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1. INTRODUCTION 

When can Fibonacci numbers appear as members of a Pythagorean triple? 
It has been proved by Hoggatt [1] that three distinct Fibonacci numbers can-
not be the lengths of the sides of any triangle. L. Carlitz [8] has shown 
that neither three Fibonacci numbers nor three Lucas numbers can occur in a 
Pythagorean triple. Obviously, one Fibonacci number could appear as a member 
of a Pythagorean triple, because any integer could so appear, but F3(2m+i) 
cannot occur in a primitive triple, since it contains a single factor of 2. 
However, it appears that two Fibonacci lengths can occur in a Pythagorean 
triple only in the two cases 3-4-5 and 5-12-13, two Pell numbers only in 
5-12-13, and two Lucas numbers only in 3-4-5. Further, it is strongly 
suspected that two members of any other sequence formed by evaluating the 
Fibonacci polynomials do not appear in a Pythagorean triple. 

Here, we define the Fibonacci polynomials {Fn{x)} by 

(1.1) F0(x) = 0, Fx(x) = 1, Fn + 1(x) = xFn(x) + Fn_±(x), 

and the Lucas polynomials {Ln{x)) by 

(1.2) Ln(x) = Fn+1(x) + Fn_±(x) 

and form the sequences {Fn (a)} by evaluating {Fn(x)} at x = a. The Fibonacci 
numbers are Fn = Fn (1) , the Lucas numbers Ln = Ln(l) , and the Pell numbers 
Pn = Fn(2). 

While it would appear that Fn(a) and Fk (a) cannot appear in the same 
Pythagorean triple (except for 3 - 4 - 5 and 5-12-13), we will restrict our 
proofs to primitive triples, using the well-known formulas for the legs a and 
b and hypotenuse a, 

(1.3) a = 2mn, b = m2 - n2, c = m2 + n1, 

where (m,n) = 1, m and n not both odd, m > n. We next list Pythagorean tri-
ples containing Fibonacci, Lucas, and Pell numbers. The preparation of the 
tables was elementary; simply set Fk = a, Fk = b, Fk = c for successive values 
of k and evaluate all possible solutions. 

1 
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Table 1 

PYTHAGOREAN TRIPLES CONTAINING Fk , 1 <. k <_ 18 

m n 2mn m2 - n2 m2 + n2 

2 
3 
3 
4 
7 
5 
11 
5 
17 
8 
28 
8 
45 
37 
20 
15 
13 
9 
72 
36 
24 
18 
12 
13 
117 
16 
19 
189 
21 
21 
23 
305 
61 
494 
166 
34 
74 
34 
799 
647 
325 
53 
55 
1292 
646 
323 

1 
2 
1 
1 
6 
2 
10 
•3 

1 
3 
27 
5 
44 
35 
16 
9 
5 
8 
1 
2 
3 
4 
6 
8 
116 
11 
4 
188 
8 
13 
9 
1 
5 
493 
163 
13 
67 
21 
798 
645 
321 
15 
21 
1 
2 
4 

4 
12 
6 
8 = F6 

84 
20 
.220 
30 
34 = Fs 
48 
1512 
80 
3960 
2590 
640 
270 
130 
144 = F12 
144 = F12 
144 = Fl2 

F\2 
^12 
F\2 
208 
27144 
352 
152 
71064 
336 
546 
414 
610 = Fls 
610 = Fig 
487084 
54116 
884 
9916 
1428 
1275204 
834630 
208650 
1590 
2310 
2584 = FIB 
2584 = F1Q 
2584 = F18 

3 = Fh 
5 = F5 
8 = F6 
15 
13 = F7 
21 = F8 

21 = F8 
16 
288 
55 = F10 
55 = F1Q 
39 
•Fii = 89 

144 = F12 
144 = F12 
144 = F12 

144 = Fl2 
17 
5183 
1292 
567 
308 
108 
105 
233 = F13 
135 
345 
377 = F14 

377 = Flh 
272 
448 
93024 
3696 
987 = F16 
987 = F16 

987 = Fls 
987 = Fl6 
715 
1597 = Fl7 
2584 = F18 

2584 = F1B 
2584 = F18 

2584 = F1B 
1669263 
417312 
104313 

5 = F5 
13 = F7 
10 
17 
85 
29 
221 
34 = F3 
290 
73 
1513 
89 = Fu 
3961 
2594 
656 
306 
194 
145 
5185 
1300 
585 
340 
180 
233 = F13 
27145 
377 = Flh 
377 = Flh 
71065 
505 
610 = F15 
610 = Fl5 
93026 
3746 
487085 
54125 
1325 
9965 
1597 = F17 
1275205 
834634 
208666 
3034 
3466 
1669265 
417320 
104345 

