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Let o = (1 + V/5)/2, [x] be the greatest integer in z, a,(m =[on], and
a,(n) =[a?n]. A partial table follows:

7 1 2 3 4 5 6 7 8 9 10 11
a;(n) 1 3 4 6 8§ 9 11 12 14 16 17
a,(n) 2 5 7 10 13 15 18 20 23 26 28

It is known (see [l1]) that al(n) and a,(n) form the nth safe-pair of
Wythoff's variation on the game Nim. These sequences have many interesting

properties and are closely connected with the Fibonacci numbers. For exam-
ple, let
on) = a,(n+ 1) - 1;
then
o?(n) = olom)] = a,(n + 1) - 2,
o(F,) = Fppq for m > 1,
and

0(Lyp) = Ly+1 for n > 2.

Here we generalize by letting d be in {2, 3, 4, ...} and letting h, be
the dth-order generalized Fibonacci number defined by the initial conditions

(1) By =27 for 1<i<d

and the recursion

(R) Bpra = Bn + Angr + 00+ Bpagone

The recursion (R) easily implies

(R") hpsde1= 2husa = hy or %y, = 2hnsd = Fnsge1-

The first of these is convenient for calculation of %, for increasing values
of n and the second for decreasing .

Representations for integers as sums of distinct terms %, will be used
below to study some nearly linear functions from N ={0,1,2, ...} to itself;
these will include generalizations of the Wythoff sequences. Associated par-
titions of Z* = {1, 2,3, ...} will also be presented.

1. CHARACTERISTIC SEQUENCES

Let T be the set of all sequences {ex} = e;, €,, ... with each e in
{0, 1} and with an #n, such that e, =0 for n >n, Let z = 3(F) be the small-
est n with e, = 0 and let E* be the {eZ} in T given by e} = 0 for n <z, ef =
1, and e} = e, for n>z. If some e, = 1, let u(%) be the smallest such =.

If £ = {ey} is in T and ¥ = {y,} = ¥y, y,, ... is any sequence of inte-
gers, then ey, + e,y, + --+ is really a finite sum which we denote by & - 7.
For each integer J, let Hj = {lhn4+;} = hyy1, Bjs2, ... where the %, are defined
by (I) and (R). Also, let H = H,.
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Lemma 1: Let z = z(E) and b = E* *H; - E<H;. Then

(a)  u(E*) = z.

(b) IfZ=l,b=hj+l. IfZ>l,b=hz+j—hz+j_1—hz+j_2—""'h
(c) If 1<z<dand j=0, b =1.

J+1°

Proof: Parts (a) and (b) follow immediately from the relevant definitions.
Then (c) follows from (b), the initial conditions (I), and the fact that

1424+ -0 42872 = 2271 _ 1

2. THE SUBSET S OF T
Let S comsist of the {c,} in T with
CpCpyi +++ Cnyg-1= 0 for all n in 2%,
Lemma 2: 1If C is in S then:

(a) 1<z <d,
and
(b) Cr**H - C+*H=1.

Proof: Part (a) follows from the defining condition, with »n = 1, for the
subset S. Then Lemma 1(c) implies the present part (b).

Lemma 3: If C*H =(C'"+*H with ¢ and ¢’ in S, then C = C'.

Proof: Let C = {c,} and C' = {c}}. We assume C # C' and seek a contradic-
tion. .Then ¢, # ¢} for some k, and there is a largest such k since ¢, = 0 =
cn for n large enough. We use this maximal k and without loss of generality
assume that ¢; = 0 and ¢f = 1. Then

k k-1
(l) C,.H_C.H=Z(ci’—ci)hi ihk-zcihi’
=1 =1

since h; > 0 for ¢ > 0. Let k = gd + r, where ¢ and r are integers with 0 <
» < d. Then one can use (R) to show that

2) hy=G,+h,+hy+ oo+ )=+ Ppygt+ Ppypg + 000 + A +1.

(The interpretation of this formula when 1 < k < d is not difficult.) Since
¢, = 0 for at least one of any d consecutive values of n and %, < A,y for
n > 0, (2) implies that

hy > cihy + cyhy, + oo0 + 1Ry
This and (1) give us the contradiction C' *H >(C *H. Hence C' = (, as desired.
Lemma 4: For every EF in T there is a C in S such that:
(a) E+H; = C-<H; for all Js
(b) =2(E) = 2(C) (mod d),
(c) u(E) u(C) (mod d).
(d) This C is uniquely determined by E.

i
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Proof: We may assume that F = {e,} is not in S. Then

€1 Cx41 +++ €xygq-1 = 1 for some k.
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There is a largest such k since e, = 0 for large enough n. Using this maxi-
mal k, one has ¢;,4 = 0 and we let E' = {e!} be given by ¢} =0 for k <n <
k+d, ef,q5 =1, and e = ¢, for all other n. The recursion (R) implies that
E<+H; = E'<H; for all j. It is also clear that z(E) = 3(E') (mod d) and
u(E) = u(F') (mod d). If E' is not in S, we give it the same treatment given
E. After a finite number of such steps, one obtains a C in S with the desired
properties. Lemma 3 tells us that this € is uniquely determined by E.

