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ABSTRACT 

The normal frequencies are computed for a system of N identical oscil-
lators, each hanging from the one above it, and the highest oscillator hang-
ing from a fixed point. These frequencies are obtainable from the roots of 
the Chebyshev polynomials of the second kind. 

A massless spring of harmonic constant k is suspended from a fixed 
point, and from it is suspended a mass m. This system will oscillate with an 
angular frequency oo0 = (k/m)1/2 . If N such oscillators are thus suspended, 
each one from the one above it, we will call this system a hanging oscillator 
of order N. 

The Lagrangian for this system is 

N N 

(1) L(ql9 ...,qn, ql9 ...,qn) = y ^ X ^ i " "2^1 " Jk12^i " 4i-i>2> 
i = 1 i = 2 

where q^ is the displacement of the ith mass from its equilibrium position. 
This Lagrangian can also be written in the language of matrix algebra as 

(2) L = \mqTT'q - ^mu2
0qTUq 

where q and q are, respectively, the column vectors col(q19 q2, ..., qN) and 
col(q19 q29 ...9qN). It is obvious that T = I, where I is the N x N identity 
matrix. For U9 we state the following theorem. 

Tfieô em V: ua = 2 and Ui^+i = ui+lji = -1 for i = 1, 2, . . . , N - 1; uNN = 
1, and all other values of u^j are zero. 

This can be demonstrated by mathematical induction. It is obvious for 
N = 1. For N = n the last two terms in (1) are 

(3) -2-™o(<7n_i " ^n- 2 ) 2 " -2^1 (qn ~ qn-i^' 

From these terms come the matrix elements Mn-i,n-i= 2, un-i,n - Un,n-i ~ -15 

unn - 1. For N = n + 1, these terms are added to (1): 

(4) J^n+l ~ 2"™?^n + l -<7n)2' 

The matrix element unn is now increased to 2, and the additional elements 
un,n+i = un + i,n = -1, un + ltn + 1 = 1 now appear in the new (n + 1) x (n + 1) 
matrix U, 

The characteristic function for this problem is det(-mod2T + rnu^U) . If 
we let x = a)/co0, then the normal frequencies for a hanging oscillator of or-
der N are given by the N positive roots of the polynomial det(-a;2X + U) = 0. 
Each of the diagonal elements of this determinant is (- x2 + 2) except for the 
last, which is (-x2 + 1). The only other nonzero elements are those immedi-
ately next to the diagonal elements; they are each -1. 
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In the solution of this problem, the Fibonacci polynomials [1] will be 
useful. These polynomials are defined by the recurrence relation 

Fn+i(x} = xFn + 1(x) + ^n(x^ 9 where Fl(x) = 1 and F2(x) = x. 
By repeated application of this recurrence relation, we can prove: 

TkzoKm 2: Fn + k(x) = (x2 + 2)Fn + 2(x) - Fn (x) . 

Theorem 2 can be used to prove: 

ThZQtiQJn 3: The characteristic function for the hanging oscillator of order 
N is 

(5) (m^2
0)NF2N + 1(ix)a 

The factor (mui2,)1* comes out of the determinant, leaving det(-x2I + U) . 
Theorem 3 thus reduces to the evaluation of the determinant 
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(6) 

to show that it equals F2N + 1 (ix) . 
If N = 1, Theorem 3 obviously holds, and F3(x) = - x 2 + 1. Let us assume 

that the determinant (6) is F2n+1 (ix) for N = n. Then for N = n + 1 we will 
expand the determinant by minors. It is Vn times the minor of P n minus z;12 
times the minor of ^12- But the minor of y n = -x + 2 is the characteristic 
function F2n + 1 (ix) for N = n. The minor of ^12 is (-1) times the character-
istic function F2n_1 (ix) for N = n - 1. The determinant (6) is therefore 

(-x2 + 2)F2n + 1(ix) - F2n_1(ix), 

which by Theorem 2 is equal to 

^2(n + i) +1 (^x) • 

Theorem 3 is thus proved by mathematical induction. 