(not 

(not 
(not 

(not 
(not 
(not 
(not 

(lot 
(not 
(not 
(not 

(not 
(not 
(not 
(not 

(not 
(not 
(not 
(not 

(not 

primitive) 

primitive) 
primitive) 

primitive) 
primitive) 
primitive) 
primitive) 

primitive) 
primitive) 
primitive) 
primitive) 

primitive) 
primitive) 
primitive) 
primitive) 

primitive) 
primitive) 
primitive) 
primitive) 

primitive) 
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Table 1 (continued) 

2mn 

76 
68 
38 
Fn + l 

Fk+1 

17 
19 
34 
Fn 

* f c - l 

2584 = F18 

2584 = Fl8 

2584 = F1Q 

2-̂ n Fn +1 
2h 
Fsm 

(Flm±l ~ D/2 
2Ffc + lA-l 

5487 
4263 
288 
Fn - 1 Fn + 2 

^ - 1 

(̂ L - 4)/4 
F3w±l 

^2k 

6065 
4985 
2600 

Fln + l 

F2
k + 1 

(*1m + 4)/4 

(^±i + D/2 
^k + 2Ffe-iFfe+i 

(not primitive) 

Table 2 

PYTHAGOREAN TRIPLES CONTAINING Lk, 1 <. k <. 18 

2wn wz + nz 

2 
4 
6 
9 
5 
15 
24 
20 
19 
38 
62 
22 
100 
23 
161 
20 
261 
422 
142 
42 
342 
682 
341 
62 
31 
1104 
1786 
2889 

1 
3 
5 
1 
2 
14 
23 
18 
2 
1 
61 
19 
99 
7 
1 
11 
260 
421 
139 
20 
340 
1 
2 
11 
22 
1103 
1785 
1 

4 = L3 
24 
60 
18 = L6 

20 
420 
1104 
720 
76 = L9 

76 = L9 

7564 
836 
19800 
322 = L12 
322 = L12 
440 
135720 
355324 
39476 
1680 
232560 
1364 = L15 

1364 = Lis 
1364 = L15 
1364 = Lis 
2435424 
637020 
5778 = Li8 

3 = L2 
7 = Lh 

11 = L5 
80 
21 
29 = L7 

47 = L8 

76 = L9 

357 
1443 
123 = L10 

123 = L10 

199 = Ln 
480 
25920 
279 
521 = Li3 
843 = Llh 
843 = Llh 
1364 = L15 

1364 = L15 

465123 
116277 
3723 
471 
2207 = L1 6 

3571 = L i 7 

8346320 

5 
25 
61 
82 
29 = L 7 

421 
1105 
724 
365 
1445 
7565 
845 
19801 
578 
25922 
521 = Li 3 

135721 
355325 
39485 
2164 
232564 
465125 
116285 
3985 
1445 
2435425 
6376021 
8346322 

(not primitive) 

(not primitive) 

(not primitive) 
(not primitive) 

(not primitive) 
(not primitive) 

(not primitive) 
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Table 2 (continued) 

2mn 

3 
9 
27 

5778 = L18 

5778 = Li8 

5778 = Lis 

927360 
102960 
10720 

927378 
103122 
12178 

(not primitive) 
(not primitive) 
(not primitive) 

Table 3 

PYTHAGOREAN TRIPLES CONTAINING PELL NUMBERS R , 1 < k < 8 

m 

2 
3 
6 
5 
15 
35 
7 
12 
85 
103 
53 
204 
102 
51 
68 
34 
17 
Pyi + 1 

n 

1 
2 
1 
2 
14 
1 
5 
5 
84 
101 
49 
1 
2 
4 
3 
6 
12 
Pn 

2mn 

4 
12 = P^ 
12 = P4 

20 
420 
70 = P6 

70 = P6 

120 
14280 
20806 
5194 
408 = P8 

408 = P8 

408 = P8 

408 = P8 

408 = P8 

408 = P8 

2J°n ?n +1 

2 2 
w - n 

3 
5 = P, 
35 
21 

5 

29 = P5 

1224 
24 
119 
169 = 
408 = 
408 = 
41615 
10400 
2585 
4615 
1120 
145 
Pri-l^n 

Pi 
PQ 
P* 

: + 2 

7722 + n2 

5 = P3 
13 
37 
29 = P5 

421 
1226 
74 
169 = P7 

14281 
20810 
5210 
41617 
10408 
2617 
4633 
1192 
433 
Pln + l 

(not 
(not 

(not 
(not 

(not 

(not 

primitive) 
primitive) 

primitive) 
primitive) 

primitive) 

primitive) 

We note that in 3-4-5 and 5-12-13, the hypotenuse is a prime Fibo-
nacci number, and one leg and the hypotenuse are Fibonacci lengths. These 
are the only solutions with two Fibonacci lengths where a prime Fibonacci 
number gives the length of the hypotenuse. If Fp is prime, then p is odd, be-
cause FW\F2W' If Fp is a prime of the form 4/c - 1, then there are no solu-
tions to m2 + n2 = Fv , and if Fp is a prime of the form l\k + 1, then m2 + n2 

has exactly one solution: 

a = 2FkF
k+i: 

Lk + 1 n = Fk , or, the triple 

• iFk + 2 ' ?2k + i (see [2]). 

