NEARLY LINEAR FUNCTIONS

V. E. HOGGATT, JR.

San Jose State University, San Jose, CA 95192
and
A. P. HILLMAN

University of New Mexico, Albuquerque, N.M. 87131
Let $\alpha=(1+\sqrt{5}) / 2,[x]$ be the greatest integer in $x, \alpha_{1}(n)=[\alpha n]$, and $\alpha_{2}(n)=\left[\alpha^{2} n\right]$. A partial table follows:

n	1	2	3	4	5	6	7	8	9	10	11
$a_{1}(n)$	1	3	4	6	8	9	11	12	14	16	17
$a_{2}(n)$	2	5	7	10	13	15	18	20	23	26	28

It is known (see [1]) that $\alpha_{1}(n)$ and $\alpha_{2}(n)$ form the nth safe-pair of Wythoff's variation on the game Nim. These sequences have many interesting properties and are closely connected with the Fibonacci numbers. For example, let

$$
\sigma(n)=\alpha_{1}(n+1)-1 ;
$$

then

$$
\begin{aligned}
& \sigma^{2}(n)=\sigma[\sigma(n)]=a_{2}(n+1)-2, \\
& \sigma\left(F_{n}\right)=F_{n+1} \text { for } n>1,
\end{aligned}
$$

and

$$
\sigma\left(L_{n}\right)=L_{n+1} \text { for } n>2 \text {. }
$$

Here we generalize by letting d be in $\{2,3,4, \ldots\}$ and letting h_{n} be the dth-order generalized Fibonacci number defined by the initial conditions

$$
\begin{equation*}
h_{i}=2^{i-1} \text { for } 1 \leq i \leq d \tag{I}
\end{equation*}
$$

and the recursion

$$
\begin{equation*}
h_{n+d}=h_{n}+h_{n+1}+\cdots+h_{n+d-1} . \tag{R}
\end{equation*}
$$

The recursion (R) easily implies

$$
h_{n+d+1}=2 h_{n+d}-h_{n} \text { or } h_{n}=2 h_{n+d}-h_{n+d+1} \text {. }
$$

The first of these is convenient for calculation of h_{n} for increasing values of n and the second for decreasing n.

Representations for integers as sums of distinct terms h_{n} will be used below to study some nearly linear functions from $N=\{0,1,2, \ldots\}$ to itself; these will include generalizations of the Wythoff sequences. Associated partitions of $Z^{+}=\{1,2,3, \ldots\}$ will also be presented.

1. CHARACTERISTIC SEQUENCES

Let T be the set of all sequences $\left\{e_{n}\right\}=e_{1}, e_{2}, \ldots$ with each e_{n} in $\{0,1\}$ and with an n_{0} such that $e_{n}=0$ for $n>n_{0}$. Let $z=z(E)$ be the smallest n with $e_{n}=0$ and let E^{*} be the $\left\{e_{n}^{*}\right\}$ in T given by $e_{n}^{*}=0$ for $n<z$, $e_{z}^{*}=$ 1 , and $e_{n}^{*}=e_{n}$ for $n>z$. If some $e_{n}=1$, let $u(E)$ be the smallest such n.

If $E=\left\{e_{n}\right\}$ is in T and $Y=\left\{y_{n}\right\}=y_{1}, y_{2}, \ldots$ is any sequence of integers, then $e_{1} y_{1}+e_{2} y_{2}+\cdots$ is really a finite sum which we denote by $E \cdot Y$. For each integer j, let $H_{j}=\left\{h_{n+j}\right\}=h_{j+1}, h_{j+2}, \ldots$ where the h_{n} are defined by (I) and (R). Also, let $H=H_{0}$.

Lemma 1: Let $z=z(E)$ and $b=E^{*} \cdot H_{j}-E \cdot H_{j}$. Then
(a) $u\left(E^{*}\right)=z$.
(b) If $z=1, b=h_{j+1}$. If $z>1, b=h_{z+j}-h_{z+j-1}-h_{z+j-2}-\cdots-h_{j+1}$.
(c) If $1 \leq z \leq d$ and $j=0, b=1$.

