THE NORMAL MODES OF A HANGING OSCILLATOR OF ORDER \boldsymbol{N}

JOHN BOARDMAN
Brooklyn College, Brooklyn N.Y. 11210
ABSTRACT
The normal frequencies are computed for a system of N identical oscillators, each hanging from the one above it, and the highest oscillator hanging from a fixed point. These frequencies are obtainable from the roots of the Chebyshev polynomials of the second kind.

A massless spring of harmonic constant k is suspended from a fixed point, and from it is suspended a mass m. This system will oscillate with an angular frequency $\omega_{0}=(k / m)^{1 / 2}$. If N such oscillators are thus suspended, each one from the one above it, we will call this system a hanging oscillator of order N.

The Lagrangian for this system is

$$
\begin{equation*}
L\left(q_{1}, \ldots, q_{n}, \dot{q}_{1}, \ldots, \dot{q}_{n}\right)=\frac{1}{2} m \sum_{i=1}^{N} \dot{q}_{1}^{2}-\frac{1}{2} k q_{1}^{2}-\frac{1}{2} k \sum_{i=2}^{N}\left(q_{i}-q_{i-1}\right)^{2}, \tag{1}
\end{equation*}
$$

where q_{i} is the displacement of the i th mass from its equilibrium position. This Lagrangian can also be written in the language of matrix algebra as

$$
\begin{equation*}
L=\frac{1}{2} m \dot{q}^{T} T \dot{q}-\frac{1}{2} m \omega_{0}^{2} q^{T} U q \tag{2}
\end{equation*}
$$

where q and \dot{q} are, respectively, the column vectors $\operatorname{col}\left(q_{1}, q_{2}, \ldots, q_{N}\right)$ and $\operatorname{co1}\left(\dot{q}_{1}, \dot{q}_{2}, \ldots, \dot{q}_{N}\right)$. It is obvious that $T=I$, where I is the $N \times N$ identity matrix. For U, we state the following theorem.
Theorem 1: $u_{i i}=2$ and $u_{i, i+1}=u_{i+1, i}=-1$ for $i=1,2, \ldots, N-1$; $u_{N N}=$ $\overline{1,}$ and all other values of $u_{i j}$ are zero.

This can be demonstrated by mathematical induction. It is obvious for $N=1$. For $N=n$ the last two terms in (1) are

$$
\begin{equation*}
-\frac{1}{2} m \omega_{0}^{2}\left(q_{n-1}-q_{n-2}\right)^{2}-\frac{1}{2} m \omega_{0}^{2}\left(q_{n}-q_{n-1}\right)^{2} \tag{3}
\end{equation*}
$$

From these terms come the matrix elements $u_{n-1, n-1}=2, u_{n-1, n}=u_{n, n-1}=-1$, $u_{n n}=1$. For $N=n+1$, these terms are added to (1):

$$
\begin{equation*}
\frac{1}{2} m \dot{q}_{n+1}^{2}-\frac{1}{2} m \omega_{0}^{2}\left(q_{n+1}-q_{n}\right)^{2} . \tag{4}
\end{equation*}
$$

The matrix element $u_{n n}$ is now increased to 2 , and the additional elements $u_{n, n+1}=u_{n+1, n}=-1, u_{n+1, n+1}=1$ now appear in the new $(n+1) \times(n+1)$ matrix U.

The characteristic function for this problem is $\operatorname{det}\left(-m \omega^{2} T+m \omega_{0}^{2} U\right)$. If we let $x=\omega / \omega_{0}$, then the normal frequencies for a hanging oscillator of order N are given by the N positive roots of the polynomial $\operatorname{det}\left(-x^{2} I+U\right)=0$. Each of the diagonal elements of this determinant is $\left(-x^{2}+2\right)$ except for the last, which is $\left(-x^{2}+1\right)$. The only other nonzero elements are those immediately next to the diagonal elements; they are each -1 .

