ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
A. P. HILLMAN

University of New Mexico, Albuquerque, NM 87131
Send-all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to Professor A. P. Hillman, 709 Solano Dr., S.E., Albuquerque, New Mexico 87108. Each solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within 4 months of the publication date.

DEFINITIONS

The Fibonacci numbers F_{n} and Lucas numbers L_{n} satisfy $F_{n+2}=F_{n+1}+F_{n}$, $F_{0}=0, F_{1}=1$ and $L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1$. Also a and b designate the roots $(1+\sqrt{5}) / 2$ and $(1-\sqrt{5}) / 2$, respectively, of $x^{2}-x-1=0$.

PROBLEMS PROPOSED IN THIS ISSUE
B-394 Proposed by Phil Mana, Albuquerque, NM.
Let $P(x)=x(x-1)(x-2) / 6$. Simplify the following expression:
$P(x+y+z)-P(y+z)-P(x+z)-P(x+y)+P(x)+P(y)+P(z)$.
B-395 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, CA.
Let $c=(\sqrt{5}-1) / 2$. For $n=1,2,3, \ldots$, prove that

$$
1 / F_{n+2}<c^{n}<1 / F_{n+1} .
$$

B-396 Based on the solution to B-371 by Paul S. Bruckman, Concord, CA.
Let $G_{n}=F_{n}\left(F_{n}+1\right)\left(F_{n}+2\right)\left(F_{n}+3\right) / 24$. Prove that 60 is the smallest positive integer m such that $10 \mid G_{n}$ implies $10 \mid G_{n+m}$.

B-397 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA.
Find a closed form for the sum

$$
\sum_{k=0}^{2 s}\binom{2 s}{k} F_{n+k t}^{2}
$$

B-398 Proposed by Herta T. Freitag, Roanoke, Va.
Is there an integer K such that

$$
K-F_{n+6}+\sum_{j=1}^{n} j^{2} F_{j}
$$

is an integral multiple of n for all positive integers n ?
B-399 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, CA.
Let $f(x)=u_{1}+u_{2} x+u_{3} x^{2}+\cdots$ and $g(x)=v_{1}+v_{2} x+v_{3} x^{2}+\cdots$, where $u_{1}=u_{2}=1, u_{3}=2, u_{n+3}=u_{n+2}+u_{n+1}+u_{n}$, and $v_{n+3}=v_{n+2}+v_{n+1}+v_{n}$. Find initial values v_{1}, v_{2}, and v_{3} so that $e^{g(x)}=f(x)$.

SOLUTIONS
 Nonhomogeneous Difference Equation

B-370 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA.
Solve the difference equation: $u_{n+2}-5 u_{n+1}+6 u_{n}=F_{n}$.
Solution by Phil Mana, Albuquerque, NM.
Let E be the operator with $E y_{n}=y_{n+1}$. The given equation can be rewritten as

$$
(E-2)(E-3) U_{n}=F_{n} .
$$

Operating on both sides of this with $(E-a)(E-b)$, where a and b are the roots of $x^{2}-x-1=0$, one sees that the solutions of the original equation are among the solutions of

$$
(E-a)(E-b)(E-2)(E-3) U_{n}=0
$$

Hence, $U_{n}=h a^{n}+k b^{n}+2^{n} c+3^{n} d$. Here, c and d are arbitrary constants. But h and k can be determined using $n=0$ and $n=1$, and one finds that $h a^{n}+k b^{n}=L_{n+3} / 5$. Thus, $U_{n}=\left(L_{n+3} / 5\right)+2^{n} c+3^{n} d$.
Also solved by Paul S. Bruckman, C. B. A. Peck, Bob Prielipp, Sahib Singh, and the proposer.
No, No, Not Always

B-371 Proposed by Herta T. Freitag, Roanoke, VA.
Let $S_{n}=\sum_{k=1}^{F_{n}} \sum_{j=1}^{k} T_{j}$, where T_{j} is the triangular number $j(j+1) / 2$. Does each of $n \equiv 5(\bmod 15)$ and $n \equiv 10(\bmod 15)$ imply that $S_{n} \equiv 0(\bmod 10)$? Explain.
I. Solution by Sahib Singh, Clarion College, PA.

The answer to both questions is in the negative as explained below:

$$
\begin{aligned}
\sum_{j=1}^{k} T_{j} & =\sum_{j=1}^{k}\binom{j+1}{2}=\binom{k+2}{3} \\
S_{n} & =\sum_{k=1}^{F_{n}}\binom{k+2}{3}=\binom{F_{n}+3}{4}=F_{n}\left(F_{n}+1\right)\left(F_{n}+2\right)\left(F_{n}+3\right) / 24
\end{aligned}
$$

One can show that $S_{25} \not \equiv 0(\bmod 10)$ and $S_{35} \not \equiv 0(\bmod 10)$ even though $25 \equiv 10$ $(\bmod 15)$ and $35 \equiv 5(\bmod 15)$.
II. From the solution by Paul S. Bruckman, Concord, CA.

It can be shown that $S \equiv 0(\bmod 10)$ if and only if $n \equiv r(\bmod 60)$ where $r \varepsilon\{0,5,6,7,10,12,17,18,20,24,29,30,31,32,34,36,43,44,46$, $53,54,56,58\}$.

