since

$$
\frac{F_{n}}{L_{n-1}}=\frac{F_{n}}{F_{n-1}} \frac{F_{n-1}}{L_{n-1}}=L^{2} .
$$

4. GENERATING FUNCTIONS OF THE $(H-L) / k$ SEQUENCES IN A MULTINOMIAL TRIANGLE
We challenge the reader to find the generating functions of the $(H-L) / k$ sequences in the quadrinomial triangle. We surmise that the limits would be the generating functions of the central values in Pascal's quadrinomial triang1e.

REFERENCES

1. John L. Brown, Jr., \& V. E. Hoggatt, Jr., "A Primer for the Fibonacci Numbers, Part XVI: The Central Column Sequence," The Fibonacci Quarterly 16, No. 1 (1978):41.
2. Michel Y. Rondeau, "The Generating Functions for the Vertical Columns of ($N+1$)-Nomial Triangles" (Master's thesis, San Jose State University, San Jose, California, May 1978).
3. Claudia R. Smith, "Sums of Partition Sets in the Rows of Generalized Pascal's Triangles" (Master's thesis, San Jose State• University, San Jose, California, May 1978).

SOLUTION OF $\binom{y+1}{\boldsymbol{x}}=\binom{y}{\boldsymbol{x}+\mathbf{1}}$ IN TERMS OF FIBONACCI NUMBERS
JAMES C. OWINGS, JR.
University of Maryland, College Park, MD 20742
In [2, pp. 262-263] we solved the Diophantine equation $\binom{y+1}{x}=\binom{y}{x+1}$ and found that (x, y) is a solution iff for some $n \geq 0$,

$$
(x+1, y+1)=\left(\sum_{k=0}^{n} f(4 k+1), \sum_{k=0}^{n} f(4 k+3)\right)
$$

where

$$
f(0)=0, f(1)=1, f(n+2)=f(n)+f(n+1) .
$$

We show here that (x, y) is a solution iff for some $n \geq 0$,

$$
(x+1, y+1)=(f(2 n+1) f(2 n+2), f(2 n+2) f(2 n+3)),
$$

incidentally deriving the identities

$$
\begin{aligned}
& f(2 n+1) f(2 n+2)=\sum_{k=0}^{n} f(4 k+1), \\
& f(2 n+2) f(2 n+3)=\sum_{k=0}^{n} f(4 k+3) .
\end{aligned}
$$

[Feb.

Briefly, in [2], we solved $\binom{y+1}{x}=\binom{y}{x+1}$ as follows. When multiplied out this equation becomes

$$
x^{2}+y^{2}-3 x y-2 x-1=0
$$

Now, if (x, y) is a solution of this polynomial equation, so are (x^{\prime}, y) and $\left(x, y^{\prime}\right)$, where $x^{\prime}=-x+3 y+2$ and $y^{\prime}=-y+3 x$, because

$$
\begin{aligned}
0 & =x^{2}+y^{2}-3 x y-2 x-1=y^{2}+x(x-3 y-2)-1 \\
& =y^{2}+x\left(-x^{\prime}\right)-1=y^{2}+x^{\prime}(-x)-1 \\
& =y^{2}+x^{\prime}\left(x^{\prime}-3 y-2\right)-1=\left(x^{\prime}\right)^{2}+y^{2}-3 x^{\prime} y-2 x^{\prime}-1
\end{aligned}
$$

and similarly for $\left(x, y^{\prime}\right)$. So from the basic solution $x=0, y=1$ we get the four-tuple

$$
\left(y^{\prime}, x, y, x^{\prime}\right)=(-1,0,1,5)
$$

in which each adjacent pair of integers forms a solution. Repeating the process gives

$$
(-1,-1,0,1,5,14)
$$

doing it twice more we get

$$
(-3,-2,-1,-1,0,1,5,14,39,103)
$$

We have now found three solutions to $\binom{y+1}{x}=\binom{y}{x+1}$, namely $(0,1),(5,14)$, $(39,103)$. In $[2]$ we showed, with little trouble, that all integral solutions to the given polynomial equation may be found somewhere in the two-way infinite chain generated by $(0,1)$. (See Mills [1] for the genesis of this type of argument.) Hence (x, y) is a solution to the binomial equation iff $0 \leq x<y$ and (x, y) occurs somewhere in this chain. If we let

$$
(x(0), y(0))=(0,1),(x(1), y(1))=(5,14), \text { etc. }
$$

and use our equations for x^{\prime} and y^{\prime}, we find that

$$
\begin{aligned}
& x(n+1)=-x(n)+3 y(n)+2, \\
& y(n+1)=-y(n)+3 x(n) .
\end{aligned}
$$