3. THE BIJECTION BETWEEN ¥ AND S

We next establish a 1-to-1 correspondence m <—=>(C, = {cn,} between the
nonnegative integers m and the sequences of S.

Lemma 5: S is a sequence C;, C;, ... of sequences Cp such that C, *H = m and
U(Cps1) = 2(Cm)  (mod d).

Proof: The only C in S with ¢ *H = 0 is
Cy = {eg,} =0, 0, 0,

Now, assume inductively that for some k in N there is a unique Cy in S with
Cy *H = k. Then Lemma 2(b) tells us that Cf *H = (*H+ 1=k + 1. It fol-
lows from Lemma 4 that there is a unique Cy,; in S with Cp,q, *H=Cf{ ~H=k +
1. Finally, u(Cp+1) = 28(Cn) (mod d) 1is a consequence of Lemma 1(a) and
Lemma 4(c). The desired results then follow by induction.

Lemma 6: Let E be in T and £ *# = m. Then E *H; = Cp *H;, for all j, z(E) =
2(Cp) (mod d), and u(E) = u(€,) (mod d). .

Proof: Lemma 4 tells us that there us a C in S with E *H; = C *H; for all
integers J, 2(E) = 2(C) (mod d), and u(¥F) = u(C) (mod d). The hypothesis
E+*H =m and Lemma 5 then imply that C = Cp.

L, THE SHIFT FUNCTIONS

Let functions o¢(m) from ¥ = {0, 1, ...} into Z = {..., -2,-1,0,1,...}
be given for all integers 7 by

(3) oi(m) = Cp *H,.

That is, 0%(Cp *H) = Cp *H;. Using this, one sees easily that
ot lod(m)] = ot*i(m)

for all integers < and jJ and all m in N. We also note that
a®m) = Cp +H = m.

Lemma 7:

(a) 0%0) = 0 and oi(h,) = hps+; for all integers j and n.

(b) O¥(E<H) = E+H; for all integers j and all F in T.

(c) If E and F' are in T, E*E' = 0, E*H=m, and E' *H = n, then
odn + n) = o¥m) + o¥n) for all j in Z.

Proof: Part (a) is clear. Part (b) follows from (3) and Lemma 6. For (c),
let E={en}, E' = {e}}, and y, = e, + ¢,. The hypothesis E * E' implies that
Y = {yn} is in 7. Then Y*H =E<H+ E'"H=m+ n. This and .(b) tell us
that gd(m + n) =Y *H;, which equals F-H; + E'+Hl; = od(m) + 07 (n), as de-
sired.
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5. A PARTITION OF z*

For 7 1, 2, ..., d let 4; be the set of all positive integers m for
which u(Cp) 7 (mod d). Clearly these A; partition Z*, i.e., they are dis-
joint and their union is Z*%.

nn

Lemma 8: Let k be in A;. Then k = h; + C *H, for some C in S.
Proof: Let u(Cy) = u. Then
(4) k=nh,+crus1hysr+ +++ = hy +C"<H, for some C' in S.

Since k is in 4;, u = 7 (mod d). If u > 7, we use (4) and the recursion (R)
to obtain

B=hyg+hy-ger+ oo +hyy +C"*H, = hy_q +C" H,_4,
with C" in S.

If u - d > 2, we continue this process until we have k = h; +C * H; with C in
S. This completes the proof.
Now, for every integer j, we define a function a; from Z* into Z by
a;(n) = by + 0i(n - 1).
Clearly this means that, for m in W,
(5) aj(m+ 1) = hj + Cn *Hj = hj + emhjey + Cughjyy + o0t

It follows from (5) that, for constant k, a,(k) has the same recursion for-
mulas as the A,. In particular,

(6) ;o (n) = 2aj(n) -a;_q(n).
Lemma 9: {ai(r)[r € Z+} =4; for 1 <17 < d.

Proof: Let r be in Z*¥ and m = » - 1. One sees from (5) that

a=a;(®) =a;m+ 1)

if of the form E + H with u(E) = ©. Then 7 = u(C,;) (mod d) by Lemma 6. Hence
a is in A;.

Now let k € A;. Then Lemma 8 tells us that k = h; + C *H; with C in S.
Let C *H =m. Then C = Cp and it follows from (5) that

k=a(m+1) ¢ {ai(r)[r € Z+}.
This completes the proof.
6. SELF-GENERATING SEQUENCES
Next we define b;; for 1 < 2 < d and all integers j by
(7)  by; = hjurs byj = hysj = hypjo1 = Rivgo2 = =++ = hjyy for 2 <7 < d.

We will use these bij to show that the sets A; are self-generating and to
count the integers in A; N {1, 2, ..., n}.
One can show that the b;; could be defined alternatively by the initial
conditions b;q = 1 for 1 < 7 < d and the recursion formulas
bi,j+1 = le + bi+l,j for 1 <7 < d; bd,j+1 . blj = bj.{.l.
These show, for example, that

(8) bi1=2forlii<d and bdl=l-
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The definition (7) for b;, in terms of the h's implies that, for fixed 7, the
b;, satisfy the same recursion formulas as the %,; in particular, one has

bin = 2bin+d = biyned+1-
This can be used to show that
9 biy-;=1for 1 <7 <d, bgj =0 for -d < j <0 and 7 # -4.
Theorem 1: Let bj(m) = a;(m + 1) - a;(m). Then bj(m) = b;; for m in A;.

