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If the initial position and velocity of the jth mass are, respectively, 
Xj and VJ , then the normal coordinates are [6, p. 431] 

(17) h(t) - Re J2">"ft **"*'(% - ^ V ) 
J = l \ K I 
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The purpose of this note is to prove some of the well-known congruences 
for the Fibonacci numbers Up and f/p-i, where p is prime and p = ±1 (mod 5). 
We also prove a congruence which is analogous to 

ay - 8P ? 
Uy, = ^—, where a and 3 are the roots of a; - # - 1 = 0. 
" a - 3 

We start by considering the congruence 
(1) x2 - x - 1 = 0 (mod p), which can also be written 
(2) y2 E 5 (mod p), 

on putting 2x - 1 = y. 
It is well known that 5 is a quadratic residue of primes of the form 

5m ± 1 and a quadratic nonresidue of primes of the form 5m ± 3. Therefore, 
(2) has a solution p if p is a prime and p E ±1 (mod 5). 

It also has -y as a solution, and these solutions are different in the 
sense that 

y t -y (mod p). 

This obviously gives two different solutions x1 and x2 of (1). 
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(1) is now written 

(3) x2 = x + 1 (mod p), 

or, which is the same, 

X2 E UXX + U2 (mod p), 

where U1 and Uz are the first and second Fibonacci numbers. 
When multiplied by x, (3) gives 

x3 =x2+x=x+l+x=2x+l (mod p ) , 

or, which is the same, 

X3 ~ U3X + Uz (mod p). 

Suppose, t h e r e f o r e , t h a t 

(4) Xk E UkX + Uk_± (mod p) for some Zc. 

Now (4) i m p l i e s 

Xk + 1 E UkXz + Uk_1X E [7^(1 + 1) + [/£_!* E (Uk_1 + ^ ) J + £/fc 

= Uk+1X + £/fc (mod p ) , 

which, together with (3) shows that (4) holds for k >_ 2. 
For the two solutions xl and #2> we now have 

x\ E UkX1 + Uk_x (mod p) 
and 

X\ E [/kJ2 + ^ _ ! (mod p). 

Subtraction gives 

(5) ** - X\ E |yk(Z1 - J2) (mod p). 

Putting k = p - 1 In (5) and using Fermat's theorem, we get 

X i ' 1 - X l ' 1 E UP-I(X1 - X2) E 1 - 1 = 0 (mod p). 

Since Jx ^ J2 (m°d p) , this proves 

Up_x E 0 (mod p). 

Putting fc = p in (5), we get in the same manner 

(6) Xl- Xl E X1 - X2 E Z7p(J1 - J 2 ) (mod p) , 

which proves 

Up E 1 (mod p). 

At last, (6) can formally be written 

X1 - X2 

Up = x _ x (mod Ph 
L 1 yi2 

which shows the analogy with the formula 

Un = -
n a -