In either case, Flk+1 does not appear as the hypotenuse in a triple contain-
ing two Fibonacci numbers if P2£ + i ^s prime. These remarks also hold for the 
generalized Fibonacci numbers {Fn(a)}. 

Also note that some triples contain numbers from more than one sequence. 
We have, in 3-4-5, Fi±-L3-F5, or L2-L3-F5, or Fi+-L3-P39 while 5-12-13 has 
P5-P4-P7, or P3-P4-P7, and 20-21-29 has P8 and L7 or P8 and P5. There also 
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are a few "near misses," which are close enough to being Pythagorean triples 
to fool the eye if a triangle were constructed: 55-70-89, 21-34-40, and 
8-33-34. However, 3-4-5 and 5-12-13 seem to be the only Pythagorean 
triples which contain two members from the same sequence. 

Lastly, note that numbers of the form km + 2 cannot be used as members 
of a primitive triple, since one leg is always divisible by four, so that 
Fibonacci numbers of the form F6^+3 are excluded from primitive Pythagorean 
triples. 

2. SQUARES AMONGST THE GENERALIZED FIBONACCI NUMBERS {Fn{a)} 

Squares are very sparse amongst the sequences {Fn(a)}, beyond F0 (a) = 0 
and F1 (a) = 1 . In the Fibonacci sequence, the only squares are 0, 1, and 144 
[3]; in the lucas sequence, 1 and 4; and in the Pell sequence, 0, 1, and 169. 
There are no small squares other than 0 and 1 in {Fn (a)}, 3 £ a <_ 10; it is 
unknown whether other squares exist in {Fn(a)}, except when a = k , of 
course. 

Cohn [3] has proved the first two theorems below, which we shall need 
later. 

TktQtim 2.7: If Ln = x2
 9 then n = 1 or 3. 

If Ln = 2x2, then n = 0 or n = ±6. 

TkdO/tm 2.2: If Fn = x2, then n = 0, ±1, 2, or 12. 
If Fn = 2x2, then n = 0, ±3, or 6. 

We shall need the following lemma: 

L<immci 2.1: For the Fibonacci and Lucas polynomials, 

Fm+2k(x) = Lk(x)Fm + k(x) + (-l)k + 1Fm(x). 

VKOO^' Lemma 2 . 1 appears i n [4] w i t h only a change in n o t a t i o n . 

We w i l l use Lemma 2 . 1 w i th x = 2 , so t h a t Fn (2) = Pn and Ln(2) = Rn, 
t h e P e l l numbers and t h e i r r e l a t e d sequence . 

CovijdctuAZ 2 . 3 : i f Pn = x2, n = 0, ± 1 , or ±7. 

PcUvUal PflOOJ: Let Rk = Pk_± + Pk + 1 so t h a t Rk = Lk(2) . Then 

R2m = 8P2 + (-if * 2 , o r , R2m = ±2 (mod 8) so t h a t Rlm + K2. 

^ik+l = F2k + P2k + 2 = P2k + 2P2k+l + P2k 

= 2(P2k+l + P2k) = 2(2M + 1) 

since 2|Pn if and only if 2\n. Thus, R2k+i + &2 and Rn + K2 for any n. 
Suppose n is even. Since P2k = Pj^R^, if n = 4p + 2, then 

Pn = P2p + iR2P + i where (P 2 p + i ^ 2 P + i ) = 1-
Then Pn = Z 2 i f and only i f R2p + i = &2 and P2p + i = y2, bu t R2p + i ^ %2, so 
Pn + K2. I f n = 4p, then 

pn = P2pi ?2P where (P2p,R2p) = 2 , 
so Pn = Z 2 . i f P 2 p = 2x2 and i?2p = 2z/2, bu t s i n c e R2p = 8Pp ± 2 = 2 ( J 2 ± 1) , 
P2p = 22/2 only fo r p = 0, g i v i n g P 0 as t h e only s o l u t i o n . Thus, Pn £ K2 for 
n even, u n l e s s n = 0. 
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Since Pm + 8 = Pm (mod 8) and P8m±l = 1 (mod 8) and Psm±3 = 5 (mod 8 ) , 
s i n c e a l l odd squa res a r e congruent t o 1 (mod 8 ) , i f w i s odd, n = 8m ± 1 i f 
P„ = K2. Of c o u r s e , Pn = fc2 for n = ± 1 , ±7. The c o n j e c t u r e i s no t r e s o l v e d . 

