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Let a = (1 4- /5)/2, [x] be the greatest integer in x, a^n) = [an], and 
cc2{n) = [a2n] . A partial table follows: 

n 1 2 3 4 5 6 7 8 9 10 11 
al(n) 1 3 4 6 8 9 11 12 14 16 17 
a2(w) 2 5 7 10 13 15 18 20 23 26 28 

It is known (see [1]) that a1(n) and a2(n) form the nth safe-pair of 
Wythofffs variation on the game Nim. These sequences have many interesting 
properties and are closely connected with the Fibonacci numbers. For exam-
ple, let 

o(n) = al(n + 1) - 1; 
then 

o2(n) = o[o(n)] = a2(n + 1) - 2, 
a(Fn) = Fn+1 for n > 1, 

and 
a(Ln) = Ln+i for n > 2. 

Here we generalize by letting d be in {2, 3, 4, ...} and letting /zn be 
the ̂ Zth-order generalized Fibonacci number defined by the initial conditions 

(I) hi = 21'1 for 1 <. i <_ d 

and the recursion 

(R) hn+d = hn + ^n+1 + '•• + hn+d-l' 
The recursion (R) easily implies 

( R f ) ^ n + c7 + l = 27zn + d " fori OT hn = 2hn + d - hn + d + 1' 

The first of these is convenient for calculation of hn for increasing values 
of n and the second for decreasing n. 

Representations for integers as sums of distinct terms hn will be used 
below to study some nearly linear functions from/l/ = {0, 1,2, ...} to itself; 
these will include generalizations of the Wythoff sequences. Associated par-
titions of Z+ = {l, 2,3, ...} will also be presented. 

1. CHARACTERISTIC SEQUENCES 

Let T be the set of all sequences {en} = s15 £2> ••• w i t n each en in 
{0, 1} and with an n0 such that en - 0 for n > n0. Let z = z(E) be the small-
est n with en = 0 and let E* be the {e%} in T given by ej = 0 for n <z, e$ = 
1, and e* = en for n>z. If some <sn = 1, let u(E) be the smallest such n. 

If E = {en} is in T and J = {z/n} = yl9 y 2, . .. is any sequence of inte-
gers, then &Yyx + ^2^2 + '*" -̂ s really a finite sum which we denote by E •!, 
For each integer j, let H-j = {hn + j} = hj + i, hj+n ••• where the 7zM are defined 
by (I) and (R). Also, let H = HQ. 

8k 
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iQJfnma 1: Let z = z (E) and b = E* • H. - E • H. . Then 
(a) u(E*) = z. 

(b) If z = 1 , b = ^ . + 1 . I f 3 > 1 , b = /2S+J. - ^ a + J-_! - /z2 + J--2 - ^ + i-
(c) If 1 < 2 < d a n d j = 0 , S = 1. 

Vh.OO^i P a r t s (a) and (b) fo l low immed ia t e ly from t h e r e l e v a n t d e f i n i t i o n s . 
Then (c) fo l lows from ( b ) , t h e i n i t i a l c o n d i t i o n s ( I ) , and t h e f a c t t h a t 

1 + 2 + ••• + 2 3 " 2 = 2 3 " 1 - 1 . 

2. THE SUBSET S OF T 

Let S consist of the {cn} in T with 

°ncn + l ••• cn + d-l = ® f ° r a H n i n ^ + . 
Lemma 2: If C is in S then: 

(a) 1 <_ z(C) <_ d, 
and 
(b) C* ° H - C - H = 1. 

VK.00^'- Part (a) follows from the defining condition, with n =. 1, for the 
subset 5. Then Lemma 1(c) implies the present part (b) . 

Lammci 3: If (7 •# = C °H with C and 6" in S9 then C = Cf. 

Psioofi: Let C = {cn} and C! = {c-^}. We assume C ± Cf and seek a contradic-
tion. Then ek f a'k for some k, and there is a largest such k since an = 0 = 
c^ for n large enough. We use this maximal k and without loss of generality 

0 and o{ = 1. Then 

fc-i 
(1) C" •# - £ •# =J] (c! - Q.)hi <hk -J^^hi9 

since hi > 0 for i, > 0. Let ft = ^J + r, where q and r are integers with 0 <_ 
r < d. Then one can use (R) to show that 

(2) hk = (hl + h2 + h3 + ••• + hk_l) - (hr + hr + d + hr + 2d + ••• + hk.d) +1. 

