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SECTION 1 

The Pell sequence {Pn} is defined recursively by the equation 

P = ?P + P 

n = 2, 3, ..., where Pl = 15 P2 = 2. As is well known (see, e.g., [1]), the 
members of this sequence are also generated by the matrix 

M 
1 

|1 0| 

since by taking successive positive powers of M one can easily establish that 

My 
P P 
r n +1 rn 

Related to the sequence {Pn} is the sequence {Rn}, which is defined recur-
sively [1] by 

Rn+i - 2Rn + Rn-ii 

2, 3, > R i R? In what follows, we will require two other 
Pell sequences; they are best motivated by considering the following problem 
(cp. [2]): do there exist sequences ip \ , p1 = 1, satisfying (1) which are 
also "geometric" (i.e., the ratio between terms is constant)? These two re-
quirements are easily seen to be equivalent to p satisfying the so-called 
"Pell equation" [1]: 

(2) P 2p + 1. 

The positive root of this equation is ip = y(2 + /8) , and one easily checks 

that the sequence {ipn} is a "geometric" Pell sequence. In a similar manner, 

by considering the negative root in (2), tyr = y(2 - /8), one obtains a second 

geometric Pell sequence \^)rn}. (Since ipr = —r-, these two sequences are by no 

means distinct. However, it will be convenient in what follows to consider 
them separately.) That these four sequences are related to each other is ap-
parent from the following well-known Binet-type formulas, which are verified 
mathematically by induction [1]: 

pn = ̂ : l?, Rn = ipn + ip'\ r = i(j?„ +pnm. 

Our purpose in this paper is threefold: we will give a constructive 
method for finding all possible matrix generators of the above Pell sequences; 
we show that, in fact, all such matrices are naturally related to each other; 
and finally, by applying well-known results from matrix algebra, we establish 
the above Binet-type formulas and several other well-known Pell identities. 
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SECTION 2 

A direct calculation shows that the matrix 

I2 1l 
M = 

|l 0| 
satisfies the Pell equation; i.e., 

Mz = 2M + I, 

where I 
1 0 

0 
. Let A 

x y 

U V 
, where x, y, u9 V are to be determined 

subject only to the condition that xv - yu f 0. Substitution of A into (2) 
results in the following system of scalar equations: 

(3.1) x2 - 2x - 1 + yu = 0 

(3.2) (x + v - 2)y = 0 

(3.3) (x + v - 2)u = 0 

(3.4) v2 - 2v - 1 + yu = 0 

We now investigate possible solutions of these equations. Since the tech-
niques are similar to those used in [3], we omit most of the details. 

Co6e 7: y = 0 

Equations (3.1), (3.4) reduce to the Pell equation, implying 

x = {*, ^' } 5 v = {^, *'}. 
(a) If u = 0, we obtain the following matrix generators: 

U ol 
^n 

ijj 0 

0 iK 

\\)r 0 

0 ijJ 

^ 
0 i); 

i(jf 0 

0 ip' 

(b) If u f 0, (3.3) implies # + y = 2, and hence, that 

I ip -f 0 I 
•Yn 

ij; 0 
¥„ 

^ 

The nth power of the matrix ¥0w is easily shown to be 

}pn 0 

\Pnu ty,n 

where {Pn } is the sequence defined in (1). 

1 n 
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Co6e 2: y 1 0 

(4.1) 

(a) If u = 0, the situation is similar to that of Case 1(b), and we 
omit the details. 

(b) Suppose u + 0. Equation (3.3) implies x = 2 - v—this is consis-
tent with (3.2)—and substitution for x in (3.1) gives, after col-
lecting terms 

V2 - 2v - 1 + yu = 0, 

which is consistent with (3.4). Thus, the assumptions y + 0, u + 0 
result in the following reduced system of equations: 

1 
(2 ± /8 - kyu) 

(4.2) v, 
Before investigating some matrix generators corresponding to solutions of the 
equations (4.1), (4.2), we pause to summarize our results. 

We have been tacitly assuming that for a matrix A to be a generator of 
Pell sequences it must satisfy (2), the Pell equation. However, since our 
prototype generator is the matrix 

M 

whose characteristic equation is easily seen to be the Pell equation (2), and 
since this latter equation is also the minimal equation for M, we would like 
to restrict our matrices A to those which also have the latter property. The 
initial assumption on A9 xv - yu 4- 0, rules out, e.g., a matrix of the form 

ol 

0 

which evidently satisfies (2). We would, however, also like to rule out ma-
trices of the form ¥x and ^3 which satisfy (2) but do not have (2) as minimal 
equation. Thus, the following 

V(L^AjlLtiovii A 2 x 2 matrix A = 
y 

is said to be a nontrivial generator 
\u v | 

of Pell sequences if xv - yu 7̂  0, and its minimal equation is the Pell equa-
tion (2). 

The above discussion then completely characterizes nontrivial genera-
tors of Pell sequences, which we summarize in the following: 
Tko.on.tm: A 2 x 2 matrix A is a nontrivial generator of Pell sequences if and 
only if it is similar to 

^ n 

0 I/J; 

Rma/ik 1 : Evidently, M is similar to ¥0. [We show below that M is obtained 
as a nontrivial generator by an appropriate choice of solutions to the system 
(4.1), (4.2).] In light of this similarity an indirect way of obtaining non-
trivial generators is to form the product §^0$-1, for any nonsingular matrix 
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SECTION 3 

Examptd 1: If we limit y, u to be positive integer values in (4.1), then 
there is a unique pair which keeps the radicand positive: y = u = 1. This 
results in two sets of solutions: 

y 1, u ~ 1, v = 2, x 0 

and 

y = 1, u = 1, v = 0, x = 2. 