ConjdctuUtu 2.4: I f Pn = 5fc2, then n = 0 or n = ±3. 

PaAtial VKOOJi I f Pn = 5/c2, then Pn E 5 • 0 E 0 (mod 8 ) , or Pn = 5 • 1 E 5 
(mod 8 ) , or Pn E 5 • 4 E 4 (mod 8 ) , so t h a t n = 8m, 8 m + 4 , 8m+ 3 , or 8 m + 5 , 
s i n c e PM E 0 (mod 8 ) , Psm+H- - 4 (mod 8 ) , and Psm±3 = 5 (mod 8 ) . 

I f n i s even, then n = 4fc, and Pn = P ^ = P2k^ik w n e r e (Pik^zk^ = 2 

and Rlk ^ x2, P 2 k ^ 2 x 2 , and P 2 k ^: 5x2 s i n c e 5\R2k. We have Phk ± K2 u n l e s s 
k = 0, or, Pn f K when n is even, unless n = 0. 

If n is odd, then n = 8m ±3. Now, n = ±3 gives a solution. If n ^ ±3, 
then n = 8m ± 3 = 2 • 4 u ± 3 , and since P_3 = P3 = 5, both of these give 
Pn = -P3 (mod R^w) = -5 (mod Rh ) by way of Lemma 2.1 and 

(2.D Pm+2* = SkPm+k + (-Dk + l P m 

where m = ±3 and k - kw. Now, if w is odd, then R, divides R, , and we can 
write, from (2.1), 

so that, since Rh = 34, Pn E -5 (mod 34), where -5 is not a quadratic residue 
of 34. It is strongly suspected that -5 is not a quadratic residue of Ri^u > 
but the conjecture is not established if w is even. 

Tk&OKm 2.5: if Fn = 5x2, then n = 0 or n = ±5. 

VK00{\: If n is even, Fn = F2k = P^P^ = 5#2 if Fk = 5x2 and Lk = y2
9 or F̂  = 

# and Lk = 5k2 (impossible), which has solutions for k = 0 only. 
If n is odd, then n E 3 (mod 4) or n E 1 (mod 4). If n E 3 (mod 4), 

then write n = 3 + 4M = 3 + 2 • 3M • fc, where 2|fc, 3|fc, and 

5Fn E -5P3 E -10 (mod Lk) , 

but Pfe E 3 (mod 4) if l\k9 3J(k9 so -10 is not a quadratic residue, and 

5Fn + k2 so Fn + 5k2. 

If n E 1 (mod 4), n = 5 is a solution. If n ^ 5 

n = 1 + 4M = 1 + 2 • 3r • k9 

where 2\k9 3J(k, and 

5Fn E - 5 ^ E -5 (mod Lfc) , 

but -5 is not a quadratic residue, and 

5Fn f k2 so Fn $ 5K2 when n is odd, unless n - 5. 

Since P_n = (-l)n + 1Pn , n = -5 is also a solution. Thus, Fn 4- ^x2 unless n = 
0, ±5. 

We will find another relationship between squares of the generalized 
Fibonacci numbers useful. 

Thzonzm 2.6: 

F2(x) = (-l)n+kF2(x) + Fn_k(x)Fn+k(x)_ 
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VK.00^: For simplicity, we will prove Theorem 2.6 for Fibonacci numbers, or 
for x = 1, noting that every identity used is also an identity for the Fibo-
nacci polynomials [4]. In particular, we use 

(2.2) {-l)n+1Fn(x) = F.n(x) 

(2.3) Fp+I,(x) = Fp.1(x)Fr(x) + Fp(x)Fr+1(x) 

(2.4) F*(x) = (-l)n+1 + Fn.1(x)Fn+1(x) 

(2.5) Fn+Ax^ + *"»(*) = J*2»*i(a) 

Proof i s by mathemat ica l i n d u c t i o n . Theorem 2.6 i s t r u e for k = 1 by 
(2 .4 ) Set down t h e theorem s t a t emen t as P(k) and P(k + 1 ) : 

