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It is well known that the Fibonacci polynomials F, (x), the Lucas poly-
nomials L,(x), and the Chebyshev polynomials of both kinds satisfy many
"trigonometric'" identities. For example, the identity

Fop () + Fy, () = Fpyy (©)L|p-p| (x) for even m + n
is analogous to the trigonometric identity
sin 4 + sin B = 2 sin %(A + B) cos %{A - B).
Just below, we list eight well-known identities in the form which natu-
rally results from direct proofs using the usual four identities for sums and

differences of hyperbolic sines and cosines, together with certain identities
in Hoggatt and Bicknell [4]:

_ sinh 2n6 _ cosh (2n + 1)6
Fon (@) = cosh 6 Fan+1 () cosh 0
L,,(x) = 2 cosh 2nb Ly 41 (x) = 2 sinh (2n + 1)0,

where £ = 2 sinh 6. Writing simply F, and L, for F,(x) and L,(x) and assum-
ing m > n > 0, the eight identities are as follows:

FinLlmon if m + n is even
(D) Fomp + F,, =
: o wlnen if m + n is odd
B nlpan if m + n is even
(2) Fopp = Fy, =
Fosnlp_n if m + n is odd
Fntn+1lm-n if m + n is even
(3) Fomer 7 Foper =
By pLmin+1 if m + n is odd
B nlimen+1 if m + n is even
(4) Fomsr = Fopsr =
Fosn+1Llm-n if m + n is odd
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L4nLm-n if m + n is even
(5 L2m + Z-’2n =

(@? + 4)Fy P, if m+ n is odd

(x® + W)y snF oy if m + n is even
(6) Ly, = Ly, =

Lyysnlim—n if m + n is odd

Ly nLmn+1 if m + n is even
7 Lomer ¥ Lonyr = )

(@2 + 8)Fy, y 1 Fo_,  if m + 7m is odd

@ + 81 Fron if m + n is even
(8) Loansr = Lonsr =

Ly wLpan+1 if m + n is odd

These identities are derived in [2] in a manner much less directly dependent
on hyperbolic or trigonometric identities. See especially identities (72)-
(79) in [2], which generalize considerably the present identities. An inter-
mediate level of generalization is at the level of the generalized Fibonacci
polynomials F, = F,(x,2) and the generalized Lucas polynomials L, = L,(x,2).
For example, (5) becomes

Loy + Loy = (x* + 43)Fy,,Fy_, if m + n is odd.

Let us recall the substitutions which link the F,'s and L,'s with Che-
byshev polynomials T, (x) of the first kind and U, (x) of the second kind:

T,(2) = 3I.(22,-1), n =0, 1,

U,(x) = F, 41 (2x,-1), n

i
o
=

Clearly, our discussions involving F,'s and L,'s carry over immediately to
T,'s and U,'s; bearing this in mind, we make no further mention of Chebyshev
polynomials in this paper.

Identities (1)-(8) show that greatest common divisors for certain sums
and differences of the various polynomials can be found in terms of the ir-
reducible divisors of individual generalized Fibonacci polynomials and gener-
alized Lucas polynomials. In [7], we showed these divisors to be the gener-
alized Fibonacci-cyclotomic polynomials F,(x,2). The interested reader should
consult [7] for a definition of these polynomials. Theorems 6 and 10 in [7]
may be restated for m > 1 as follows:

(1) P (x,2) = |)|gd(x’2)
d|n

(1I1) L,(x,2) = T_T Fptr1g (x,2), where n = th, q odd, t > 0.
dlq

The (ordinary) Fibonacci and Lucas polynomials are given by F, (x) = F,(z,1)
and L,(x) = L,(x,1), and their factorizations as products of the irreducible
polynomials F(x) = F(x,1) are given by (I) and (II). With these factoriza-
tions, we are able to prove the following theorem.
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Theorem 1: For any nonnegative integers a, b, ¢, d, the greatest common di-

visor of L,F, and L,F; is given by

Fp,20y F(b,e,d) *Fl2a,d) *Fap,d) *F (2a,20) *Fase)

(Lan ,Lch) = F(b,d)

Fp,eyF(b,20,a) " Fa,arF (2a,0,0) *F (2a,0)*F (a,20)

times

2
Faapb,e)® F (ab,22) F(2a,e,d) *F (ay2e,d) [F(Za,b,Zc,d) *F (a,b.c,d)]

5 -
F (2a,b,20) " I (a,b,e)*F(2a,2¢,d) * F(a,e,d) [F(Za,b,c,d) *F(ab2e.d) ]

Proof: Write a = 2°0, o odd, and ¢ = 2%y, y odd. Let

A= {6‘: § =2°*y for some g satisfying q|0L}

Q
1]

{6 :8 = 2°*g  for some g satisfying q]y}

{s:6]p} ana D={s:5lal.