In the solution of this problem, the Fibonacci polynomials [1] will be useful. These polynomials are defined by the recurrence relation

$$
F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x), \text { where } F_{1}(x)=1 \text { and } F_{2}(x)=x
$$

By repeated application of this recurrence relation, we can prove:
Theorem 2: $\quad F_{n+4}(x)=\left(x^{2}+2\right) F_{n+2}(x)-F_{n}(x)$.
Theorem 2 can be used to prove:
Theorem 3: The characteristic function for the hanging oscillator of order \bar{N} is

$$
\begin{equation*}
\left(m \omega_{0}^{2}\right)^{N} F_{2 N+1}(i x) \tag{5}
\end{equation*}
$$

The factor $\left(m \omega_{0}^{2}\right)^{N}$ comes out of the determinant, leaving $\operatorname{det}\left(-x^{2} I+U\right)$. Theorem 3 thus reduces to the evaluation of the determinant

$$
|V|=\left\lvert\, \begin{array}{rrrrrr}
-x^{2}+2 & -1 & & 0 & \cdots & 0 \tag{6}\\
\hline-1 & -x^{2}+2 & -1 & \cdots & 0 & 0 \\
0 & -1 & & & & \vdots \\
\vdots & \vdots & & \cdots & -1 & 0 \\
0 & 0 & \cdots & -1 & -x^{2}+2 & -1 \\
0 & 0 & \cdots & 0 & & -1
\end{array}\right.
$$

to show that it equals $F_{2 N+1}$ (ix).
If $N=1$, Theorem 3 obviously holds, and $F_{3}(x)=-x^{2}+1$. Let us assume that the determinant (6) is $F_{2 n+1}(i x)$ for $N=n$. Then for $N=n+1$ we will expand the determinant by minors. It is v_{11} times the minor of v_{11} minus v_{12} times the minor of v_{12}. But the minor of $v_{11}=-x^{2}+2$ is the characteristic function $F_{2 n+1}(i x)$ for $N=n$. The minor of v_{12} is (-1) times the characteristic function $F_{2 n-1}(i x)$ for $N=n-1$. The determinant (6) is therefore

$$
\left(-x^{2}+2\right) F_{2 n+1}(i x)-F_{2 n-1}(i x)
$$

which by Theorem 2 is equal to

$$
F_{2(n+1)+1}(i x)
$$

Theorem 3 is thus proved by mathematical induction.
Theorem 4: The characteristic frequencies of a hanging oscillator of order Nare

$$
\begin{equation*}
\omega_{0} x_{j}=\omega_{j}=2 \omega_{0} \cos \frac{j \pi}{2 N+1}, \quad j=1,2, \ldots, N \tag{7}
\end{equation*}
$$

The Fibonacci polynomials and the Chebyshev polynomials of the second kind $U_{N}(x)$ are related by [2]:

$$
\begin{equation*}
F_{N+1}(x)=i^{-N} U_{N}\left(\frac{1}{2} i x\right) \tag{8}
\end{equation*}
$$

The Fibonacci polynomials of imaginary argument then become:

$$
\begin{equation*}
F_{N+1}(i x)=i^{-N} U_{N}\left(-\frac{1}{2} x\right) \tag{9}
\end{equation*}
$$

and the Fibonacci polynomials of interest in this problem become:

$$
\begin{equation*}
F_{2 N+1}(i x)=(-1)^{N} U_{2 N}\left(\frac{1}{2} x\right) \tag{10}
\end{equation*}
$$

The roots of the eigenvalue equation obtained by setting the characteristic function (5) equal to zero are those given by (7) [3]. Theorem 4 is thus proved.

Two interesting special cases present themselves when $2 N+1$ is an integral multiple of 3 or of 5 .

If $2 N+1=3 P$, where P is an integer, then the root corresponding to $j=P$ is $\omega=\omega_{0}$. Thus, one of the normal frequencies is equal to the frequency of a single oscillator in the combination.

If $2 N+1=5 Q$, where Q is an integer, then the roots corresponding to $j=Q$ and to $j=2 Q$ are, respectively, $\omega=\phi \omega_{0}$ and $\omega=\phi^{-1} \omega_{0}$, where

$$
\phi=1.6180339885 \ldots
$$

is the larger root of $x^{2}-x-1=0$, the famous "golden ratio." This ratio occurs frequently in number theory and in the biological sciences [4], but its appearances in physics are very few, and usually seem contrived [5].