The latter set results in the "M-matrix" 

U II 

where 

M 

M n = 

1 0 

Pn + l 

(Cp. §1.) Since Mn is similar to ¥0, we conclude that the traces and deter-
minants of these two matrices are the same. Hence, 

(5) 

(6) 

•Pn + l + ^n-

P P rn + lrn-l = ("I)", 

two well-known Pell identities [1]. 

Example 2: In (4.1), take y = 2, u = 1. Then one obtains 

Il 2| 
tf = 

| i i 
and one easily checks that 

2Pn 
Nn = 

2" n 

2"̂ n 

Similarity of Nn with ^Q implies (trace invariance) that 

(7) Rn = ^n + f* 

and that (determinant invariance) 

(8) Ei 8Pn2 = A(-l)n. 

Whereas, similarity of Nn with Mn implies, respectively (by trace and deter-
minant invariance), that (cp. [1]) 

(9) 

(10) 

+ P. 

*».= ^Pn + lPn-l +Pn)-
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Example 3: In (4.1), take y = 2, u = - 1 ; one possible set of solutions for 
x and v is, respectively, x = 3, v = - 1 , and we obtain 

H = 
-1 2 

-1 3 

-yi?n _ i 2P, 

1 
Pn+1 

Similarity of # n with ¥" gives (cp. [1]) 

(ID 

(12) 

Hott 7: 

Rn + 1 ~ ^n- 2(ljjn + l|;'n) 

8Pf *»+l*»-l = ^ ( ~ D n -

Lines (12) and (8) imply that 

Rn ~ Rn+lRn-l = 8 ( - l ) , 
or 

Rn+1Rn-l - Rl = 8 ( - l ) " + 1 . 

(Cp. [1 ] . ) 
Similarity of Hn with Mn gives 

(l^) Pn + 1 + ^n-l = 2"(^n + l - ^n-l) 

(14) *„ + ! * » - 1 = 4(3Pn
2 - Pn + 1 P n . ! ) . 

Similarity of #" with /!/" gives (cp. [1]) 

(15) 

(16) 

Rn + 1 Rr 2R„ 

K + Rn + lRn-l = 16Pn2 

RdmOJik 1' Clearly, the computing of further matrix generators can be carried 
out in the same fashion as above. (The reader who is patient enough may ob-
tain as his/her reward a new Pell identity.) In the next section, we concen-
trate our efforts on establishing the classical Binet-type formulas mentioned 
in §1. To this end, we will require not only the eigenvalues but the eigen-
vectors of two of our matrix generators. 

SECTION k 

In (4.1), set y = 0, u ̂  0, but, for the time being, u otherwise arbi-
trary. From §1, we know that 

ip 0 

u \\)r 

i)n o 

Pnu il)'n 
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An eigenvector corresponding to the eigenvalue Jp is computed to be 

I 2/2 I 

while an eigenvector corresponding to IJJ ' is 

2 0| 

Now take u = /5", set S 

, and simply denote ^ ^ by ¥/2- BY similarity, XY/j ~ S^QS > which 

implies that ^ = CTQn5_1, and finally that 

(17) y^s = svn
0. 

Writing out line (17) gives 

(18) 
i>n 0 

\P„/I ^» 

Multiplying out in (18) , we have 

2\pn 0 

\Pn2/2 + \\)m \l)rn 

2 

1 

0 

1 

2 

1 

ol 
l | 

Hn 

1° 
0 

i f j ' n 

2i(jn 0 

which implies that Pn 2/2" + i^'n = i(jn; or, recal l ing that i|j -i(j ' = 2/5", we have 

(19) 

the classical Binet-type formula. ., 
To obtain the last of the Binet-type formulas, viz., \\)n = y(i?„ + Pn/8), 

we use the matrix 

N = 
|1 1| 

A pair of eigenvectors corresponding to ip, \pr are computed to be 

1/2 V2I 
, and proceeding as above, we have that Setting T = 

i.e., that 

/5" 

1 

-/2 

1 

1 1 

o n -̂̂ n 

P 77 rn 2 

/5" -/2 

1 1 1 1 

l(;n 0 

0 ^'n 
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M u l t i p l y i n g out g ives 

—Rn + 2Pn 

^Pn +\*n 

-\-Rn + 2Pn 

-V2Pn + \Rn 

/ 2 i p n - /2~i |j 'n 

i\)n i\)fn 

which i m p l i e s t h a t 

V = /2P n + | i ? n = y ( / 8 P n + i ? n ) . 
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TWO THEOREMS CONCERNING HEXAGONAL NUMBERS 

WILLIAM J. O'DONNELL 
Sayre School, Lexington, KY 40506 

Hexagonal numbers are the subset-of polygonal numbers which can be ex-
pressed as Hn = In - n, where n = 1, 2, 3, ... 
numbers can be represented as shown in Figure 1. 

Geometrically hexagonal 

Figure 1 

THE FIRST FOUR HEXAGONAL NUMBERS 

Previous work by Sierpinski [1] has shown that there are an infinite 
number of triangular numbers which can be expressed as the sum and difference 


