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1. INTRODUCTION 

Let c be any square-free integer, p any odd prime such that (c/p) = -1, 
and n any positive integer. The quantity ./IT, which would ordinarily be de-
fined (mod pw) as one of the two solutions of the congruence: x2 E c (mod 
p n ) , does not exist. Nevertheless, we may deal with objects of the form 
a + b/c~(mod pn), where a and b are integers, in much the same way that we 
deal with complex numbers, the essential difference being that /^Tfs role is 
assumed by /~c~. Since we are dealing with congruences (mod pn), we may with-
out loss of generality restrict a and b to a particular residue class (mod 
pn), the most convenient for our purpose being the minimal residue class 
(mod pn). Accordingly, we define the sets Rn(p) and Rn(p9c) as follows: 

(1) i?n(p) = <a : a an integer, \a\ £ y(pn - 1)>; 

(2) Rn(p9c) = | s : z = a + b/c~9 where a,b e i?n(p)l. 

In the sequel, congruences will be understood to be (mod pn) , unless 
otherwise indicated, and we will omit the modulus designation, for brevity, 
provided no confusion is likely to arise. The symbol "E" denotes congruence 
and should not be confused with the identity relation. 

We also define the set R(p9c) as follows: 

(3) R(p9c) = < z : z = a + b/o~, where a and b are rational numbers 
whose numerators and denominators 
are prime to pi. 

The set Rn(p9o) satisfies all of the usual laws of algebra, and its elements 
may be manipulated in much the same way as complex numbers, provided we iden-
tify the "real" and "imaginary" parts of z = a +b/e9 namely a and b, respec-
tively. 

If z = (a + b/o) e Rn(p,o) and (ab9p) = 1, then z has a multiplicative 
inverse in Rn(p9o), denoted by z'1, given by 

(4) z-1 = (a2 - b2o)~1{a - b/o), 

where (a2 - b2o)~x is the inverse of (a2 - b2o), all operations reduced (mod 
p n ) , in such a manner that (a2 - b2o) , its inverse, and z'1 are in Rn(p9a). 
The condition (ab,p) = 1 is both necessary and sufficient to ensure that z'1 

exists. Two elements z-^ = ak + b^/o, k = 1, 2, of R(p9c) are: said to be 
congruent (mod pn) (or more simply eongvuent) iff a1 = a2 and b1 = b2. They 
are said to be conjugate iff a1 = a2 and 2?j_ = -b2. Hence, every element of 
Rn(p9c) has a unique conjugate in Rn(p 9c) , and every element of Rn(p) is 
(trivially) self-conjugate. 

It is not difficult to show that Rn(p9c)9 which is the set in which we 
are really interested, is a commutative ring with identity; moreover, Rx(p9c) 
is a field. 

hi 
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Next, we recall some basic results of "ordinary" number theory. For all 
z e Rn(p), such that (z9p) = 1, 

(5) **•<*"> = (|), 

(6) zHpn) = 1 [where (f)(pn) = (p - Dp""1 is the 
Euler (totient) function]. 

Note that (5) implies (6), which is a generalization of Fermat's Theo-
rem. A more general formulation of (6) is the following: 

(7) zpn E zpn~l , for all z £ i?n(p). 

The following theorem generalizes the last result even further. 

Tfieo/Lem 7: For all s £ Rn(p9a)9 

(8) spn E (I)^"1 „ 

PtLOOfi: We will first prove (8) for the case n = 1, then proceed by induction 
on n. Suppose s = (a + b/o) £ i?„(p,e). Then, by the binomial theorem, 

P 

S
p = (a + £/?)p = ^(l)ap'\b/Z)k E a p + (£/£)p (mod p) , 

k = 0 

[V\ for fc = 1, 2 , . . . , p - 1 . But ap = a and bp = b (mod p) [by ( 7 ) , 

w i th ft = 1] . Since ( —) = -1? thus zp = z (mod p) , which i s t h e r e s u l t of (8) 
for t h e case n = 1, [(/c) = c2 /c E | - - j / ^ " = - / 5 " , by ( 5 ) ] . 

Let S deno te t h e s e t of n a t u r a l numbers ft such t h a t (8) ho lds for a l l 

z E R (p9c). We have j u s t shown t h a t 1 £ S. Suppose m £ S. Then zp = ~zp + 

wpm
9 fo r some w £ R1(p9o), T h e r e f o r e , 

( s P m ) p = zpm + 1 = ( s p m _ 1 + wp™)? E I p m + p s ( p " 1 ) p m _ 1
W p w E ^ m (mod p m + 1 ) . 

Thus, m £ 5 => (777 + 1) £ 5. The result now follows by induction. 

