If the initial position and velocity of the j th mass are, respectively, X_{j} and V_{j}, then the normal coordinates are [6, p. 431]

$$
\begin{align*}
\zeta_{k}(t)= & R e \sum_{j=1}^{N} m a_{j k} e^{i \omega_{k} t}\left(X_{j}-\frac{i}{\omega_{k}} V_{j}\right) \tag{17}\\
= & R e \sum_{j=1}^{N} m(-1)^{k-1} \alpha_{j 1} U_{k}\left(\cos \frac{2 k \pi}{2 N+1}\right) \exp \left[2 i \omega_{0} t \cos \frac{k \pi}{2 N+1}\right] \\
& \times\left(X_{j}-\frac{i V_{j}}{2 \omega_{0} \cos \frac{k \pi}{2 N+1}}\right)
\end{align*}
$$

REFERENCES

1. M. Bickne11, The Fibonacci Quarterly 8, No. 5 (1970):407.
2. V. E. Hoggatt, Jr., \& D. A. Lind, The Fibonacci Quarterly 5, No. 2 (1967): 141.
3. U. W. Hochstrasser, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (U.S. Department of Commerce, National Bureau of Standards, Washington, D.C., 1964), p. 787.
4. M. Gardner, Scientific American 201 (1959):128.
5. B. Davis, The Fibonacci Quarterly 10, No. 7 (1972):659.
6. J. Marion, Classical Dynamics of Particles and Systems (2nd ed.; New York: Academic Press, 1970), p. 425.

CONGRUENCES FOR CERTAIN FIBONACCI NUMBERS

NORVALD MIDTTUN
Norwegian Naval Academy, Post Box 25, Norway
The purpose of this note is to prove some of the well-known congruences for the Fibonacci numbers U_{p} and U_{p-1}, where p is prime and $p \equiv \pm 1(\bmod 5)$. We also prove a congruence which is analogous to

$$
U_{n}=\frac{\alpha^{\mu}-\beta^{\mu}}{\alpha-\beta} \text {, where } \alpha \text { and } \beta \text { are the roots of } x^{2}-x-1=0 .
$$

We start by considering the congruence

$$
\begin{align*}
& x^{2}-x-1 \equiv 0(\bmod p), \text { which can also be written } \tag{1}\\
& y^{2} \equiv 5(\bmod p), \tag{2}
\end{align*}
$$

on putting $2 x-1=y$.
It is well known that 5 is a quadratic residue of primes of the form $5 m \pm 1$ and a quadratic nonresidue of primes of the form $5 m \pm 3$. Therefore, (2) has a solution p if p is a prime and $p \equiv \pm 1(\bmod 5)$.

It also has $-y$ as a solution, and these solutions are different in the sense that

$$
y \not \equiv-y(\bmod p) .
$$

This obviously gives two different solutions x_{1} and x_{2} of (1).
(1) is now written

$$
\begin{equation*}
x^{2} \equiv x+1(\bmod p) \tag{3}
\end{equation*}
$$

or, which is the same,

$$
X^{2} \equiv U_{1} X+U_{2}(\bmod p)
$$

where U_{1} and U_{2} are the first and second Fibonacci numbers. When multiplied by x, (3) gives

$$
x^{3} \equiv x^{2}+x \equiv x+1+x \equiv 2 x+1(\bmod p),
$$

or, which is the same,

$$
X^{3} \equiv U_{3} X+U_{2}(\bmod p) .
$$

Suppose, therefore, that

$$
\begin{equation*}
X_{k} \equiv U_{k} X+U_{k-1}(\bmod p) \text { for some } k \tag{4}
\end{equation*}
$$

Now (4) implies

$$
\begin{aligned}
X^{k+1} & \equiv U_{k} X^{2}+U_{k-1} X \equiv U_{k}(X+1)+U_{k-1} X \equiv\left(U_{k-1}+U_{k}\right) X+U_{k} \\
& =U_{k+1} X+U_{k}(\bmod p)
\end{aligned}
$$

which, together with (3) shows that (4) holds for $k \geq 2$. For the two solutions x_{1} and x_{2}, we now have

$$
X_{1}^{k} \equiv U_{k} X_{1}+U_{k-1}(\bmod p)
$$

and

$$
X_{2}^{k} \equiv U_{k} X_{2}+U_{k-1}(\bmod p)
$$

Subtraction gives

$$
\begin{equation*}
X_{1}^{k}-X_{2}^{k} \equiv U_{k}\left(X_{1}-X_{2}\right) \quad(\bmod p) . \tag{5}
\end{equation*}
$$

Putting $k=p-1$ in (5) and using Fermat's theorem, we get
$X_{1}^{p-1}-X_{2}^{p-1} \equiv U_{p-1}\left(X_{1}-X_{2}\right) \equiv 1-1=0(\bmod p)$.
Since $X_{1} \not \equiv X_{2}(\bmod p)$, this proves
$U_{p-1} \equiv 0(\bmod p)$.
Putting $k=p$ in (5), we get in the same manner

$$
\begin{equation*}
X_{1}^{p}-X_{2}^{p} \equiv X_{1}-X_{2} \equiv U_{p}\left(X_{1}-X_{2}\right) \quad(\bmod p), \tag{6}
\end{equation*}
$$

which proves

$$
U_{p} \equiv 1(\bmod p)
$$

At last, (6) can formally be written

$$
U_{p} \equiv \frac{X_{1}^{p}-X_{2}^{p}}{X_{1}-X_{2}} \quad(\bmod p)
$$

which shows the analogy with the formula

$$
U_{n}=\frac{\alpha^{\mu}-\beta^{\mu}}{\alpha-\beta}
$$