Proof: Parts (a) and (b) follow immediately from the relevant definitions. Then (c) follows from (b), the initial conditions (I), and the fact that

$$
1+2+\cdots+2^{z-2}=2^{z-1}-1
$$

2. THE SUBSET S OF T

Let S consist of the $\left\{c_{n}\right\}$ in T with

$$
c_{n} c_{n+1} \cdots c_{n+d-1}=0 \text { for all } n \text { in } Z^{+} .
$$

Lemma 2: If C is in S then:
(a) $1 \leq z(C) \leq d$, and
(b) $C^{*} \cdot H-C \cdot H=1$.

Proof: Part (a) follows from the defining condition, with $n=1$, for the subset S. Then Lemma l(c) implies the present part (b).
Lemma 3: If $C \cdot H=C^{\prime} \cdot H$ with C and C^{\prime} in S, then $C=C^{\prime}$.
Proot: Let $C=\left\{c_{n}\right\}$ and $C^{\prime}=\left\{c_{n}^{\prime}\right\}$. We assume $C \neq C^{\prime}$ and seek a contradiction. Then $c_{k} \neq c_{k}^{\prime}$ for some k, and there is a largest such k since $c_{n}=0=$ c_{n}^{\prime} for n large enough. We use this maximal k and without loss of generality assume that $c_{k}=0$ and $c_{k}^{\prime}=1$. Then

$$
\begin{equation*}
C^{\prime} \cdot H-C \cdot H=\sum_{i=1}^{k}\left(c_{i}^{\prime}-c_{i}\right) h_{i} \leq h_{k}-\sum_{i=1}^{k-1} c_{i} h_{i}, \tag{1}
\end{equation*}
$$

since $h_{i}>0$ for $i>0$. Let $k=q d+r$, where q and r are integers with $0 \leq$ $r<d$. Then one can use (R) to show that

$$
\begin{equation*}
h_{k}=\left(h_{1}+h_{2}+h_{3}+\cdots+h_{k-1}\right)-\left(h_{r}+h_{r+d}+h_{r+2 d}+\cdots+h_{k-d}\right)+1 \tag{2}
\end{equation*}
$$

(The interpretation of this formula when $1 \leq k<d$ is not difficult.) Since $c_{n}=0$ for at least one of any d consecutive values of n and $h_{n}<h_{n+1}$ for $n>0$, (2) implies that

$$
h_{k}>c_{1} h_{1}+c_{2} h_{2}+\cdots+c_{k-1} h_{k-1}
$$

This and (1) give us the contradiction $C^{\prime} \cdot H>C \cdot H$. Hence $C^{\prime}=C$, as desired.
Lemma 4: For every E in T there is a C in S such that:
(a) $E \cdot H_{j}=C \cdot H_{j}$ for all j,
(b) $z(E) \equiv z(C)(\bmod d)$,
(c) $u(E) \equiv u(C)(\bmod d)$.
(d) This C is uniquely determined by E.

Proot: We may assume that $E=\left\{e_{n}\right\}$ is not in S. Then

$$
e_{k} e_{k+1} \cdots e_{k+d-1}=1 \text { for some } k
$$

There is a largest such k since $e_{n}=0$ for large enough n. Using this maximal k, one has $e_{k+d}=0$ and we let $E^{\prime}=\left\{e_{n}^{\prime}\right\}$ be given by $\epsilon_{n}^{\prime}=0$ for $k \leq n<$ $k+d, e_{k+d}^{\prime}=1$, and $e_{n}^{\prime}=e_{n}$ for all other n. The recursion (R) implies that $E \cdot H_{j}=E^{\prime} \cdot H_{j}$ for all j. It is also clear that $z(E) \equiv z\left(E^{\prime}\right)(\bmod d)$ and $u(E) \equiv u\left(E^{\prime}\right)(\bmod d)$. If E^{\prime} is not in S, we give it the same treatment given E. After a finite number of such steps, one obtains a C in S with the desired properties. Lemma 3 tells us that this C is uniquely determined by E.