(WARNING: In [2] the roles of x and y are reversed.)
We prove our assertion by induction on n, appealing to the well-known identities

$$
\begin{aligned}
& f^{2}(2 n+2)+1=f(2 n+1) f(2 n+3), \\
& f^{2}(2 n+1)-1=f(2 n) f(2 n+2) .
\end{aligned}
$$

Obviously, $x(0)+1=f(1) f(2), y(0)+1=f(2) f(3)$. So assume

$$
(x(n)+1, y(n)+1)=(f(2 n+1) f(2 n+2), f(2 n+2) f(2 n+3))
$$

Then

$$
\begin{aligned}
x(n+1)+1 & =3 y(n)-x(n)+3=3(y(n+1)+1)-(x(n)+1)+1 \\
& =3 f(2 n+2) f(2 n+3)-f(2 n+1) f(2 n+2)+1 \\
& =2 f(2 n+2) f(2 n+3)+f(2 n+2)(f(2 n+1)+f(2 n+2)) \\
& =2 f(2 n+2) f(2 n+3)+f(2 n+1) f(2 n+2)+1 \\
& =2 f(2 n+2) f(2 n+3)+f(2 n+2)+1) \\
& =f(2 n+2) f(2 n+3)+f^{2}(2 n+3)=f(2 n+3) f(2 n+4) .
\end{aligned}
$$

So,

$$
\begin{aligned}
y(n+1)+1 & =3 x(n+1)-y(n)+1 \\
& =3(x(n+1)+1)-(y(n)+1)-1 \\
& =3 f(2 n+3) f(2 n+4)-f(2 n+2) f(2 n+3)-1 \\
& =2 f(2 n+3) f(2 n+4)+f(2 n+3)(f(2 n+2)+f(2 n+3)) \\
& =2 f(2 n+3) f(2 n+4)+(2 n+2) f(2 n+3)-1 \\
& =2 f(2 n+3) f(2 n+4)+f(2 n+2) f(2 n+4) \\
& =f(2 n+3) f(2 n+4)+f^{2}(2 n+4) \\
& =f(2 n+4) f(2 n+5),
\end{aligned}
$$

completing the proof.

REFERENCES

1. W. H. Mills, "A Method for Solving Certain Diophantine Equations," Proc. Amer. Math. Soc. 5 (1954):473-475.
2. James C. Owings, Jr., "An Elementary Approach to Diophantine Equations of the Second Degree," Duke Math. J. 37 (1970):261-273.

* 关前

THE DIOPHANTINE EQUATION $N b^{2}=c^{2}+N+1$

DAVID A. ANDERSON and MILTON W. LOYER
Montana State University, Bozeman, Mon. 59715
Other than $b=c=0$ (in which case $N=-1$), the Diophantine equation $N b^{2}=c^{2}+N+1$ has no solutions. This family of equations includes the 1976 Mathematical 01ympiad problem $a^{2}+b^{2}+c^{2}=a^{2} b^{2}$ (letting $N=a^{2}-1$) and such problems as $6 b^{2}=c^{2}+7, a^{2} b^{2}=a^{2}+c^{2}+1$, etc.

Noting that $b^{2} \neq 1$ (since $N \neq c^{2}+N+1$), one may restate the problem as follows:

$$
\begin{aligned}
N b^{2} & =c^{2}+N+1 \\
N b^{2}-N & =c^{2}+1 \\
N\left(b^{2}-1\right) & =c^{2}+1 \\
N & =\left(c^{2}+1\right) /\left(b^{2}-1\right) .
\end{aligned}
$$

Thus the problem reduces to showing that, except as noted, $\left(c^{2}+1\right) /\left(b^{2}-1\right)$ cannot be an integer. [This result domonstrates the interesting fact that $c^{2} \not \equiv-1\left(\bmod b^{2}-1\right)$, i.e., that none of the Diophantine equations $c^{2} \equiv 2$ $(\bmod 3), c^{2} \equiv 7(\bmod 8)$, etc., has a solution.]

It is well known [1, p. 25] that for any prime $p, p \mid c^{2}+1 \Rightarrow p=2$ or $p=4 m+1 . *$

$$
\begin{aligned}
b^{2}-1 \mid c^{2}+1 \Rightarrow b^{2}-1 & =2^{s}\left(4 m_{1}+1\right)\left(4 m_{2}+1\right) \cdots(4 m+1) \\
& =2^{s}(4 M+1) \\
b^{2} & =2^{s}(4 M)+2^{s}+1
\end{aligned}
$$

[^0]
[^0]: *The result of this article is not merely a special case of this theorem [e.g., according to the theorem $\left(c^{2}+1\right) / 8$ could be an integer].