The coordinates q as functions of time are given by [6]

$$
\begin{equation*}
q_{j}(t)=\sum_{k=1}^{N} a_{j} k \cos \left(\omega_{k} t-\delta_{k}\right) \tag{11}
\end{equation*}
$$

where $\alpha_{j k}$ is the k th component of the eigenvector a_{j} which correspond to the normal frequency ω_{j} given by (7). These eigenvectors are obtained from the equation

$$
\begin{equation*}
m\left(-\omega_{j}^{2} T+\omega_{0}^{2} U\right) a_{j}=m \omega_{0}^{2}\left(-x_{j}^{2} I+U\right) a_{j}=0 \tag{12}
\end{equation*}
$$

and their components therefore obey the following equations:

$$
\begin{align*}
& -2 \alpha_{j 1} \cos \frac{2 j \pi}{2 N+1}-a_{j 2}=0 \\
& -\alpha_{j, k-2}-2 \alpha_{j, k-1} \cos \frac{2 j \pi}{2 N+1}-\alpha_{j k}=0, k=3,4, \ldots, N . \tag{13}
\end{align*}
$$

The components of α_{j} are therefore

$$
\begin{align*}
& a_{j 2}=-2 a_{j 1} \cos \frac{2 j \pi}{2 N+1} \\
& a_{j k}=-2 a_{j, k-1} \cos \frac{2 j \pi}{2 N+1}-a_{j, k-2}, \text { for } k=3,4, \ldots, N . \tag{14}
\end{align*}
$$

The components $a_{j k}$ can be evaluated from this recursion relation for the Chebyshev polynomials of the second kind [3, p. 782]:

$$
\begin{equation*}
U_{k}(x)=2 x U_{k-1}(x)-U_{k-2}(x) \tag{15}
\end{equation*}
$$

and we obtain

$$
\begin{equation*}
a_{j k}=(-1)^{k-1} a_{j 1} J_{k}\left(\cos \frac{2 j \pi}{2 N+1}\right) \tag{16}
\end{equation*}
$$

where $\alpha_{j 1}$ is arbitrary.

If the initial position and velocity of the j th mass are, respectively, X_{j} and V_{j}, then the normal coordinates are [6, p. 431]

$$
\begin{align*}
\zeta_{k}(t)= & R e \sum_{j=1}^{N} m a_{j k} e^{i \omega_{k} t}\left(X_{j}-\frac{i}{\omega_{k}} V_{j}\right) \tag{17}\\
= & R e \sum_{j=1}^{N} m(-1)^{k-1} \alpha_{j 1} U_{k}\left(\cos \frac{2 k \pi}{2 N+1}\right) \exp \left[2 i \omega_{0} t \cos \frac{k \pi}{2 N+1}\right] \\
& \times\left(X_{j}-\frac{i V_{j}}{2 \omega_{0} \cos \frac{k \pi}{2 N+1}}\right)
\end{align*}
$$

REFERENCES

1. M. Bickne11, The Fibonacci Quarterly 8, No. 5 (1970):407.
2. V. E. Hoggatt, Jr., \& D. A. Lind, The Fibonacci Quarterly 5, No. 2 (1967): 141.
3. U. W. Hochstrasser, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (U.S. Department of Commerce, National Bureau of Standards, Washington, D.C., 1964), p. 787.
4. M. Gardner, Scientific American 201 (1959):128.
5. B. Davis, The Fibonacci Quarterly 10, No. 7 (1972):659.
6. J. Marion, Classical Dynamics of Particles and Systems (2nd ed.; New York: Academic Press, 1970), p. 425.

CONGRUENCES FOR CERTAIN FIBONACCI NUMBERS

NORVALD MIDTTUN
Norwegian Naval Academy, Post Box 25, Norway
The purpose of this note is to prove some of the well-known congruences for the Fibonacci numbers U_{p} and U_{p-1}, where p is prime and $p \equiv \pm 1(\bmod 5)$. We also prove a congruence which is analogous to

$$
U_{n}=\frac{\alpha^{\mu}-\beta^{\mu}}{\alpha-\beta} \text {, where } \alpha \text { and } \beta \text { are the roots of } x^{2}-x-1=0 .
$$

We start by considering the congruence

$$
\begin{align*}
& x^{2}-x-1 \equiv 0(\bmod p), \text { which can also be written } \tag{1}\\
& y^{2} \equiv 5(\bmod p), \tag{2}
\end{align*}
$$

on putting $2 x-1=y$.
It is well known that 5 is a quadratic residue of primes of the form $5 m \pm 1$ and a quadratic nonresidue of primes of the form $5 m \pm 3$. Therefore, (2) has a solution p if p is a prime and $p \equiv \pm 1(\bmod 5)$.

It also has $-y$ as a solution, and these solutions are different in the sense that

$$
y \not \equiv-y(\bmod p) .
$$

This obviously gives two different solutions x_{1} and x_{2} of (1).