Also solved by Bob Prielipp, Gregory Wulcyzn, and the proposer.

Still No

B-372 Proposed by Herta T. Freitag, Roanoke, VA.
Let S_{n} be as in B-371. Does $S_{n} \equiv 0(\bmod 10)$ imply that n is congruent to either 5 or 10 modulo 15? Explain.

Solution`by Paul S. Bruckman, Concord, CA.
$S_{6}=\binom{F_{6}+3}{4}=\binom{11}{4}=11 \cdot 10 \cdot 9 \cdot 8 / 24=330 \equiv 0(\bmod 10)$ but 6 is not congruent to 5 or 10 modulo 15 .

Also solved by Bob Prielipp, Sahib Singh, Gregory Wulczyn, and the proposer.

Golden Cosine

B-373 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, CA and P. L. Mana, Albuquerque, $N M$.

The sequence of Chebyshev polynomials is defined by

$$
C_{0}(x)=1, C_{1}(x)=x \text {, and } C_{n}(x)=2 x C_{n-1}(x)-C_{n-2}(x)
$$

for $n=2,3, \ldots$. Show that $\cos [\pi /(2 n+1)]$ is a root of

$$
\left[C_{n+1}(x)+C_{n}(x)\right] /(x+1)=0
$$

and use a particular case to show that $2 \cos (\pi / 5)$ is a root of $x^{2}-x-1=0$.

Solution by A. G. Shannon, Linacre College, University of Oxford.
It is known that if $x=\cos \theta$ then $C_{n}(x)=\cos n \theta$. Letting $\theta=\pi /(2 n+1)$,
one has

$$
x+1=\cos \theta+1 \neq 0
$$

and

$$
C_{n+1}(x)+C_{n}(x)=\cos [(n+1) \pi /(2 n+1)]+\cos [n \pi /(2 n+1)]
$$

$$
=-\cos [n \pi /(2 n+1)]+\cos [n \pi /(2 n+1)]=0
$$

as required, since $\cos (\pi-\alpha)=-\cos \alpha$.
The special case $n=2$ shows us that $\cos (\pi / 5)$ is a solution of $\left[C_{3}(x)+C_{2}(x)\right] /(x+1)=0$,
which turns out to be

$$
(2 x)^{2}-2 x-1=0
$$

Hence, $2 \cos (\pi / 5)$ satisfies $x^{2}-x-1=0$.
Also solved by Paul S. Bruckman, Bob Prielipp, Sahib Singh, and the proposer.

Fibonacci in Trigonometric Form

B－374 Proposed by Frederick Stern，San Jose State University，San Jose，CA． Show both of the following：
$F_{n}=\frac{2^{n+2}}{5}\left[\left(\cos \frac{\pi}{5}\right)^{n} \sin \frac{\pi}{5} \sin \frac{3 \pi}{5}+\left(\cos \frac{3 \pi}{5}\right)^{n} \sin \frac{3 \pi}{5} \sin \frac{9 \pi}{5}\right]$,
$F_{n}=\frac{(-2)^{n+2}}{5}\left[\left(\cos \frac{2 \pi}{5}\right)^{n} \sin \frac{2 \pi}{5} \sin \frac{6 \pi}{5}+\left(\cos \frac{4 \pi}{5}\right)^{n} \sin \frac{4 \pi}{5} \sin \frac{12 \pi}{5}\right]$ ．
Solution by A．G．Shannon，Linacre College，University of Oxford．
Let $x_{n}=[2 \cos (\pi / 5)]^{n}$ and $y_{n}=[2 \cos (3 \pi / 5)]^{n}$ ．It follows from B－373 that $x_{n+2}=x_{n+1}+x_{n}$ ，and it follows similarly that $y_{n+2}=y_{n+1}+y_{n}$ ．Hence the first result in this problem is established by verifying it for $n=0$ and $n=1$ and then using the recursion formulas for F_{n}, x_{n} ，and y_{n} ．The second result follows from the first using

$$
\cos (3 \pi / 5)=-\cos (2 \pi / 5) \quad \text { and } \quad \cos (\pi / 5)=-\cos (4 \pi / 5)
$$

Also solved by Sahib Singh，Herta T．Freitag，Bob Prielipp，Douglas A．Fults， paul S．Bruckman，and the proposer．

Fibonacci or Nil
B－375 Proposed by V．E．Hoggatt，Jr．，San Jose State University，San Jose，CA．
Express $\frac{2^{n+1}}{5} \sum_{k=1}^{4}\left[\left(\cos \frac{k \pi}{5}\right) \cdot \sin \frac{k \pi}{5} \cdot \sin \frac{3 k \pi}{5}\right]$ in terms of Fibonacci num－ ber F_{n} ．

Solution by Herta T．Freitag，Roanoke，VA．
Using the relationships established in B－374，the expression of this problem becomes $F_{n}[1+(-1)] / 2$ ，which is F_{n} for even n and zero for odd n ． Also solved by Paul S．Bruckman，Douglas A．Fults，Bob Prielipp，A．G．Shannon， Sahib Singh，and the proposer．

＊＊＊がが

