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IN GENERALIZED PASCAL TRIANGLES
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L. GENERATING FUNCTIONS OF THE (H - L)/k SEQUENCES
IN A MULTINOMIAL TRIANGLE

We challenge the reader to find the generating functions of the ( -L)/k
sequences in the quadrinomial triangle. We surmise that the limits would be
the generating functions of the central values in Pascal's quadrinomial tri-
angle.

REFERENCES

1. John L. Brown, Jr., & V. E. Hoggatt, Jr., "A Primer for the Fibonacci Num-
bers, Part XVI: The Central Column Sequence,' The Fibonacci Quarterly 16,
No. 1 (1978):41.

2. Michel Y. Rondeau, "The Generating Functions for the Vertical Columns of
(N + 1)-Nomial Triangles' (Master's thesis, San Jose State University, San
Jose, California, May 1978).

3. Claudia R. Smith, "Sums of Partition Sets in the Rows of Generalized Pas-
cal's Triangles" (Master's thesis, San Jose Stater University, San Jose,
California, May 1978).

et

+1
SOLUTION OF (yx ) (xil> IN TERMS OF FIBONACCI NUMBERS

JAMES C. OWINGS, JR.
University of Maryland, College Park, MD 20742

+
In [2, pp. 262-263] we solved the Diophantine equation (y x1> = <arzl>

and found that (x,y) is a solution iff for some n > O,

(x+ L,y + 1) =| D FlUk+ 1), Y Fk + 3],
k=0 k=0

where

F) =0, f(1) =1, fm+2) = fn) + f(n + 1).
We show here that (x,y) is a solution iff for some n > O,
(x+ 1,y +1) = (f2n + DFf@2n + 2), fQ2n + 2)Ff(2n + 3)),

incidentally deriving the identities

Fn+ f(n +2) = D Flbk + 1),
k=0

Fn + 2)fQ2n + 3) = ) Fk + 3).
k=0
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Briefly, in [2], we solved <y-+l> = ( 4 > as follows. When multiplied
. . x x+1
out this equation becomes

x* + y? - 3wy - 20 -1 = 0.

Now, if (x,y) is a solution of this polynomial equation, so are (x',y) and
(x,y'"), where ' = - + 3y + 2 and y' = -y + 3z, because

0=+ y? -3zy -2z -1=y*> +a(x-3y-2) -1

yz + x(-x') -1 = y2 + x'(-x) -1
=yl + (@ -3y -2) -1=(xN%+y®>-3xy-2z' -1,

and similarly for (x,y'). So from the basic solution x = 0, y = 1 we get the
four-tuple

(y "x’y’x’) = (_1’0,1,5)

in which each adjacent pair of integers forms a solution. Repeating the pro-
cess gives

('l,—l,oalsS)IA);
doing it twice more we get

(-3,-2,-1,-1,0,1,5,14,39,103).

We have now found three solutions to (y:;1> = (a:il)’ namely (0,1), (5,14),

(39,103). 1In [2] we showed, with little trouble, that all integral solutions
to the given polynomial equation may be found somewhere in the two-way infi-
nite chain generated by (0,1). (See Mills [1] for the genesis of this type of
argument.) Hence (x,y) is a solution to the binomial equation iff 0 < x < y
and (x,y) occurs somewhere in this chain. If we let

(x(0),y(0)) = (0,1), (x(1),y(1)) = (5,14), etc.,
and use our equations for x' and y', we find that

x(n + 1) = -x(n) + 3y(n) + 2,

y(n + 1) = ~y(n) + 3x(n).

(WARNING: 1In [2] the roles of x and y are reversed.)
We prove our assertion by induction on n, appealing to the well-known
identities

F2Cn+2) +1=Ff2n + 1)Ff2n + 3),
FP@n +1) -1 = FfR2n)fQ2n + 2).
Obviously, x(0) + 1 = f(1)Ff(2), y(0) + 1 = f(2)f(3). So assume
(x(m) + 1,y(m) + 1) = (F2n + DFC2n + 2),fC2n + 2)F(2n + 3)).

Then

x(m+ 1) +1=3ymn) ~xm) +3=3FHEn+1) +1) - (x(xn) +1) +1

3fC2n + 2)F2n + 3) - f(2n + NF2n + 2) + 1

2f(2n + 2)FC2n + 3) + f2n + 2)(F@2n + 1) + f(2n + 2))
- fCn+ Lf(2n + 2) + 1

2f(2n + 2)Ff2n + 3) + (F2(2n + 2) + 1)

2f(2n + 2)F2n + 3) + f2n + 1)F(2n + 3)

F@n+ 2)Ff(2n + 3) + F2Cn + 3) = F(2n + 3)F(2n + 4).
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So,
y(n +1) +1

3x(n + 1) —yn) +1

=3@rn+1) +1) - () +1) -1

=3f(2n + 3)f2n + 4) - f(2n + 2)Ff2n + 3) - 1

=2f(2n + 3)f(2n + 4) + f(2n + D(Ff(2n + 2) + f(2n + 3))
- f@2n + 2)f(2n + 3) - 1

=2f(2n + 3)DFf2n + 4) + (F?(2n + 3) - 1)

=2f(2n + 3)Ff2n + 4) + F2n + 2)Ff(2n + &)

f2n + 3)Ff2n + 4) + f2(2n + 4)

= f2n + 4)f(2n + 5),

completing the proof.
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Other than b = ¢ = 0 (in which case N = -1), the Diophantine equation
Nb? = ¢ + N+ 1 has no solutions. This family of equations includes the
1976 Mathematical Olympiad problem a® + b2 + ¢? = a?b? (letting N = a® - 1)
and such problems as 6b% = ¢? + 7, a®h? = a® + ¢? + 1, etc.

Noting that b2 # 1 (since N # ¢? + N + 1), one may restate the problem
as follows:

b2 =2+ N+ 1
Nb? - N =c*+1
Np? -1) =c* + 1
V= (c*+1)/(*-1).

Thus the problem reduces to showing that, except as noted, (e + 1)/ ((?* - 1)
cannot be an integer. [This result domonstrates the interesting fact that
¢? # -1 (mod b% - 1), i.e., that none of the Diophantine equations e? =2
(mod 3), ¢? = 7 (mod 8), etc., has a solution.]

It is well known [1l, p. 25] that for any prime p, p]c
p = b4m + 1.%

2+ 1=p=2or

b - 1le* +1=p% -1

2°(4my + 1) (bmy, + 1) -+ (4m + 1)
2°(4M + 1)
2°(4M) + 2° + 1

b2

*The result of this article is not merely a special case of this theo-
rem [e.g., according to the theorem (¢? + 1)/8 could be an integer].