P(k): F2 = (-l)n+kF2 + Fn_kFn+k 

P(k + 1 ) : Fn
2 = (~Dn+k + 1Fl + 1 + F n . , . 1 F n + , + 1 

Equat ing P(fc) and P(fc + 1 ) , 

( - l ) n + + ( P £ + 1 + F2j = Fn_kFn+k + Fn_k_1Fn+k + 1 

= ( -1) ~n+ Fk_nFn+k + (-1) n ^ + 1 _ M ^ n + k + i 

by (2.2). By (2.5) and (2.3), the left-hand and right-hand members become 

?2k + l ' 

Since all the steps reverse, 

(-l)n+k+1F2k+1 = (-l)k-n + 1F2 

(-l)n Fk + ± + Fn-k-lFn+k + l - ("!)" Fk + Fn-kFn+k " Fn 

so that P(& + 1) is true whenever P(k) is true. Thus, Theorem 2.6 holds for 
all positive integers n, 

3. SOLUTIONS FOR F2(a) + F2 (a) = K2 

By Theorem -2.6, when n and k have opposite parity, 

(3.1) F2(a) + p£(a) = Fn_k(a)Fn+k(a). 

Since (Fn(a),Pfe(a)) = 1 = F(ntk) (a) by the results of [5], (n,fc) = 1 and op-
posite parity for n and k means that (n - k9n + k) = 1 so that 

(Fn_k(a),Fn+k(a)) = 1. 

Thus, Fn.k(a)Fn + k(a) = K2 if and only if both Fn_k(a) = x2 and Fn + k(a) = y2. 
We would expect a very limited number of solutions, then, since squares are 
scarce amongst \Fn(a)}. 

Since one leg is divisible by 4 in a Pythagorean triple, one of n or k 
is a multiple of 6 if a is odd, and a multiple of 2 if a is even; thus, n 
and k cannot both be odd. Also, n and k cannot both be even, since F 2{d) is 
a factor of F2m(a) and F2(a) > 1 for all sequences except Fn (1) = Fn . 

Restated, 



8 PYTHAGOREAN TRIPLES CONTAINING FIBONACCI NUMBERS [Feb. 

Ik&onm 3.1: Any solution to F2(a) + Fk (a) = K2 in positive integers, a >_ 2, 
occurs only for such values of n and k that Fn_k(a) = x2 and Fn+k(a) = y2. 

Conjzctusiz 3.1: F2(2) + Fk(2) = K2, n > k > 0, where Fn(2) = Pn, the nth 
Pell number, has the unique solution n - 4, /c = 3, giving 5-12-13. 

PsiOO^: Apply Theorems 3.1 and Conjecture 2.3. 

ThdOKQjn 3.3: If F2 + F2 = K2,n>k>0, then both n and k are even. 

VtlOOJ: Apply Theorems 3.1 and 2.2. 

ThtQtim 3.4: If F2 + Fk = K2, n > k > 0, then Fl0 = 55, FQ = 21, F 1 8 = 2584, 
F6 = 8, and F4 = 3 each divide either Fn or î , , and 13 is the smallest prime 
factor possible for K. 

VftOO^: Since 3 divides one leg of a Pythagorean triple, F^ divides Fk or Fn . 
Since 4 divides one leg of a Pythagorean triple, and the smallest Fn divisi-
ble by 4 is Fe9 F6 divides Fk or Fn . That F10 divides either Fn or Fk follows 
by examining the quadratic residues of 11. The quadratic residues of 11 are 
1, 3, 4, 5, and 9. It is not difficult to calculate 

F2
l0w E 0 (mod 11) 

F\,w±2 E 1 (mod 11) 

F2
l0w±h E 9 (mod 11) 

where we need only consider even subscripts by Theorem 3.3. Notice that 
F 1 0 u > + Flow±2 E 1 (mod I D a n d F210W + Flow±k E 9 (mod I D ' W h e r e 1 a n d 9 a r e 

quadratic residues of 11, so that these are possible squares, but F2
Qw±2 + 

F2
Qw±l^ E 10 (mod 11), where 10 is not a residue. F2

Qw±2 + F\0w±2 produces 
the nonresidue 2, and similarly F1Qw±l^ + F10u±lf E 7 (mod 11), so. that either 
Fn = -F10zJ or Fk = FlQw. In either case, Fl0 divides one of Fn or Fk . 

Similarly, we examine the quadratic residues of 7, which are 0, 1, 2, 
and 4. We find 

F\m E 0 (mod 7 ) 

Fz
Bm±2 E 1 (mod 7 ) 

FL±, E 2 < m o d 7 ) 
where Fim + Fsm±2=l (mod 7) and Fgm+Fgm±J+ E 2 (mod 7) are possible squares 
but F\m±2 + F\m±h E 3 (mod 7) is not a possible square. But, F2

Qm and Fgm±i+, 
or F\m and F\mii , or FgOT±lt and FgOT*±l+, cannot occur in the same primitive tri-
ple, since they have common factor Fh. F\m±1 and F\mi(±2 cannot be in the same 
triple, because F^ divides one leg, and neither subscript is divisible by 4. 
Thus, FQm is one leg in the only possible cases, forcing FQ to be a factor of 
Fn or of Fk. 