(The interpretation of this formula when 1 <_ ft < d is not difficult.) Since 
cn = 0 for at least one of any c? consecutive values of n and hn < hn + i for 
n > 0, (2) implies that 

hk > clhl + c2h2 + ••• + ck_lhk_l. 
This and (1) give us the contradiction Cr *H>C *H« Hence Cr = C, as desired. 

L&mmci 4: For every E in T there is a C in £ such that: 

(a) E ' Hj = C • Hj for all j, 

(b) 8(E) = z(C) (mod J), 

(c) u(E) = u(C) (mod d). 

(d) This (7 is uniquely determined by E, 

Vtioo^: We may assume that E = {en} is not in S. Then 

gfcefe+i ••• efe+d-i = 1 f o r s o m e fe-
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There is a largest such k since en - 0 for large enough n. Using this maxi-
mal k, one has e-^+d ~ 0 an& w e let E1 = {&n~i be given by e^ = 0 for k <_ n < 
k + d9 e{ + a - 1, and en' = en for all other n. The recursion (R) implies that 
E • Hj = Er * Hj for all j. It is also clear that z(E) = z(Er) (mod d) and 
u(E) = u(Er) (mod d) . If Er is not in 5, we give it the same treatment given 
E. After a finite number of such steps, one obtains a C in S with the desired 
properties. Lemma 3 tells us that this C is uniquely determined by E. 

3. THE BIJECTION BETWEEN N AND S 

We next establish a 1-to-l correspondence m<—>Cm = {omn} between the 
nonnegative integers m and the sequences of S. 

LzmmOL 5: S is a sequence C0 , C1? ... of sequences Cm such that Cm • H = m and 
^ ( ^ + i) E z(Cm) (mod d). 

?KO0i} The only £ in 5 with C • # = 0 is 

^0 = ^0n> = °> °> °> ••• • 
Now, assume inductively that for some k in N there is a unique Ck in S with 
Ck *H = k. Then Lemma 2(b) tells us that C£ • # = Cfc« # + 1 = Zc + 1. It fol-
lows from Lemma 4 that there is a unique Ck + 1 in 5 with C^ + 1 • E = C£ •#= fc + 
1. Finally, w(Cm + i) = z(Cm) (mod d) is a consequence of Lemma 1(a) and 
Lemma 4(c). The desired results then follow by induction. 

Ltmma 6: Let E be in T and E ' E = m. Then # • #,- = Cm • ̂  , for all j , s(tf) = 
z(Cm) (mod 6?) , and w(#) = u(Cm) (mod d) . 

?KO0_£_i Lemma 4 tells us that there us a C in 5 with E • Ej = C • #j for all 
integers j, 2 (E7) = z(C) (mod d) , and u(#) = u(C) (mod d) . The hypothesis 
E m E - m and Lemma 5 then imply that C - Cm. 

h. THE SHIFT FUNCTIONS 

Let functions Oi{m) from N = {0,1,...} into Z = {...,-2,-1,0,1,...} 
be given for all integers i, by 

(3) oHm) = Cm -H^ 
That is, C'l(Cm • H) = Cm • H^. Using this, one sees easily that 

oi[o3\m)] = Oi + 3\m) 
for all integers i and j and all 777 in N. We also note that 

o°(m) = Cm -E = m. 
Lemma 7: 
(a) QJ(0) = 0 and Oc{hn) = 7zn + j for all integers j and n. 

(b) 0°\E • #) = E ' Ej for all integers j and all E7 in T. 

(c) If S7 and E' are in T, E • £" = 0, E • E = m9 and 5" • ff = n, then 

aJ'(m + n) = aJ'(w) + aJ'(n) for all j in Z. 

VK.00^ •' Part (a) is clear. Part (b) follows from (3) and Lemma 6. For (c) , 
let E - {en}, Er = {e^}, and z/n = en + gn'. The hypothesis E*Er implies that 
Y = {i/n} is in T. Then Y'E = E*E + E,*E = m + n. This and (b) tell us 
that '0$ (m + n) = J • ̂  , which equals # • ̂  + E' ' Ej = aJ"(w) + aJ'(n), as de-
sired. 
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5. A PARTITION OF Z+ 

For i = 1, 2, . .., d let A± be the set of all positive integers m for 
which u(Cm) E i (mod <£) • Clearly these Ai partition Z + , i.e., they are dis-
joint and their union is Z + . 