3. THE BIJECTION BETWEEN N AND S

We next establish a 1-to-1 correspondence $m \longleftrightarrow C_{m}=\left\{c_{m n}\right\}$ between the nonnegative integers m and the sequences of S.
Lemma 5: S is a sequence C_{0}, C_{1}, \ldots of sequences C_{m} such that $C_{m} \cdot H=m$ and $\overline{u\left(C_{m+1}\right)} \equiv z\left(C_{m}\right) \quad(\bmod d)$.
Proof: The only C in S with $C \cdot H=0$ is

$$
C_{0}=\left\{c_{0 n}\right\}=0,0,0, \ldots
$$

Now, assume inductively that for some k in N there is a unique C_{k} in S with $C_{k} \cdot H=k$. Then Lemma 2(b) tells us that $C_{k}^{*} \cdot H=C_{k} \cdot H+1=k+1$. It follows from Lemma 4 that there is a unique C_{k+1} in S with $C_{k+1} \cdot H=C_{k}^{*} \cdot H=k+$ 1. Finally, $u\left(C_{m+1}\right) \equiv z\left(C_{m}\right)$ (mod $\left.d\right)$ is a consequence of Lemma 1 (a) and Lemma 4(c). The desired results then follow by induction.
Lemma 6: Let E be in T and $E \cdot H=m$. Then $E \cdot H_{j}=C_{m} \cdot H_{j}$, for all $j, z(E) \equiv$ $\overline{z\left(C_{m}\right)}(\bmod d)$, and $u(E) \equiv u\left(C_{m}\right)(\bmod d)$.
Proof: Lemma 4 tells us that there us a C in S with $E \cdot H_{j}=C \cdot H_{j}$ for all integers $j, z(E) \equiv z(C)(\bmod d)$, and $u(E) \equiv u(C)(\bmod d)$. The hypothesis $E \cdot H=m$ and Lemma 5 then imply that $C=C_{m}$.

4. THE SHIFT FUNCTIONS

Let functions $\sigma^{i}(m)$ from $N=\{0,1, \ldots\}$ into $Z=\{\ldots,-2,-1,0,1, \ldots\}$ be given for all integers i by

$$
\begin{equation*}
\sigma^{i}(m)=C_{m} \cdot H_{i} \tag{3}
\end{equation*}
$$

That is, $\sigma^{i}\left(C_{m} \cdot H\right)=C_{m} \cdot H_{i}$. Using this, one sees easily that

$$
\sigma^{i}\left[\sigma^{j}(m)\right]=\sigma^{i+j}(m)
$$

for all integers i and j and all m in N. We also note that

$$
\sigma^{0}(m)=C_{m} \cdot H=m
$$

Lemma 7:
(a) $\sigma^{j}(0)=0$ and $\sigma^{j}\left(h_{n}\right)=h_{n+j}$ for all integers j and n.
(b) $\sigma^{j}(E \cdot H)=E \cdot H_{j}$ for all integers j and all E in T.
(c) If E and E^{\prime} are in $T, E \cdot E^{\prime}=0, E \cdot H=m$, and $E^{\prime} \cdot H=n$, then

$$
\sigma^{j}(m+n)=\sigma^{j}(m)+\sigma^{j}(n) \text { for all } j \text { in } Z
$$

Proof: Part (a) is clear. Part (b) follows from (3) and Lemma 6. For (c), $\overline{\text { let } E}=\left\{e_{n}\right\}, E^{\prime}=\left\{e_{n}^{\prime}\right\}$, and $y_{n}=e_{n}+e_{n}^{\prime}$. The hypothesis $E \cdot E^{\prime}$ implies that $Y=\left\{y_{n}\right\}$ is in T. Then $Y \cdot H=E \cdot H+E^{\prime} \cdot H=m+n$. This and (b) tell us that $\sigma^{j}(m+n)=Y \cdot H_{j}$, which equals $E \cdot H_{j}+E^{\prime} \cdot H_{j}=\sigma^{j}(m)+\sigma^{j}(n)$, as desired.

