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Fr, F, n-1 
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4. GENERATING FUNCTIONS OF THE (H - L)/k SEQUENCES 
IN A MULTINOMIAL TRIANGLE 

We challenge the reader to find the generating functions of the (H - L)/k 
sequences in the quadrinomial triangle. We surmise that the limits would be 
the generating functions of the central values in Pascal's quadrinomial tri-
angle . 
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SOLUTION OF V * 1 ) = \x+i) I N TERMS OF FIBONACCI NUMBERS 

JAMES C. OWINGS, J R . 
University of Maryland, College Park, MD 20742 

In [2 , pp . 262-263] we so lved t h e Diophan t ine e q u a t i o n P J = ( ^ J 

and found t h a t (x,y) i s a s o l u t i o n i f f for some n >_ 0, 

(x + 1,2/ + 1) = ( £ /(4fc + 1), J /(4fc + 3)), 
\ k - 0 k = 0 / 

where / ( 0 ) = ^ f{±) = ^ f{n + 2) = f(n) + f(n + 1 } . 

We show h e r e t h a t (x,y) i s a s o l u t i o n i f f for some n >_ 0 , 

(x + l.z/ + 1) = (f(2n + l)f{2n + 2 ) , f(2n + 2)f(2n + 3 ) ) , 

i n c i d e n t a l l y d e r i v i n g t h e i d e n t i t i e s 

f(2n + l)f(2n + 2) = ] T / ( 4 k + 1) , 
k = o 

n 
f(2n + 2)f(2n + 3) = ] T /(4fe + 3 ) . 

k = 0 
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We 

Briefly, in [2], we solved (̂  ) = f ^ as follows. When multiplied 
out this equation becomes 

x2 + y2 - 3xy - 2x - 1 = 0. 
Now, if (x,y) is a solution of this polynomial equation, so are {x1 ,y) and 
(x,yr), where xr = -x + 3y + 2 and y ' = -y + 3x, because 

0 = x2 + y2 - 3xy - 2x - 1 = y2 + x(x - 3y - 2) - 1 
= y2 + x(-x') - 1 = y2 + x'(-x) - 1 

= y2 + xf(x' - 3y - 2) - 1 = (x')2 + z/2 - 3x 'y - 2x' - 1, 

and similarly for Gr,zyf). So from the basic solution x = 0, y = 1 we get the 
four-tuple 

(y r,x,y,xf) = (-1,0,1,5) 

in which each adjacent pair of integers forms a solution. Repeating the pro-
cess gives 

(-1,-1,0,1,5,14); 

doing it twice more we get 

(-3,-2,-1,-1,0,1,5,14,39,103). 

have now found three solutions to y ^ J — ̂ »̂_j_̂ y' namely (0,1), (5,14), 

(39,103). In [2] we showed, with little trouble, that all integral solutions 
to the given polynomial equation may be found somewhere in the two-way infi-
nite chain generated by (0,1). (See Mills [1] for the genesis of this type of 
argument.) Hence (x,y) is a solution to the binomial equation iff 0 <_x < y 
and (x,y) occurs somewhere in this chain. If we let 

(a:(0),2/(0)) = (0,1), (tf(l),2/(l)) = (5,14), etc., 

and use our equations' for xr and y', we find that 

x(n + 1) = -x(n) + 3y{n) + 2, 

y(n + 1) = -y(n) + 3x(ri). 

(WARNING: In [2] the roles of x and y are reversed.) 
We prove our assertion by induction on n, appealing to the well-known 

identities 

/2(2n + 2) + 1 = f(2n + ±)f(2n + 3), 

/2(2n + 1) - 1 = f(2n)f(2n + 2). 

Obviously, x(0) + 1 = /(l)/(2) , z/(0) + 1 = /(2)/(3). So assume 

(x(n) + 1,2/(n) + 1) = (f(2n + l)/(2w + 2) ,/(2n + 2)/(2w + 3)). 

Then 

x{n + 1) + 1 = 3y(n) - x{n) + 3 = 3(y(n + 1) + l) - (x(n) + l) + 1 
= 3f(2n + 2)/(2n + 3) - f(2n + l)f(2n + 2) + 1 
= 2/(2n + 2)/(2n + 3) + f(2n + 2)(f(2n + 1) + f(2n + 2)) 

- f(2n + ±)f(2n + 2) + 1 
= 2/(2n + 2)/(2n + 3) + (/2(2n + 2) + l) 
= 2/(2w + 2)f(2n + 3) + f(2n + ±)f(2n + 3) 
= f(2n + 2)/(2n + 3) + /2(2n + 3) = f(2n + 3)/(2n + 4). 
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So, 
y(n + 1) + 1 = 3x(n + 1) - y(n) + 1 

= 3 (^ (n + 1) + 1) - (z/(n) + 1) - 1 
= 3f(2n + 3 ) / ( 2 n + 4) - f(2n + 2)f(2n + 3) 
= 2f(2n + 3 ) / ( 2 n + 4) + f(2n + 3 ) ( / ( 2 n + 2) 

- f(2n + 2 ) / ( 2 n + 3) 
= 2f(2n + 3 ) / ( 2 n + 4) + (f2(2n + 3) - l ) 
= 2f(2n + 3)f(2n + 4) + / (2w + 2 ) / ( 2 n + 4) 
= f(2n + 3 ) / ( 2 n + 4) + f2(2n + 4) 
= f(2n + 4) / (2w + 5 ) , 

completing the proof. 
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THE DIOPHANTINE EQUATION Nh2 = c2 + N + 1 

DAVID A. ANDERSON and MILTON W. LOYER 
Montana State University, Bozeman, Mon. 59715 

Other than b = c - 0 (in which case N = -1) , the Diophantine equation 
Nb2 = c2 + N + 1 has no solutions. This family of equations includes the 
1976 Mathematical Olympiad problem a2 + b2 + c2 = a2b2 (letting N = a2 - 1) 
and such problems as 6b = a2 + 7, a2b2 = a2 + a2 + 1, etc. 

Noting that b2 ^ 1 (since N ^ a2 + N + 1), one may restate the problem 
as follows: 

Nb2 = c2 + N + 1 

M?2 - /!/ = c2 + 1 

/l/0>2 - 1) = o2 + 1 
N = (c2 + l)/(£2 - 1). 

Thus the problem reduces to showing that, except as noted, (a2 + 1)/(b2 - 1) 
cannot be an integer. [This result demonstrates the interesting fact that 
a2 i -1 (mod b2 - 1), i.e., that none of the Diophantine equations a2 = 2 
(mod 3), c2 =7 (mod 8), etc., has a solution.] 

It is well known [1, p. 25] that for any prime p, p\o2 + 1 =^p - 2 or 
p = km + 1.* 

b2 - l\a2 + 1 =>b2 - 1 = 2s(4w1 + 1) (4w2 + 1) ••• (4m + 1) 

= 2s (4M + 1) 

b2 = 2s(4M) + 2s + 1 

"The result of this article is not merely a special case of this theo-
rem [e.g., according to the theorem (c2 + l)/8 could be an integer], 

- 1 
+ f(2n + 3)) 
- 1 