Using 17 for the modulus, with quadratic residues 0, 1, 2, 4, 8, 9, 13, 
15, 16, we find 

F2 
c 18m ,2 
18m ±2 

,2 
18m ± k 

,2 
18m ± 6 

,2 
18m ± 8 

-
E 

E 

E 

= 

0 (mod 17) 

1 (mod 17) 

9 (mod 17) 

13 (mod 17) 

16 (mod 17) 
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Now, F'lQm can be added to any of the other forms to make a quadratic residue 
(mod 17). F\Qm±2 + ^iam±2 E 2 (mod 17), but one subscript must be divisible 
by 6- F\sm±2 + ^ie»i4 E 1 0 <mod 17> i s n o t a residue. F2

8OT ± 2 + ^ 8 w ± 6 = 14 
(mod 17) is not a residue. ^ i 8 w ± 2 + ^ i 8 w ± 8 = 0 (mod 17), but one subscript 

must be divisible by 6. ^ i 8 m ± 4 + ^i8m±6 E 5 (mod 1 7) i s n o t a residue, while 

^i8m±4 + Fi8m±8 E ^ (mod 17), but one subscript must be divisible by 6. 

^18^+4 + Fi8m±h a n d Fi8m*±8 + Fi8m±8 a r e a l s o discarded because one subscript 

is not divisible by 6. F\Qm±6 + ^ i 8 w ± 6 have a common factor of F6 so cannot 

be in the same primitive triple, and F\8m±6 + ^13^+3 produce the nonresidue 
12 (mod 17). The only possibility, then, is that F18m appears as one leg, or 
that F1Q divides either Fn or Fk . 

Since K cannot have any factors in common with Fn or with Fk , we note 
that the prime factors 2, 3, 5, 7, and 11 occur in F10 , Fe, F1Q, F6, and Fh, 
but 13 does not, making 13 the smallest possible prime factor for K. 

IhdOKm 3,5: If F2 4- Fk = Z2, n > k > 0, has a solution in positive inte-
gers, then the smallest leg Fk >_ F50 , which has 11 digits. 

VH.OO{)1 Consider the required form of the subscripts n and k in the light of 
Theorem 3.4. Because 4|Fn or ^\Fk , and both subscripts are even, we can write 
F\m + F\ , where p = 3j ± 1,-making the required form F2

m + F\.±2, Since 3 
divides one subscript or the other, 4 divides one subscript or the other, 
leading to 

(i) FL + F\iw±^ f o r 3 o d d > 
and to 

(ii) F\lm + F2
12w±2i for j even. 

First, consider (i) . Since F8 = 21 divides one leg or the other, FQ 
must divide Fln ^ , to avoid a common factor of F. = 3 , so w is odd, making 

F? + F«, . 0 the required form. Next, F,Q divides a leg. If F,Q divides 

Fizw±h> t h e n ^ekizwuf b u t 6H12w ± 4>- So> ^iske^' making the required 
form become F2 + F2

 + . Next, since F10 divides a leg, we obtain the two 
final forms, 

(1) F30m + F2kq±8 OT ( ^ ) ^18/77 + F120s ± kO ' 

Next, consider (ii) . Since FQ = 21 divides a leg, we must have FQ\Fl2m 
to avoid a common factor of ̂  = 3, making the form become F\hm + F\2w±2. 
Also, F1Q divides a leg, but must divide Flhm to avoid a common factor of 
F69 making the form be F2

2m + F\2m±2. Since we also have F1Q as the divisor 
of a leg, we have the two possible final forms 

(3) F2
36Qr + F\2W±2 or (4) Ff2m +^ 0 p± io-

Now, if Fk is the odd leg, then Fk = m2 - n2, and the even leg is Fn = 
2mn. The largest value for 2mn occurs for (jn + n\ = Fk and (m - n) = 1 , so 
we do not need to know the factors of Fk . Solving to find the largest values 
of m and n, we find m = (Fk + l)/2 and n = (Fk - l)/2, making the largest 
possible even leg Fn = 2mn = (Fk - l)/2. We have available a table of Fibo-
nacci numbers Fn , 0 <L n <_ 571 [6], 
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We look at the four possible forms again. In form (1), F90 has 19 dig-
its, the smallest possible even leg. Possible odd legs are F16 , ̂ 3 2 J ̂i+o > 
F56 , ... where F^Q has 9 digits, so that (F2

