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If the initial position and velocity of the jth mass are, respectively,
X; and V;, then the normal coordinates are [6, p. 431]
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The purpose of this note is to prove some of the well-known congruences
for the Fibonacci numbers Up and Up-1, where p is prime and p = *1 (mod 5).
We also prove a congruence which is analogous to
a* - gH 2 _
U, = —af:—zfg where 0, and B are the roots of “ - x - 1 = 0.

We start by considering the congruence
(1) 22 -2 -1 =0 (mod p), which can also be written
(2) y? =5 (mod p),
on putting 2x - 1 = y.

It is well known that 5 is a quadratic residue of primes of the form
5m + 1 and a quadratic nonresidue of primes of the form 5m £ 3. Therefore,
(2) has a solution p if p is a prime and p = *1 (mod 5).

It also has -y as a solution, and these solutions are different in the
sense that

y # -y (mod p).

This obviously gives two different solutions x;, and x, of (1).
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(1) is now written
(3) 2 2 x + 1 (mod P,
or, which is the same,
X* Z U X+ U, (mod p),

where U, and U, are the first and second Fibonacci numbers.
When multiplied by x, (3) gives
2P x4+ x4+ 142 =2c+ 1 (mod ),
or, which is the same,

X 2 UX + U, (mod p).
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Suppose, therefore, that
(4 Xy
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UpX + Uy _; (mod p) for some k.
Now (4) implies

XY 2 0 X 4 Uy X 2 U (X + 1) + Uy X = (Up_y + UDX + Uy

= Uy X + Uy (mod p),

which, together with (3) shows that (4) holds for k >
For the two solutions x; and x,, we now have

Xy 20Xy + Up_1 (mod p)
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and «
Xy 2 UpX, + Up_y (mod p).
Subtraction gives
k k —
(5) Xy - X, = Uk(X1 - X2> (mod p).
Putting X = p - 1 in (5) and using Fermat's theorem, we get
p-1 -1 _ _
X{ T - X2 2 U, (X, - X,) 21 -1 =0 (mod p).

Since X; £ X, (mod p), this proves
Up-1 =0 (mod p).
Putting kK = p in (5), we get in the same manner

p p -
(6) X{-X, 2 X, - X, =Up(X, - X,) (mod p),
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which proves
Up =1 (mod p).
At last, (6) can formally be written
Xy - Xy
Up —}:—:*Ez—‘ (mod p),
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which shows the analogy with the formula
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