Lmma 8: Let k be in At. Then k = hi + C ° Hi for some (7 in S. 

PtoOjfc Let w(Ck) = w. Then 

(4) k = hu + cktli + 1 hu + 1 + - • • = hu + Cf » Hu for some C in 5. 

Since /c is in 4^, w E i (mod d) .' If u > i , we use (4) and the recursion (R) 
to obtain 

k = hu.d + hu.d + 1 + •-. + hu.± + C *HU = hu-d + C"°  Hu_d9 

with C" in 5. 

If u - d > i , we continue this process until we have k = hi +C • ̂  with C in 
5. This completes the proof. 

Now, for every integer j, we define a function â  from Z + into Z by 

cijin) = /zj + aJ'(n - 1). 

Clearly this means that, for m in il/, 

(5 ) ^-(777 + 1) = hj + Cm °Hj = hj + ^ w i ^ j + i + Cm2hj + 2 + ' " ' 

It follows from (5) that, for constant k9 an(k) has the same recursion for-
mulas as the hn. In particular, 

(6) aj + iM = 2aJ-(n) - a3-.d(n). 

Lamma 9: la^r) |P e Z + | = ̂  for 1 £ t £ d. 

VKOQI'* Let p be in Z+ and m = r - 1. One sees from (5) that 

a = ai(r) = a^im + 1) 

if of the form E • # with n(Z?) = i. Then £ E u(Ca) (mod 6?) by Lemma 6. Hence 
a is in Ai. 

Now let & e Ai. Then Lemma 8 tells us that k = hi + C * Hi with C in 5. 
Let C *H = m. Then C = Cm and it follows from (5) that 

k = cti(m + 1) e {a^OrOlr e Z + l . 

This completes t h e p roof . 

6. SELF-GENERATING SEQUENCES 

Next we d e f i n e bij for 1 <. i <_ d and a l l i n t e g e r s j by 

(7) bld = ^- + i, bij = 7zi + J. - ^ + J.-i - fci + j-2 - ••• - fcj + i for 2 < t < J. 

We will use these 2?̂ - to show that the sets A^ are self-generating and to 
count the integers in A± C\ {l, 2, ..., n}. 

One can show that the bij could be defined alternatively by the initial 
conditions biQ = 1 for 1 <_ i <_ d and the recursion formulas 

KJ + I = hij + bi + i,j for 1 <_i < d; bdfJ + 1 = b^ = bd + 1 . 

These show, for example, that 

(8) bn = 2 for 1 <. £ < d and 2?dl = 1. 
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The definition (7) for bin in terms of the /Vs implies that, for fixed i , the 
bin satisfy the same recursion formulas as the hn; in particular, one has 

bin ~ 2bi,n+d ~ ^un+d + 1' 

This can be used to show that 

(9) bi9-t = 1 for 1 £ i <_ d9 bid- = 0 for -d <_ j < 0 and i + - j . 

Tfieo^tem 1: Let bj (m) = a3'(m + 1) - a3-(m). Then bj (m) = b^j for m i n i4^. 

VnjQO^i I t fo l lows from (5) t h a t bj (jn) = Cm • Hj - Cm_i • Hj . In t h e proof of 
Lemma 5 , we saw t h a t Cm • Hj = C%_± • Hj ; hence 

(10) fy fa) = Cm_l - ^ " Cj-i •#. 

Let u = u(Cm) and s = ^((7^-1). The hypothesis m e ̂  means that u = i 
(mod d) . Then z = i (mod d) by Lemma 5. This, the fact that 1 .< £ <. <i, and 
Lemma 2(a) imply that z = £. Finally, s = i and Lemma 1 tell us that the 
bjQn) of (10) is equal to the &£ • defined in (7). 

TkzoK<im 1: For 1 <_ -i <_ d9 b„i(m) equals 1 when 777 is in A± and equals 0 when 
m is not in A^. 

VKOO^'* This follows from Theorem 1 and the formulas in (9) . 