Q - l)/2 has less then 19 digits, 
making the smallest possible leg in form (1) be F56 . In form (2), F\8m + 
1̂20(7 ± *+o » *-he smallest leg occurs for m = 1, known not to occur in such a 
triple from Table 1; m = 2 gives a common factor of 4 with the other sub-
script, making m = 3 the smallest usable value, or the smallest possible leg 
F5h. Now, form (3) has F3SQ, a number of 75 digits, as the smallest value 
for the even leg, making the smallest possible odd leg greater than Fl70 , 
which has 36 digits. Lastly, form (4) has its smallest leg F5Q, which has 11 
digits. Comparing smallest legs in the four forms, we see that the smallest 
leg possible is F50. 

ThZQtim 3.6: L2
n + L\ = K2

 3 n > k > 0, has the unique solution n = 3, k = 2, 
or the triple 3-4-5. 

ince 4 \LYI or 4 |-̂ ĵ either YI — 3(2k H~ 1) or k — 3(2/c "4- 1) , so that 
one subscript is odd. Since 3 divides one leg in a Pythagorean triple, one 
leg has to have a subscript of 2(2k + 1), which is even, since Lp\Lq if and 
only if q = {2k + l)p (see [1]). Thus, n and k must have opposite parity. 
If n and k have opposite parity, then (n - k) is odd. Since L_n = (-l)nLn, 
from [1] we have both 

(3.2) Ln.kLn + k - L2„ = 5(-l)n+kFl, 

(-lf-kLn_kLn + k- L\ =-5(-l)B + k F „ 2 , 

where n - k is odd. Adding the two forms of (3.1), 

Ln + Lk = ^(Fk + Fn) = 5Fn_kFn + k 

by (3.1). Now, 5Fn.kFn + k = K2 if and only if either Fn.k = 5a:2 and Fn + ̂  = y2 

or Fn_k = y and Fn+^ = 5x . By Theorems 2.5 and 2.2, either n + k - 1 and 
n - fc = 5 orn - fe = 1 and n + k - 5, making the only solution n = 3, /c = 2. 

4. SOLUTIONS FOR F2(a) - F2 (a) = K2 

By Theorem 2.6, when n and /c have the same parity, 

(4.1) F2(a) - F2(a) = Fn.k (a)Fn + k(a). 
As in Section 3, Fn_k(a) Fn + k(a) = K2 if and only if both Fn_k(a) = x2 and 
Fn+k(a) = y2, indicating a limited number of solutions in positive integers. 
Note that n and fc cannot both be even if a >_ 2, because F2p (a) and Flv(d) 
have the common factor F2(a) > precluding a primitive triple. 

Lemma 4.1: if a is odd, 2\Fzk(a), 3\Fkk(a)9 and 4|-F6k(a). 

PJLOO£: We list F0 (a) =0, Fx(a) =1, F2 (a) =a, F3(a) = a2 + 1, £\ (a) = a3 + 2a, 
F5(a) = a* + 3a2 + 1, and F6(a) = a5 + 4a3 + 3a. If a is odd, then F3(a) is 
even. If a = 2m + 1, then 

F^(a) = (8m3 + 12m2 + 6m + 1) + (4m + 2) 

= (8m3 + km) + (12m2 + 6m + 3) 

= 4m(2m2 + 1) + 3(4m2 + 2m + 1) 

= 3M + 3£ = 3W9 



1979] PYTHAGOREAN TRIPLES CONTAINING FIBONACCI NUMBERS 11 

since either 3|m or 3J (2m2 + 1). Also, a = 2m + 1 makes 

F6(a) = (2m + l)5 + 4 (2m + 1)3 + 3(2/7? + 1) 

= (4Z + 10m + 1) + 4M + (6m + 3) 

= 4Z + 4M + 16m + 4 = 4P. 

Since Fm (a)\Fmk (a), m > 0, the lemma follows. 

Lzmma 4.2: if a is even, 2|P2?c(a), 3|Ftffc(a), and 4|F1+fc(a). 

Psioofi: Refer to the proof of Lemma 4.1 and let a = 2m. Then F 2(a) = 2m, and 
i^Ca) = 8m3 + 4m = 4[m(2m2 + 1)] = 4 • 3Af, and the Lemma follows as before. 

Tfceo/iem 4.7: if F2(a) - Pjj; (a) = Z2, ft > k > 0, has solutions in. positive 
integers, then n ^ 4fc. If a is even, n cannot be even. If a is odd, n ^ 3k 
and n + kk. 