5. A PARTITION OF Z^{+}

For $i=1,2, \ldots, d$ let A_{i} be the set of all positive integers m for which $u\left(C_{m}\right) \equiv i(\bmod d)$. Clearly these A_{i} partition Z^{+}, i.e., they are disjoint and their union is Z^{+}.
Lemma 8: Let k be in A_{i}. Then $k=h_{i}+C \cdot H_{i}$ for some C in S.
Proo f: Let $u\left(C_{k}\right)=u$. Then

$$
\begin{equation*}
k=h_{u}+c_{k, u+1} h_{u+1}+\cdots=h_{u}+C^{\prime} \cdot H_{u} \text { for some } C^{\prime} \text { in } S \tag{4}
\end{equation*}
$$

Since k is in $A_{i}, u \equiv i(\bmod d)$. If $u>i$, we use (4) and the recursion (R) to obtain

$$
\begin{aligned}
& k=h_{u-d}+h_{u-d+1}+\cdots+h_{u-1}+C^{\prime} \cdot H_{u}=h_{u-d}+C^{\prime \prime} \cdot H_{u-d} \\
& \text { with } C^{\prime \prime} \text { in } S .
\end{aligned}
$$

If $u-d>i$, we continue this process until we have $k=h_{i}+C \cdot H_{i}$ with C in S. This completes the proof. Now, for every integer j, we define a function a_{j} from Z^{+}into Z by

$$
\alpha_{j}(n)=h_{j}+\sigma^{j}(n-1)
$$

Clearly this means that, for m in N,

$$
\begin{equation*}
a_{j}(m+1)=\hbar_{j}+C_{m} \cdot H_{j}=\hbar_{j}+c_{m 1} h_{j+1}+c_{m 2} \hbar_{j+2}+\cdots \tag{5}
\end{equation*}
$$

It follows from (5) that, for constant $k, a_{n}(k)$ has the same recursion formulas as the h_{n}. In particular,

$$
\begin{equation*}
a_{j+1}(n)=2 a_{j}(n)-a_{j-d}(n) \tag{6}
\end{equation*}
$$

Lemma 9: $\left\{a_{i}(r) \mid r \in Z^{+}\right\}=A_{i}$ for $1 \leq i \leq d$.
Proof: Let r be in Z^{+}and $m=r-1$. One sees from (5) that

$$
a=a_{i}(r)=a_{i}(m+1)
$$

if of the form $E \cdot H$ with $u(E)=i$. Then $i \equiv u\left(C_{a}\right)(\bmod d)$ by Lemma 6 . Hence a is in A_{i}.

Now let $k \in A_{i}$. Then Lemma 8 tells us that $k=h_{i}+C \cdot H_{i}$ with C in S. Let $C \cdot H=m$. Then $C=C_{m}$ and it follows from (5) that

$$
k=a_{i}(m+1) \varepsilon\left\{a_{i}(r) \mid r \varepsilon Z^{+}\right\}
$$

This completes the proof.

6. SELF-GENERATING SEQUENCES

Next we define $b_{i j}$ for $1 \leq i \leq d$ and all integers j by
(7) $\quad b_{1 j}=h_{j+1}, b_{i j}=h_{i+j}-h_{i+j-1}-h_{i+j-2}-\cdots-h_{j+1}$ for $2 \leq i \leq a$.

We will use these $b_{i j}$ to show that the sets A_{i} are self-generating and to count the integers in $A_{i} \cap\{1,2, \ldots, n\}$.

One can show that the $b_{i j}$ could be defined alternatively by the initial conditions $b_{i 0}=1$ for $1 \leq i \leq d$ and the recursion formulas

$$
b_{i, j+1}=b_{1 j}+b_{i+1, j} \text { for } 1 \leq i<d ; b_{d, j+1}=b_{1 j}=b_{j+1}
$$

These show, for example, that

$$
\begin{equation*}
b_{i 1}=2 \text { for } 1 \leq i<d \text { and } b_{d 1}=1 \tag{8}
\end{equation*}
$$

The definition (7) for $b_{i n}$ in terms of the $h^{\prime} s$ implies that, for fixed i, the $b_{i n}$ satisfy the same recursion formulas as the h_{n}; in particular, one has

$$
b_{i n}=2 b_{i, n+d}-b_{i, n+d+1} .
$$

This can be used to show that

$$
\begin{equation*}
b_{i,-i}=1 \text { for } 1 \leq i \leq d, b_{i j}=0 \text { for }-d \leq j<0 \text { and } i \neq-j \tag{9}
\end{equation*}
$$