Given any z = (a 4- fofc) £ R(p,c)9 t h e r e e x i s t s a unique 

s* = (a* + b*Jc) £ i ? n ( p , e ) , 
such that a E a*, & E &*, i.e., 3 E z*. Moreover, 1/s = (a - b/o) I {a2 - b2 o) 
and (s*)"1 both exist and 1/s E (s*)-1. These properties may be deduced from 
the preceding discussion. Therefore, when no confusion is likely to arise, 
we will omit the "starred" notation in the sequel, and treat elements of 
R{p9c) as elements of Rn(p9c) interchangeably, though the reader should bear 
the technical distinction in mind. 

2. APPLICATIONS TO GENERALIZED FIBONACCI SEQUENCES 

Suppose u = (a + b/c) eR(p9o)9 v = u = a - b/o9 where 2a is an integer, 
(a2 - b2o) = ±1. Define the sequences \(Pk\ and \Xk\ as follows: 

(9) * > - 4 ^ , 
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(10) Xk = uk + vk
9 k = 0, 1 , 2 , . . . 

As i s commonly known, t h e «/??s and X ? s a r e i n t e g e r s and s a t i s f y t he same r e -
c u r s i o n : 

(ID Y*+2
 = 2 a ^ + i + ^ " a^Vk-

Note that b ^ 0 (mod p) , which implies (w - v) " x = (2&/5)"1 = w ei?„(p,c), 
Hence, we may treat | <Pw and 4 Xk \ as sequences in Rn(p) . By application of 
Theorem 1, we may deduce certain divisibility properties of these sequences 
(mod p n ) . To illustrate, we prove the following 

TkdOHQJM 2: Given u and v as defined above, if m = m(p9n) = (p + l)pn"1, then 

(12) <pm = 0, and 

(13) X m = 2(a2 - £ 2 c ) . 

P/L00{j: By Theorem 1, 

pn _ vn~1 

Hence, 

M
p"w

p "" = vp"vp"1 (uv)p" , 
i.e., 

um = vm = (a2 - b2a)p" = (a2 - b2o). 

Note that (u - v) ~ exists. Hence, applying the definitions in (9) and (10), 
the result of Theorem 2 now follows. 

The preceding theorem eloquently illustrates the power of the method of 
"complex residues." By dealing with certain nebulous objects of the form 
a + b/c (mod p n ) , which have no "real" meaning in the modular arithmetic, we 
have deduced some purely number-theoretic results about generalized Fibonacci 
and Lucas sequences. The analogy with bona fide complex numbers and their 
applications should now be more evident. 

A somewhat stronger result than (13) is actually true, but the method 
of complex residues does not appear to be of help in such fortification. We 
will first state the strengthened result, then state and prove a number of 
lemmas, returning finally to the proof. 

Th&Qtizm 3: Let u9 V9 and 77? be defined as in Theorem 2. Then 

(14) 2(az b2o) (mod p2n) . 

Lemma 1: Let Xk be as given in (10). Then 

<"> Z (-i>Vh(V)C2i = x 2ns (s 
n 

0, 1, 2, . 
1, 2, 3, . . . ) . 

YhjQQ^' We may prove the result by generating functions. 
following, essentially, is formula (1.64) in [1]: 

Alternatively, the 



1979] SOME DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI SEQUENCES kS 

(16) 

[in] l n - i \ 

T W&*)* = -JU*l±Jil\ where xml + /JTTT, 
i-o n2 x ^ / — — 2/ = 1 - / i + T . 

In (16), le t z = -4/A^ (note X2s ^ 0 V s) . Then 

^ _ ^ AL " 4 „2a _ y2s (U ~ lO*2 f l 
/ s + 1 = 

^ 2 s ^?8 

Hence, 
x = 2u2s/X2s9 y = 2v2s/X2s9 x + y = 2 . 

Substituting in (16), we obtain: 

\in\ (n-i\ 

^ n - ^ 
1 /2n(z^zns 4- vAns) 

i = o nl \ An„ • 2 v2s 

This simplifies to (15), proving the lemma. 

Lemma 2: 

£ ( - D ^ f ^ ) 2 " - M = 2 (n= 1, 2, 3, . . . ) . 
£ =0 

VKoo^i Let s = 0 in Lemma 1. 

Lemma 3 : r i -. 
[in] 
£ ( - l ) Y ^ ) 2 n " 2 * = n + 1 (n = 0, 1, 2, . . . ) . 
i = o 

PJiOOJ: This is formula (1.72) in [1] . 

Lemma 4' r i .- . 

