If the initial position and velocity of the jth mass are, respectively, X_j and V_j , then the normal coordinates are [6, p. 431]

(17)
$$\zeta_{k}(t) = Re \sum_{j=1}^{N} m \alpha_{jk} e^{i\omega_{k}t} \left(X_{j} - \frac{i}{\omega_{k}} V_{j} \right)$$
$$= Re \sum_{j=1}^{N} m (-1)^{k-1} \alpha_{j1} U_{k} \left(\cos \frac{2k\pi}{2N+1} \right) \exp \left[2i\omega_{0}t \cos \frac{k\pi}{2N+1} \right]$$
$$\times \left(X_{j} - \frac{iV_{j}}{2\omega_{0} \cos \frac{k\pi}{2N+1}} \right)$$

REFERENCES

- 1. M. Bicknell, The Fibonacci Quarterly 8, No. 5 (1970):407.
- 2. V. E. Hoggatt, Jr., & D. A. Lind, The Fibonacci Quarterly 5, No. 2 (1967): 141.
- 3. U. W. Hochstrasser, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (U.S. Department of Commerce, National Bureau of Standards, Washington, D.C., 1964), p. 787.
 4. M. Gardner, Scientific American 201 (1959):128.
- 5. B. Davis, The Fibonacci Quarterly 10, No. 7 (1972):659.
- 6. J. Marion, Classical Dynamics of Particles and Systems (2nd ed.; New York: Academic Press, 1970), p. 425.

CONGRUENCES FOR CERTAIN FIBONACCI NUMBERS

NORVALD MIDTTUN

Norwegian Naval Academy, Post Box 25, Norway

The purpose of this note is to prove some of the well-known congruences for the Fibonacci numbers U_p and U_{p-1} , where p is prime and $p \equiv \pm 1 \pmod{5}$. We also prove a congruence which is analogous to

$$U_n = \frac{\alpha^{\mu} - \beta^{\mu}}{\alpha - \beta}$$
, where α and β are the roots of $x^2 - x - 1 = 0$.

We start by considering the congruence

(1)
$$x^2 - x - 1 \equiv 0 \pmod{p}$$
, which can also be written

(2)
$$y^2 \equiv 5 \pmod{p}$$
,

on putting 2x - 1 = y.

It is well known that 5 is a quadratic residue of primes of the form $5m \pm 1$ and a quadratic nonresidue of primes of the form $5m \pm 3$. Therefore, (2) has a solution p if p is a prime and $p \equiv \pm 1 \pmod{5}$.

It also has -y as a solution, and these solutions are different in the sense that

$y \not\equiv -y \pmod{p}$.

This obviously gives two different solutions x_1 and x_2 of (1).

(1) is now written

(3) $x^2 \equiv x + 1 \pmod{p}$,

or, which is the same,

 $X^2 \equiv U_1 X + U_2 \pmod{p},$

where U_1 and U_2 are the first and second Fibonacci numbers. When multiplied by $x,\ (3)$ gives

 $x^{3} \equiv x^{2} + x \equiv x + 1 + x \equiv 2x + 1 \pmod{p}$,

or, which is the same,

$$X^3 \equiv U_3 X + U_2 \pmod{p}.$$

Suppose, therefore, that

(4)
$$X_k \equiv U_k X + U_{k-1} \pmod{p} \text{ for some } k.$$

Now (4) implies

$$\begin{split} X^{k+1} &\equiv U_k X^2 + U_{k-1} X \equiv U_k (X+1) + U_{k-1} X \equiv (U_{k-1} + U_k) X + U_k \\ &= U_{k+1} X + U_k \pmod{p}, \end{split}$$

which, together with (3) shows that (4) holds for $k \ge 2$. For the two solutions x_1 and x_2 , we now have

 $X_1^k \equiv U_k X_1 + U_{k-1} \pmod{p}$

and

$$X_{2}^{k} \equiv U_{k}X_{2} + U_{k-1} \pmod{p}$$
.

Subtraction gives

(5)
$$X_1^k - X_2^k \equiv U_k(X_1 - X_2) \pmod{p}$$
.

Putting k = p - 1 in (5) and using Fermat's theorem, we get

 $X_1^{p-1} - X_2^{p-1} \equiv U_{p-1}(X_1 - X_2) \equiv 1 - 1 = 0 \pmod{p}.$

Since $X_1 \not\equiv X_2 \pmod{p}$, this proves

$$U_{p-1} \equiv 0 \pmod{p}.$$

Putting k = p in (5), we get in the same manner

(6) $X_1^{p} - X_2^{p} \equiv X_1 - X_2 \equiv U_p(X_1 - X_2) \pmod{p}$, which proves

 $U_p \equiv 1 \pmod{p}$.

At last, (6) can formally be written

$$U_p \equiv \frac{X_1^p - X_2^p}{X_1 - X_2} \pmod{p},$$

which shows the analogy with the formula

$$U_n = \frac{\alpha^{\mu} - \beta^{\mu}}{\alpha - \beta} .$$

1979]