Proog: It follows from (5) that bj(m) = Cp*H; = Cpo1*H;. In the proof of
Lemma 5, we saw that Cyp *H; = C}_; *Hj; hence

(10) bj (m) = Cp-1 *H; - C;:—]_ *H.

Let u = u(Cn) and 2 = 3(Cn-1). The hypothesis m € A; means that u = ¢
(mod d). Then 2 = 72 (mod d) by Lemma 5. This, the fact that 1 < 7 < d, and
Lemma 2(a) imply that 2 = <. Finally, 2 = 7 and Lemma 1 tell us that the
bj(m) of (10) is equal to the b;; defined in (7).

Theorem 2: For 1 <7 < d, b_;(m) equals 1 when m is in A; and equals O when
m is not in 4;.

Proof: This follows from Theorem 1 and the formulas in (9).

Theorem 3: The number of integers in the intersection of A4; and {1, 2, ...,
m} is a_;(m + 1) for 1 << < d and is a_4(m + 1) - 1 for ¢ = d.

Proof: One sees that q_;(1) = ho;+ Cy *H-z = h-y = 0 for 1 <2< d and that
a-q(1) = h.g=1. 1t is also clear that

a-;m+ 1) = a_; (1) +b_; Q) +b.;(2) + -+ + b_z(m).
This and Theorem 2 give us the desired result.

7. COMPOSITES

First we note that
(1) a; [a; )] = Ay + 0ila;(n) - 11 = hy + o' (h; = 1 + 09(n - D],
For 1 < § < d, we have h; = 29-1 and hence we have

hsy =1 ="hy +hy+ -+ +hj-1 for 1 <j<d.

Also, we know that 09 - 1) is of form clhj+1 + czhj+2 + ... with ¢, in {0,
1}. Hence (11) leads to
a;la; ()] = h; + U'i[hl Fhy o+ e Fhyjat ekt o]
=hg +hier+ et oo Fhivjart il o
= n; + hi+1 + e + hi+j-l+ 07"+=7.(7’l -1
(12) =hi+hoer + cr0 F hivgor - hoag o age; ()

for 1 < j £ d and all integers <.
Letting ¢ = ~d and using the facts that h.; = 1 = h, and h, = 0 for

-d <n <0, (12) implies that

(13) a_gla;n)] =1+ a;_4mn) for 1l <gJ <d, aglagm)] = ay(n) =

Our derivation applies for 1 < j < d, but the result in (13) for 4
also be seen to be true.

I
3
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One may note that (12) implies
aila;(m)] - a;la;(M)] = hy + hypr + v+ + h;_; for 1 <7 < j <d.

Theonem 4: For 1 < j < d, aj+1(n) is 2a;(n) minus the number of integers in
the intersection of A4 and

{1, 2, 3, ..., a;(m) - 1}.

Proof: Since the a,(m), for fixed m, satisfy the same recursion formula as
the h,, we see from (R') that

a;j,1(n) = 2a;(n) - a;_z(n).
This and (13) give us
(14) aj 1) = 2a;(n) + {a_gla;(m)] - 1} for 1 < 4 < d.

Using Theorem 3, we note that the expression in braces in (14) counts the
integers that are in both 4; and {1, 2, ..., aj(n) - 1}. This establishes
the theorem.

Theorem 4 provides a very simple procedure for calculating the aj(n)
for 1 < j < d. We know that a,(1) = 1. Then the theorem gives us a;(1) for
1 <4 <d. Next, a,(2) must be the smallest positive integer not among the
a;(1) and the theorem gives us the remaining a;(2). Thus, one obtains the
a;(3), and a;(4), etc.

Theorem 5: For 1 < j < d, let g;(m) =aj, (m) -a;(m), and G, ={gj (m)]mez+}.
Then G,, G,, ..., G,_, form a partition of zr.

Proof: Let Z* be the set of positive integers that are not in 4,. For every
7n in Z* there are integers m and J with n = a;(m), m > 1, and 1 < J < d; we
let x(n) be g;(m) for this m and j. Let a,;(m) = a, for m in zZt.

Then it follows from Theorem 4 that

]

x(n) ajs1(m) = a;m) = a;(m) =n forn=1, 2, ..., a, - 1;

a,+1,a, +2, ..., a, - 1;

1]

z(n) = a;j(m - 1=mn-1forn
and in general that
x(n) =n-r form=a,+ 1, ar + 2, .o, aApy1 - L.

This shows that every positive integer is an x(n) for exactly one n in Z* and
hence is in exactly one of the G;, as desired.

8. BIBLIOGRAPHY

This paper is self-contained except for motivation. Related material
is contained in [1], [2], and [3] and in the papers of the bibliography in
[2]. 1t is expected to have sequels to the present paper.
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