(17) ^ ( _ 1 ) ^ ( n _ 2 i ) ^ T ( W - f ' ) 2 " - 1 - M = W
2 (* = 1 , 2 , 3 , . . . ) . 

i = 0 

PtiOO^: The left member of (17) is equal to 

£>!)< (2n - 2, - n)^(^) 2 --2i 

t = 0 

E <-!)*(" r>-M-t«E^)*^T(Mr)2-
i = 0 

= n(n + 1) - -wn * 2 = n2 (using Lemmas 2 and 3). 

VKool 0^ Tko.OA.2Jfn 3: From Theorem 1, with n= 1, > up = V, Vp = u (mod p) . 
Hence, since u = v, there exists w £ R (p,e), such that 

(18) UV E y + pw, yp E u + pzj (mod p2) . 
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Multiplying these last two congruences, we have: 

(uv)p = uv + p{uw + vw) (mod p 2 ) . 

However, uv = a1 - b2o = ±1, so (uv)p = uv. Hence, it follows that 

(19) uw + uw = 0 (mod p) . 

If, in (18), we multiply throughout by u and v9 respectively, we obtain: 

up+ = uv + puw, vp E uv + puw (mod p 2 ) . 

Now adding these last two congruences and using (19), we obtain the result 

(20) Ap + 1 E 2(a2 - h2c) (modp2). 

This is (13) for the case n = 1. Let T be the set of natural numbers n for 
which (13) holds; we have shown that 1 e T. Suppose v e T9 and let 

ml = (p + l)pr~1
a 

By Lemma 1, since ml is even, 

i = 0 

2r But, by the inductive hypothesis, XTOi = 2uv + Kp r, for some integer X. Hence, 

(-1)* 
P ~ ^ 

xpmi= 2]T ^if-^^-^duv + xP
2^-2' 

£ = 0 

i(p - 1) . p - U 

t ("1 ) <^r(Pi i ) ? (P7')(2^>P~2W t^2*)' <-o P " ̂  ^ ^/T-o v ^ 

P [i(p-j)] 

E^ 2 *) ' E (-1)'^(pi')(p"7-2')(2^)p"2''J' 
i = o J = 0 

i =0 r 

i(p-D 
uvY'c%'L (mod p2^ + 2 ) 

i = o 

= uv 
i = Q 

i(p-D 
p-2i 

+ ̂  E ( - D ' ^ T P ^ ) ^ " 2i)2p"M-1 (mod p*-2) 
i-o p v ' 

S 2wy + Z p 2 1 ^ 2 (mod p 2 r + 2) = 2wy (mod p 2 r + 2 ) 
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(using Lemmas 2 and 4). Hence, v e T => (p+1) e T. The result of the theo-
rem now follows by induction. 

CoHoltcUtlj 1 (of Theorems 2 and 3) : 

Let p be any odd prime such that (—j = -1, n be any natural number, 
and 77? = 77?(p,n) = (p + l)pn"1. Then V^' 

(21) Fm = 0 (mod p w ) , and 

(22) Lm = -2 (mod p2n). 

PH.OOJ: Let a = b = y,c = 5, and apply (12) and (14) and the definitions of 
Fibonacci and Lucas sequences. 

3. THE CASE (~\ = 1 

We will now deal with the case where f—J = 1, starting our discussion 

anew. We soon find that this case is much simpler than the first, since now 
is an element of i?n(p), in the modular sense, and thus has a "real" mean-

ing. In fact, if all the definitions of the preceding discussion are retained 

with the exception that now (—1 = 1 , we see that objects (a + b/o) of 

R(p9c) are actually congruent (mod pn) to objects of i?n(p), and that we do 
not need to concern ourselves with En(p,o) at all. In other words, the the-
ory of "complex residues" is irrelevant in this simpler case. With this idea 
in mind, we may "rethink" the results of the previous section. Thus, Theorem 

1 is replaced by (7), for the case (—J = 1. The counterpart of Theorem 2 is 
the following, for this case. 

Tkz.0H.2JM 4: Let the sequences | <Pk > and {^kj be given by (9) and (10), and let 

M = (p - Dp"'1 = 0(pM). Then 

(23) % = 0, and 

(24) XM = 2. 

VHOOJi By (6), uM = VM = 1, which implies: uM - VM = 0, uM + VM = 2. Since 
(u - v)~l = (2b/c)~l exists, we may apply the definitions in (9) and (10), 
thereby proving the result. 

The counterpart of Theorem 3 is the following fortification of (24): 

Tk^QHdm 5: 

(25) \M E 2 (mod p 2 n ) . 

VHoo^i BY (7), with n = 1, up E u, vp E v (mod p). Thus, there exist x and 
y in i?1(p) such that 

(26) up E u + px, vp E v + py (mod p 2 ) . 