Theorem 1: Let $b_{j}(m)=a_{j}(m+1)-a_{j}(m)$. Then $b_{j}(m)=b_{i j}$ for m in A_{i}.
Proob: It follows from (5) that $b_{j}(m)=C_{m} \cdot H_{j}-C_{m-1} \cdot H_{j}$. In the proof of Lemma 5, we saw that $C_{m} \cdot H_{j}=C_{m-1}^{*} \cdot H_{j}$; hence

$$
\begin{equation*}
b_{j}(m)=C_{m-1} \cdot H_{j}-C_{m-1}^{*} \cdot H . \tag{10}
\end{equation*}
$$

Let $u=u\left(C_{m}\right)$ and $z=z\left(C_{m-1}\right)$. The hypothesis $m \varepsilon A_{i}$ means that $u \equiv i$ (mod d). Then $z \equiv i(\bmod d)$ by Lemma 5. This, the fact that $1 \leq i \leq d$, and Lemma 2(a) imply that $z=i$. Finally, $z=i$ and Lemma 1 tell us that the $b_{j}(m)$ of (10) is equal to the $b_{i j}$ defined in (7).
Theorem 2: For $1 \leq i \leq d, b_{-i}(m)$ equals 1 when m is in A_{i} and equals 0 when m is not in A_{i}.
Proof: This follows from Theorem 1 and the formulas in (9).
Theorem 3: The number of integers in the intersection of A_{i} and $\{1,2, \ldots$, $\overline{m\}}$ is $\alpha_{-i}(m+1)$ for $1 \leq i<d$ and is $a_{-d}(m+1)-1$ for $i=d$.
Proof: One sees that $a_{-i}(1)=h_{-i}+C_{0} \cdot H_{-i}=h_{-i}=0$ for $1 \leq i<d$ and that $\overline{a_{-d}(1)}=h_{-d}=1$. It is also clear that

$$
a_{-i}(m+1)=a_{-i}(1)+b_{-i}(1)+b_{-i}(2)+\cdots+b_{-i}(m)
$$

This and Theorem 2 give us the desired result.
7. COMPOSITES

First we note that

$$
\begin{equation*}
a_{i}\left[a_{j}(n)\right]=h_{i}+\sigma^{i}\left[a_{j}(n)-1\right]=h_{i}+\sigma^{i}\left[h_{j}-1+\sigma^{j}(n-1)\right] . \tag{11}
\end{equation*}
$$

For $1 \leq j \leq d$, we have $h_{j}=2^{j-1}$ and hence we have

$$
h_{j}-1=h_{1}+h_{2}+\cdots+h_{j-1} \text { for } 1<j \leq d .
$$

Also, we know that $\sigma^{j}(n-1)$ is of form $c_{1} h_{j+1}+c_{2} h_{j+2}+\cdots$ with c_{k} in $\{0$, 1\}. Hence (11) leads to

$$
\begin{align*}
a_{i}\left[a_{j}(n)\right] & =h_{i}+\sigma^{i}\left[h_{1}+h_{2}+\cdots+h_{j-1}+c_{1} h_{j+1}+\cdots\right] \\
& =h_{i}+h_{i+1}+h_{i+2}+\cdots+h_{i+j-1}+c_{1} h_{i+j+1}+\cdots \\
& =h_{i}+h_{i+1}+\cdots+h_{i+j-1}+\sigma^{i+j}(n-1) \\
& =h_{i}+h_{i+1}+\cdots+h_{i+j-1}-h_{i+j}+a_{i+j}(n) \tag{12}
\end{align*}
$$

for $1<j \leq d$ and all integers i.
Letting $i=-d$ and using the facts that $h_{-d}=1=h_{0}$ and $h_{n}=0$ for $-d<n<0$, (12) implies that
(13) $\quad \alpha_{-d}\left[\alpha_{j}(n)\right]=1+\alpha_{j-d}(n)$ for $1 \leq j<\alpha, \quad \alpha_{-d}\left[\alpha_{d}(n)\right]=\alpha_{0}(n)=n$.