Tknosium A' The characteristic frequencies of a hanging oscillator of order 
N are 

(7) O)0a:-- = 0)j = 2a)0 cos J^ , j = 1, 2, ..., N. 
2N + 1' 

The Fibonacci polynomials and the Chebyshev polynomials of the second kind 
UN(x) are related by [2]: 

(8) ^ + i(*) = i~^(f^)' 
The Fibonacci polynomials of imaginary argument then become: 

(9) FN + 1(ix) = i~NUN (~^x) 
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and the Fibonacci polynomials of interest in this problem become: 

(10) F2N+1 (ix) = (-l)^(|:r). 

The roots of the eigenvalue equation obtained by setting the characteristic 
function (5) equal to zero are those given by (7) [3], Theorem 4 is thus 
proved. 

Two interesting special cases present themselves when 271/ + 1 is an in-
tegral multiple of 3 or of 5. 

If 2N + 1 = 3P, where P is an integer, then the root corresponding to 
j = P is 0) = U)0. Thus, one of the normal frequencies is equal to the fre-
quency of a single oscillator in the combination. 

If 221/ + 1 = 5Q9 where Q is an integer, then the roots corresponding to 
j = Q and to j = 2Q are, respectively, oo = (J)O)0 and 03 = (j>~1u)Q9 where 

cf> = 1.6180339885... 

is the larger root of x2 - x - 1 = 0, the famous "golden ratio." This ratio 
occurs frequently in number theory and in the biological sciences [4], but 
its appearances in physics are very few, and usually seem contrived [5], 

The coordinates q as functions of time are given by [6] 

N 

(11) Q a ^ = Yl ajk cos ^ k t ~ 5fe) 
fe = i 

where aft is the kth component of the eigenvector <Zj which correspond to the 
normal frequency 0)̂  given by (7). These eigenvectors are obtained from the 
equation 

(12) m(-u2T + ^U)ad = mu2
0(-x2I + U)ad = 0, 

and their components therefore obey the following equations: 

2JTT _ 
-2a j± cos 2FTT " aj2 = ' 

( 1 3 ) 2JTF 
~aj,k-2 ~ 2aj,k-i cos 2 F T T " aik = °' k = 3 ' 4 ' ' ' ' ' N' 

The components of aQ- a r e t h e r e f o r e 

ai2 

aJk 

~ 

= 

-2aj± 

~2a3\k 

C O S 

- 1 

IN 

cos 

+ 

2i 

1 ' 

2JTT 
N + 1 

(14) 
2j,k-2 9 f o r ^ = 3 , 4 , . . . , N. 

The components aft can be evaluated from this recursion relation for the 
Chebyshev polynomials of the second kind [3, p. 782]: 

(15) Uk(x) = 2xUk_1(x) - Uk_2(x) 

and we obtain 

(16) ajk = (-if-'a^U^cosj^j). 

where a^i is arbitrary. 
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If the initial position and velocity of the jth mass are, respectively, 
Xj and VJ , then the normal coordinates are [6, p. 431] 

(17) h(t) - Re J2">"ft **"*'(% - ^ V ) 
J = l \ K I 

= ReJ2m(-l)k~1adlUk[cos 2/y 7 1 ) e x P [2^o^ c o s
 2N + 1 J 

ivc 

2o30 cos w I ± 
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The purpose of this note is to prove some of the well-known congruences 
for the Fibonacci numbers Up and f/p-i, where p is prime and p = ±1 (mod 5). 
We also prove a congruence which is analogous to 

ay - 8P ? 
Uy, = ^—, where a and 3 are the roots of a; - # - 1 = 0. 
" a - 3 

We start by considering the congruence 
(1) x2 - x - 1 = 0 (mod p), which can also be written 
(2) y2 E 5 (mod p), 

on putting 2x - 1 = y. 
It is well known that 5 is a quadratic residue of primes of the form 

5m ± 1 and a quadratic nonresidue of primes of the form 5m ± 3. Therefore, 
(2) has a solution p if p is a prime and p E ±1 (mod 5). 

It also has -y as a solution, and these solutions are different in the 
sense that 

y t -y (mod p). 

This obviously gives two different solutions x1 and x2 of (1). 