[sy]
]

In terms of these sets, let

S, =BND
S,=BNC-BNCND
S;=AND-ANBND
5,=4NC-4ANS, -CNS,.

Then,

(LoFy L Fy) = <ﬂg6ﬂ<; , ﬂgdﬂ‘35> =ﬁ TTs.

Sed SeB §eCc 8eD i=1 8eS5,

One may now readily verify that 1_]'4376 = F

(b,d) °
§es,
F(p,2e) F(b,20,d) ﬂg Flaa,d) Floap,d)
I |g = + and s = .
ses, 8 F(b,a) F(b,c,d) Ses, F(a,d) F(a,b,d)
For the product involving S,, we have
F(Za,Zc) * F(a,c)
(1% = 5 o
seANc (2a,c) (a,2¢c)
- Flaap,2e) * Fap,e . Floaped) * Flab,e,d) ;
| I s = B N an
seans, F(2a,0,6)* ¥ (ab,20) Flaa,p,2e,0) * Flapie,d)
Faa,a,20) * Frad,e) Flaa,p,e,d) * Fab,2e,d)

TT% =

seans, FQade) Fadze)  Faapzed) * Flabed
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Now using

TT%= Tl ¢ TTo = TTs;s S

Se3, SedNnc §eANS, §edNs,

the desired formula is easily put together.

F(Za,ZG)' Fla,ey
Conollarny: (L,,L,) =

F(Za,c)o F(a,Zc)

It is easy to obtain formulas for (F,F,,F,F;) and (L,Lp,L,Lz using
the method of proof of Theorem 1. The Lucas-formula has the same form as
that in Theorem 1, but even more factors. The Fibonacci-formula too has this
form, but few enough factors that we choose to include it here:

. 2
Fvert Fea,ay Fa,ey  Flap,e,d)
(FoFp F Fy) =

F
Bod) Fipod) * Fapdy * Flabie) * Flare,d)

Returning now to sums and differences of polynomials, we find from
identities (1) and (3), for example, that

@an Furen * Fy = LogFopen for any nonnegative integers k and 7.

Thus, Theorem 1 enables us to write out the greatest common divisor of any
two terms of the sequence

Foy, Fe + F., F

5 19 + F

L 6 2o Fq ¥ Fyg,

or of the sequence
Fo+ 1, Fg+ 1, Fg + 1, F, + 1,
With the help of (3') below, we can refine the latter sequence to
F,o+1, Fo+1, Fo+1, F, + 1,
and still find greatest common divisors. (But what about the sequence {E; +1}
for agll positive integers n?)

Following is a list of double-sequence identities like (1'). These are
easily obtained from identities (1)-(8).

(l'> Fh,k+n + Fn = LZkFZk+n
2" Frgan = Fn = P Dogeiy
3" Fogansr T8 = Logani1Fop s

4"

Fqk+n+2 -, = F27<+n+1L2k+l
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(5 ') qu+n + LYL = LZkL2k+n
6" Lygyn = In = @ + )E, 2
an Liygsnsz ¥ In = @ + 8)Fp 1 Fypynan

(8 ') L'+k+n+2 - L‘ﬂ = L2k+lL2k+n+1'

We note that the divisibility properties of some of these sequences are
much the same as those of the sequence of Fibonacci polynomials [namely,
(FysFy) = F(pny with Fp irreducible over the integers whenever p is a prime]
or the sequence of Lucas polynomials. For example, the sequence s;, 8,, S,,
..., given by

0, Ly, +2, L, =2, Ly +2, L, -2, ...,

has (Sy,8n) = (x? + A)Ffmm) for all positive integers m and n.

One might expect Theorem 1 to apply to sequences other than (1')-(8")
in the manner just exemplified. A good selection of forty identities, some
admitting applications of Theorem 1, is found in [3], pp. 52-59.
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