Our derivation applies for $1<j \leq d$, but the result in (13) for $j=1$ can also be seen to be true.

One may note that (12) implies

$$
a_{i}\left[\alpha_{j}(n)\right]-\alpha_{j}\left[\alpha_{i}(n)\right]=h_{i}+h_{i+1}+\cdots+h_{j-1} \text { for } 1 \leq i<j \leq d
$$

Theorem 4: For $1 \leq j<d, a_{j+1}(n)$ is $2 a_{j}(n)$ minus the number of integers in the intersection of A_{d} and

$$
\left\{1,2,3, \ldots, a_{j}(n)-1\right\}
$$

Proof: Since the $\alpha_{n}(m)$, for fixed m, satisfy the same recursion formula as the h_{n}, we see from (R^{\prime}) that

$$
a_{j+1}(n)=2 a_{j}(n)-\alpha_{j-d}(n)
$$

This and (13) give us

$$
\begin{equation*}
a_{j+1}(n)=2 a_{j}(n)+\left\{a_{-d}\left[a_{j}(n)\right]-1\right\} \text { for } 1 \leq j<d \tag{14}
\end{equation*}
$$

Using Theorem 3, we note that the expression in braces in (14) counts the integers that are in both A_{d} and $\left\{1,2, \ldots, a_{j}(n)-1\right\}$. This establishes the theorem.

Theorem 4 provides a very simple procedure for calculating the $a_{j}(n)$ for $1 \leq j \leq a$. We know that $\alpha_{1}(1)=1$. Then the theorem gives us a_{j} (1) for $1<j \leq d$. Next, $\alpha_{1}(2)$ must be the smallest positive integer not among the α_{j} (1) and the theorem gives us the remaining α_{j} (2). Thus, one obtains the $a_{j}(3)$, and $a_{j}(4)$, etc.
Theorem 5: For $1 \leq j<d$, let $g_{j}(m)=\alpha_{j+1}(m)-\alpha_{j}(m)$, and $G_{j}=\left\{g_{j}(m) \mid m \in Z^{+}\right\}$. Then $G_{1}, G_{2}, \ldots, G_{d-1}$ form a partition of Z^{+}.
Proof: Let Z^{*} be the set of positive integers that are not in A_{d}. For every n in Z^{*} there are integers m and j with $n=\alpha_{j}(m), m \geq 1$, and $1 \leq j<d$; we let $x(n)$ be $g_{j}(m)$ for this m and j. Let $\alpha_{d}(m)=a_{m}$ for m in Z^{+}.

Then it follows from Theorem 4 that

$$
\begin{aligned}
& x(n)=a_{j+1}(m)-a_{j}(m)=a_{j}(m)=n \text { for } n=1,2, \ldots, a_{1}-1 ; \\
& x(n)=a_{j}(m)-1=n-1 \text { for } n=a_{1}+1, a_{1}+2, \ldots, a_{2}-1 ;
\end{aligned}
$$

and in general that

$$
x(n)=n-r \text { for } n=a_{r}+1, \alpha_{r}+2, \ldots, \alpha_{r+1}-1
$$

This shows that every positive integer is an $x(n)$ for exactly one n in Z^{*} and hence is in exactly one of the G_{j}, as desired.

8. BIBLIOGRAPHY

This paper is self-contained except for motivation. Related material is contained in [1], [2], and [3] and in the papers of the bibliography in [2]. It is expected to have sequels to the present paper.

REFERENCES

1. L. Carlitz, Richard Scoville, \& V. E. Hoggatt, Jr., "Fibonacci Representations," The Fibonacci Quarterly 10, No. 1 (1972):29-42.
2. A. F. Horadam, "Wythoff Pairs," The Fibonacci Quarterly 16, No. 2 (1978): 147-151.
3. V. E. Hoggatt, Jr., and A. P. Hillman, "A Property of Wythoff Pairs," The Fibonacci Quarterly 16, No. 5 (1978):472.