Multiplying these two congruences, we obtain: (uv)p = uv + p{uy + vx) (mod 
p 2 ) . But UV = ±1, so (w^)p = uv. Hence, we have 
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(27) uy + vx - 0 (mod p). 

Returning to (26), if we multiply throughout by V and u, respectively, we 
obtain: up~1(uv) E uv + p(vx) , vp~1(uv) = uv + p(uy) (mod p 2 ) . Now, adding 
these last two congruences and using (27), we have: uv(up ~1 + i^"1) E 2wy 
(mod p2) , which implies (25) for the case n = 1. 

The remainder of the proof of Theorem 5 is nearly identical to that of 
Theorem 3, except that in the latter, we replace.77? 1 by Mx = (p - ±)pr~1. 

k. SUMMARY AND CONCLUSION 

We may combine Theorems 2 thru 5 thus far derived into the following 
main theorem. For the sake of completeness and clarity, we will incorporate 
the necessary definitions in the hypothesis of the theorem. 

Thd.OK<im 6: Let a be any square-free integer, p any odd prime such that o t 0 
(mod p) , and n any positive integer. Let a and b be any rational numbers 
such that neither their numerators nor their denominators are divisible by p, 
2a is an integer, and (a2 - b?~o) = ±1. Let 

u = a + b/c, v = a - b/o9 <Pn= (un - vn) / (u - v), Xn = un + vn. 

Finally, let 

m = m(n,p) =<p - (flfP7*"1-
Then 

(28) ^m = 0 (mod p"), and 

(29) \m = 1 + UV + (1 - uv) (£\ (mod p2n). 

CoKolZcUtij 2: Let {Ffe} and {Lk} be the Fibonacci and Lucas sequences. Let p 

be any odd prime ± 5, and m = <p "(p-)fPn"15 ^ = 1, 2, 3, ... . Then 

(30) Fm = 0 (mod p"), and 

(31) Lm = 2(|) (mod p 2 n ) . 

PX00&: Let a = & = y, c = 5 in Theorem 6. 

Cosiotta/iy 3 : Let {Pfc} and {^fe} be t h e P e l l and " L u c a s - P e l l " sequences (a = 

b = 1, o = 2 i n Theorem 6 ) . Let p be any odd p r ime , and m = < p -\^)\pn~1
9 

n = 1, 2 , 3 , . . . . Then 

(32) Pm = 0 (mod p n ) , and 

(33) 5m E 2 ( | ) (mod p 2 n ) . 

Theorem 6 is the main result of this paper. However, it should be 
clear to the reader that the basic result of Theorem 1 may be used to obtain 
other types of congruences, where the indices of the generalized Fibonacci or 
Lucas sequences are other than the "m" of Theorem 6. The corresponding re-
sults, however, do not appear to be quite as elegant as that of Theorem 6. 
Nevertheless, some information maybe gathered about the periodicity (mod pn) 
of the sequences in question. For example, using the methods of this paper, 
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we may deduce that, if P (N) denotes the period (mod N) of the Fibonacci and 
Lucas sequence (the periods for the two sequences are tne same, except when 
5\N, cf. [2]), and if p is any odd prime ^ 5, then 

(34) p(pn) divides |^3p + 1 - (p + 3) (-jjp""1, n = 1, 2, 3, ... . 

We will leave the proof of this result to the reader. 
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A NOTE ON A PELL-TYPE SEQUENCE 

WILLIAM J. O'DONNELL 
George Washington High School, Denver, CO 

The Pell sequence is defined by the recursive relation 

Pl = 1 , P 2 = 2 , and P n + 2 = 2Pn+1 + Pn , fo r n > 1. 

The first few terms of the sequence are 1, 2, 5, 12, 29, 70, 169, 408, ., 
It is well known that the nth term of the Pell sequence can be written 

"•••k (H*)"-(H^)" 
Pn -2 + /8 It is also easily proven that lim — = ~ . 

For the sequence \vn\ defined by the recursive formula 

V1 = 1, V2 = 2, and Vn + 2 = kVn + 1 + Vn , for k >. 1, 

we know that 
Vn -k + A1 + 4 

lim Vn + l 

If we let k = 1, the sequence < Vn > becomes the Fibonacci sequence and the 
limit of the ratio of consecutive terms is « = -618, which is the "gol-

den ratio." For k = 2 the ratio becomes .4142, which is the limit of the 
ratio of consecutive terms of the Pell sequence. 

Both of the previous sequences were developed by adding two terms of a 
sequence or multiples of two terms to generate the next term. We now consi-
der the ratio of consecutive terms of the sequence \Gn\ defined by the recur-
sive formula 

^1 = ^l> ^ 2 ~ ^ 2 ' 8 • • J &n = &n s &n<3 

and 


