we may deduce that, if $P(N)$ denotes the period (mod N) of the Fibonacci and Lucas sequence (the periods for the two sequences are the same, except when $5 \mid N$, cf. [2]), and if p is any odd prime $\neq 5$, then

$$
\begin{equation*}
p\left(p^{n}\right) \text { divides } \frac{1}{2}\left(3 p+1-(p+3)\left(\frac{5}{p}\right)\right) p^{n-1}, n=1,2,3, \ldots \tag{34}
\end{equation*}
$$

We will leave the proof of this result to the reader.

REFERENCES

1. H. W. Gould, Combinatorial Identities (Morgantown, W.Va.: The Morgantown Printing and Binding Co., 1972).
2. Dov Jarden, Recurring Sequences (Jerusalem: Riveon Lematematika, 1973), p. 103.
3. G. H. Hardy \& E. M. Wright, An Introduction to the Theory of Numbers (4th ed., reprinted; Oxford: The Clarendon Press, 1962), pp. 221-223.

A NOTE ON A PELL-TYPE SEQUENCE

WILLIAM J. O'DONNELL
George Washington High School, Denver, CO
The Pell sequence is defined by the recursive relation

$$
P_{1}=1, P_{2}=2, \text { and } P_{n+2}=2 P_{n+1}+P_{n}, \text { for } n \geq 1
$$

The first few terms of the sequence are $1,2,5,12,29,70,169,408, \ldots$. It is well known that the nth term of the Pell sequence can be written

$$
P_{n}=\frac{1}{\sqrt{8}}\left[\left(\frac{2+\sqrt{8}}{2}\right)^{n}-\left(\frac{2-\sqrt{8}}{2}\right)^{n}\right] .
$$

It is also easily proven that $\lim _{n \rightarrow \infty} \frac{P_{n}}{P_{n+1}}=\frac{-2+\sqrt{8}}{2}$.
For the sequence $\left\{V_{n}\right\}$ defined by the recursive formula

$$
V_{1}=1, V_{2}=2 \text {, and } V_{n+2}=k V_{n+1}+V_{n} \text {, for } k \geq 1 \text {, }
$$

we know that

$$
\lim _{n \rightarrow \infty} \frac{V_{n}}{V_{n+1}}=\frac{-k+\sqrt{k^{2}+4}}{2}
$$

If we let $k=1$, the sequence $\left\{V_{n}\right\}$ becomes the Fibonacci sequence and the 1imit of the ratio of consecutive terms is $\frac{-1+\sqrt{5}}{2}=.618$, which is the "golden ratio." For $k=2$ the ratio becomes .4142 , which is the limit of the ratio of consecutive terms of the Pell sequence.

Both of the previous sequences were developed by adding two terms of a sequence or multiples of two terms to generate the next term. We now consider the ratio of consecutive terms of the sequence $\left\{G_{n}\right\}$ defined by the recursive formula

$$
G_{1}=a_{1}, G_{2}=a_{2}, \ldots, G_{n}=a_{n}, \text { and }
$$

and

$$
G_{n+1}=n a_{n}+(n-1) a_{n-1}+(n-2) a_{n-2}+\cdots+2 a_{2}+a_{1}
$$

where a_{i} is an integer >0.
Suppose that when this sequence is continued a sufficient number of terms it is possible to find n consecutive terms such that the limit of the ratio of any two consecutive terms approaches r. The sequence could be written

$$
G_{m}, \frac{G_{m}}{r}, \frac{G_{m}}{r^{2}}, \frac{G_{m}}{r^{3}}, \ldots, \frac{G_{m}}{r^{n-1}}
$$

The next term, $\frac{G_{m}}{r^{n}}$, may be written as

$$
\frac{G_{m}}{r^{n}}=n\left(\frac{G_{m}}{r^{n-1}}\right)+(n-1)\left(\frac{G_{m}}{r^{n-2}}\right)+\cdots+2 \frac{G_{m}}{r}+G_{m}
$$

Simplifying,

$$
G_{m}=n r G_{m}+(n-1) r^{2} G_{m}+\cdots+2 r^{n-1} G_{m}+r^{n} G_{m} .
$$

Dividing by G_{m}, we obtain

$$
1=n r+(n-1) r^{2}+\cdots+2 r^{n-1}+r^{n}
$$

or

$$
\begin{equation*}
r^{n}+2 r^{n-1}+\cdots+(n-2) r^{3}+(n-1) r^{2}+n r-1=0 \tag{1}
\end{equation*}
$$

The limiting value of r is seen to be the root of equation 1 .
If we let $n=4, G_{1}=2, G_{2}=4, G_{3}=3$, and $G_{4}=1$, the corresponding sequence is $2,4,3,1,23,105,494,2338,11067,52375, \ldots$. The ratios of consecutive terms are

$$
\begin{array}{rlrl}
\frac{2}{4} & =0.5000 & \frac{105}{494} & =0.2125 \\
\frac{4}{3} & =1.3333 & \frac{494}{2338} & =0.2113 \\
\frac{3}{1} & =3.0000 & \frac{2338}{11067}=0.2113 \\
\frac{1}{23} & =0.0434 & \frac{11067}{52375}=0.2113 \\
\frac{23}{105} & =0.2190 &
\end{array}
$$

The computed ratio approaches .2113. Using equation 1 we have, for this sequence, $r^{4}+2 r^{3}+3 r^{2}+4 r-1=0$. By successive approximation, we find $r \approx$.2113. The reader may also wish to verify this conclusion for other initial values for the sequence as well as for a different number of initial terms.

REFERENCE

M. Bicknell, "A Primer on the Pell Sequence and Related Sequences," The Fibonacci Quarterly 13, No. 4 (1975):345-349.