PfiOO^'- Lemmas 4.1 and 4.2 show that 3 \F hk (a), and since 3 divides one leg in 
a Pythagorean triple, n - kk would cause a common factor of 3, preventing a 
primitive triple. For similar reasons, n f 2k if a is even, and n $ 3k if a 
is odd. 

ConjZdtuJiQ. 4.2: Any possible solution for P2 - P2 = Z2, n > k > 0, occurs 
only if ft = 2p + 1 and k = 4w, or if Pn is odd and Pfc is a multiple of 12. 

Psioofi: Considering (4.1), ther.e is no solution to Fn_k = x2, Pn+£ = z/2 if ft 
and fc have the same parity, if Conjecture 2.3 holds. Also, n cannot be even, 
because 2|P2m and 4 divides one leg in a Pythagorean triple, precluding a 
primitive triple. If k is even, then Pk is even, and the even leg is divisi-
ble by 4, making Pk have the form P hw. Since P^ = 12, Phw is a multiple of 
12. 

Tfeeô -em 4.3: F2 - Fk = K2 has solutions in positive integers for n = 7, k = 
5, forming the triple 5-12-13, and for n = 5, k = 4, forming the triple 
3-4-5. Any other solutions occur only if n and k have opposite parity, 
where either ft = 12w ± 2 and k is odd, or n = 6m ± 1 and /c is even. 

PK.00^: Using (4.1) and Theorem 2.2, the only solution for Fn_k = x2 and 
Fn+k ~ y where ft and k have the same parity is ft = 7, k = 5, making the tri-
ple 5-12-13. If any other solutions exist, ft and k have opposite parity. 
It is known that ft = 5, fc = 4 provides a solution, giving the triple 3-4-5. 
If n is even, n ^ 3k, ft ^ 4/c, so ft = 12w ± 2, and k is odd. If ft is odd, 
n ^ 3k, so ft = 6m ± 1 and k is even. 

T/ieô tem 4.4: If ft and fc have different parity, any solutions for P2 - Fk = K2 

other than ft = 5, k = 4, or the triple 3-4-5, must have ft >_ k + 5. 

Pyc^: Pn + i - Pn2 = Pn-iPn + 2, where (Pn-i,Pn + 2) = 1 or 2, so that P„_iPn + 2 = 
K2 either if Fn_1 = x2 and Pn + 2= z/2, or if Pn-i = 2x2 and Fn + 2 = 2y2. By 
Theorem 2.2, there are no solutions to Fn-i = ^ and Fn + 2

 = yA •> but Pn-i = 
2x2 and P„ + 2 = 2z/2 is solved by ft = 4, yielding the 3-4-5 triple, There 
are no other solutions for subscripts differing by 1. Since ft and k have 
opposite parity, they differ by an odd number. 

Fn+3 - Fn = ^Fn+iFn + 2 + R1 unless ft = 0 or -1 by Theorem 2.2. 

Thus, the hypotenuse has a subscript at least five greater than the leg. 
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Th&QJKim 4.5: F2(a) - Fk(a) = K2 has no solution in positive integers if Fn(a) 
is prime. 

PfLOO^: See the discussion at the end of Section 1. 

TkdQfiZM 4.6: If L2
n - L\ = K2, n > k > 0, has solutions in positive integers, 

then either n = km and k is odd, or n = 6p ± 1 and fc is even. 

VK.00^: We parallel the proof of Theorem 3.6, except here we take n and k 
with the same parity, so that n + k is even, and subtract: 

Ln-kLn+k ~~ Ln = 5(-l) n + ^ 

(-l)»-*Ln_fcLn+fc - L\ = 5(-iy+kF2 

Ln ~ Lk = 5(Fn - Fk) = 5Fn_kFn+k = K 
if and only if Fn_k = 5x2 and Fn + ]< = y2, or Fn+/£ = 5^2 and FM_^ = y2. By 
Theorem 2.5, the only solution for n and k the same parity is n - k = 0, 
which does not solve our equation. 

If n and k do not have the same parity, consider n even. Then, n = kk 
or n = kk + 2, but n = 4fc + 2 is impossible because the hypotenuse would have 
the factor 3 in common with a leg. Thus,n = 4fc, and & is odd. If n is odd, 
then n = 6p ± 1 to avoid a factor of L2 = 3, and /c is even. 

CovijZCtUiAz: The only solutions to F2(a) ± Fk (a) = K2, n > fc > 0, in positive 
integers, are found in the two Pythagorean triples 3-4-5 and 5-12 -13. If 
a >_ 3 and a 7̂  k , the only squares in \Fn (a) } are 0 and 1. 

I wish to thank Professor L. Carlitz for suggesting reference [9] and 
for reading this paper. 
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