ThdOtiQJM 3' The number of integers in the intersection of Ai and {l, 2, ..., 
m] is a_i(m + 1) for 1 <_ i < d and is a_d(m + 1) - 1 for i = d. 
VAXw£: One sees that a_^(l) = h-i + C0 • H-i = h-i = 0 for 1 <_ i < d and that 
a_i(l) = h-d = !• It is also clear that 

a-i(m + 1) == a_*(D + &-t(D + b-i(2) + ... + b-i(m). 
This and Theorem 2 give us the desired result. 

7. COMPOSITES 

First we note that 

(11) a 1 [a-jM] = hi + o^a^n) - 1] = hi + ol[hj - 1 + oJ'(n - 1)]. 

For 1 <_ j <L d9 we have ftj = 2 J - 1 and hence we have 

ft j - 1 = hY + ft2 + • • • + hj-i for 1 < j <. d. 

Al so , we know t h a t O3 (n - 1) i s of form <?1ftJ-+1 + c 2^ j+2 + *"* w i t n c/< ^ n {0* 
1 } . Hence (11) l e a d s to 

cii[aj(n)] = ft; + a M ^ ! + ft2 + • • • + f t j - i + c1ftJ- + i + • • • ] 

= hi + fti + l + ft;+2 + ••• + fti + j - l + ^ l ^ i + j + l + • " ' 

= ft; + ftt + i + • • • + fti + j - i + a i + ^'(n - 1) 
(12) = ft; + ft; + i + • • • + hi + j-i - hi + j + cii + jtyi) 
for 1 < j ^ d and all integers £. 

Letting i = -d and using the facts that ft_j = 1 = h0 and ftn = 0 for 
-d < n < 0, (12) implies that 

(13) a_d[aj(n)] = 1 + a ^ C r c ) for 1 <_ j < d, a.diccdW] = a 0 ( n ) = n . 
Our derivation applies for 1 < j <_ d, but the result in (13) for j = 1 can 
also be seen to be true. 
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One may note that (12) implies 

ai[aj(n)] - ccj[cci(.n)] = hi + hi + 1 + • • • + hj . i for 1 <_ i < j <_ d. 

Th&0>i2m 4: For 1 <_ j < d, aj + 1(n) is 2a j (n) minus the number of integers in 
the intersection of Ad and 

{1, 2, 3, . . . , (Zj(n) - 1}. 

VfiOO^i Since the an(m), for fixed m9 satisfy the same recursion formula as 
the hn, we see from (Rr) that 

aJ- + 1(n) = 2aj(n) - aj_d(n). 

This and (13) give us 

(14) aj + 1(n) = 2cij(n) + ia_d[aj(n)] - 1} for 1 <_ j < d. 

Using Theorem 3, we note that the expression in braces in (14) counts the 
integers that are in both Ad and {l, 2, . .., a^ (n) - 1}. This establishes 
the theorem. 

Theorem 4 provides a very simple procedure for calculating the a3- (n) 
for 1 <_ Q <_ d. We know that al(l) = 1. Then the theorem gives us <Zj (1) for 
1 < j j< d. Next, a1 (2) must be the smallest positive integer not among the 
CLj(X) and the theorem gives us the remaining aJ-(2). Thus, one obtains the 
a.j (3), and ^-(4), etc. 

Tk&QJi&m 5: For 1 <. j < cZ, let ^ (m) = aj+ i(w) - a^ (m), and £,• = ig. (m) \m e Z+\. 
Then G19 G2, . .., 6r^_1 form a partition of Z + . 

PXOO^: Let Z* be the set of positive integers that are not in Ad. For every 
n in Z* there are integers m and j with n - aj(m) , m >_ 1, and 1 <. </ < <i; we 
let x(n) be g^irn) for this 777 and j. Let ad(m) = am for w in Z + . 

Then it follows from Theorem 4 that 

a:(n) = <Zj + i(m) - aj(m) = a^{m) = n for n = 1, 2, . . . , ax - 1; 

x(n) - a-j{m) - 1 = n - 1 for n = ax + 1, al + 2, ..., a2 - 1; 

and in general that 

x(n) = n - r for n = aP + 1, ar + 2, ..., ar+i - 1. 

This shows that every positive integer is an x(n) for exactly one n in Z* and 
hence is in exactly one of the Gj , as desired. 

8. BIBLIOGRAPHY 

This paper is self-contained except for motivation. Related material 
is contained in [1], [2], and [3] and in the papers of the bibliography in 
[2], It is expected to have sequels to the present paper. 
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