

if and only if $F_{n-k}=5 x^{2}$ and $F_{n+k}=y^{2}$, or $F_{n+k}=5 x^{2}$ and $F_{n-k}=y^{2}$. By Theorem 2.5, the only solution for n and k the same parity is $n-k=0$, which does not solve our equation.

If n and k do not have the same parity, consider n even. Then, $n=4 k$ or $n=4 k+2$, but $n=4 k+2$ is impossible because the hypotenuse would have the factor 3 in common with a leg. Thus, $n=4 k$, and k is odd. If n is odd, then $n=6 p \pm 1$ to avoid a factor of $L_{2}=3$, and k is even.
Conjecture: The only solutions to $F_{n}^{2}(\alpha) \pm F_{k}^{2}(\alpha)=K^{2}, n>k>0$, in positive integers, are found in the two Pythagorean triples 3-4-5 and 5-12-13. If $\alpha \geq 3$ and $a \neq k^{2}$, the only squares in $\left\{F_{n}(\alpha)\right\}$ are 0 and 1 .

I wish to thank Professor L. Carlitz for suggesting reference [9] and for reading this paper.

REFERENCES

1. Verner E. Hoggett, Jr., Fibonacei and Lucas Numbers, The Houghton-Miffinin Mathematics Enrichment Series (Boston: Houghton-Mifflin, 1969).
2. G. H. Hardy \& E. M. Wright, An Introduction to the Theory of Numbers (4th ed.; Oxford: Oxford University Press, 1960).
3. John H. E. Cohn, "Square Fibonacci Numbers," The Fibonacci Quarterly 2, No. 2 (1964):109-113.
4. Marjorie Bicknell, "A Primer for the Fibonacci Numbers, Part VII: An Introduction to Fibonacci Polynomials and Their Divisibility Properties," The Fibonacci Quarterly 8, No. 4 (1970):407-420.
5. V. E. Hoggatt, Jr., \& Marjorie Bickne11-Johnson, "Divisibility Properties of Polynomials in Pascal's Triangle," The Fibonacci QuarterZy 16, No. 6 (1978):501-513.
6. S. L. Basin \& V.E. Hoggatt, Jr., "The First 571 Fibonacci Numbers," Recreational Mathematics Magazine, No. 11 (October 1962):19-30.
7. John H. Halton, 'Some Properties Associated with Square Fibonacci Numbers," The Fibonacci Quarterly 5, No. 4 (1967):347-355.
8. L. Carlitz, "A Note on Fibonacci Numbers," The Fibonacci Quarterly 2, No. 1 (1964):15-28.
9. A. Eswarathasan, "On Square Pseudo-Lucas Numbers," Canadian Mathematics BuZletin 21 (1978):297-303.

