SOME CONGRUENCES INVOLVING GENERALIZED FIBONACCI NUMBERS

CHARLES R. WALL
University of South Carolina, Columbia S.C. 29208

1. INTRODUCTION

Throughout this paper, let $\left\{H_{n}\right\}$ be the generalized Fibonacci sequence defined by

$$
\begin{equation*}
H_{0}=q, \quad H_{1}=p, \quad H_{n+1}=H_{n}+H_{n-1} \tag{1}
\end{equation*}
$$

and let $\left\{V_{n}\right\}$ be the generalized Lucas sequence defined by

$$
\begin{equation*}
V_{n}=H_{n+1}+H_{n-1} \tag{2}
\end{equation*}
$$

If $q=0$ and $p=1,\left\{H_{n}\right\}$ becomes $\left\{F_{n}\right\}$, the Fibonacci sequence, and $\left\{V_{n}\right\}$ becomes $\left\{L_{n}\right\}$, the Lucas sequence. We use the recursion formula to extend to negative subscripts the definition of each of these sequences.

Our purpose here is to examine several consequences of the identities

$$
\begin{equation*}
H_{n+r}+(-1)^{r} H_{n-r}=L_{r} H_{n} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{n+r}-(-1)^{r} H_{n-r}=F_{r} V_{n} \tag{4}
\end{equation*}
$$

both of which were given several years ago in my master's thesis [12]. Identity (3) has been reported several times: by Tagiuri [5], by Horadam [8], and more recently by King and Hosford [10]. However, identity (4) seems to have escaped attention.

We will first establish identities (3) and (4), and then show how they can be used to solve several problems which have appeared in these pages in the past. We close with a generalization of the identities.

2. PROOF OF THE IDENTITIES

The Binet formulas

$$
F_{n}=\left(\alpha^{n}-\beta^{n}\right) / \sqrt{5} \quad \text { and } \quad L_{n}=\alpha^{n}+\beta^{n}
$$

where $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$, easily generalize to

$$
H_{n}=\left(A \alpha^{n}-B \beta^{n}\right) / \sqrt{5} \quad \text { and } \quad V_{n}=A \alpha^{n}+B \beta^{n}
$$

where $A=p-q \beta$ and $B=p-q \alpha$. Any of these formulas may be obtained easily by standard finite difference techniques, or may be verified by induction.

Since $\alpha \beta=-1$, we have

$$
\begin{aligned}
H_{n+r}+(-1)^{r} H_{n-r} & =\left\{A \alpha^{n+r}-B \beta^{n+r}+\alpha^{r} \beta^{r} A \alpha^{n-r}-\alpha^{r} \beta^{r} B \beta^{n-r}\right\} / \sqrt{5} \\
& =\left\{A \alpha^{n} \alpha^{r}+A \alpha^{n} \beta^{r}-B \beta^{n} \alpha^{r}-B \beta^{n} \beta^{r}\right\} / \sqrt{5} \\
& =\left\{\alpha^{r}+\beta^{r}\right\} \cdot\left\{A \alpha^{n}-B \beta^{n}\right\} / \sqrt{5} \\
& =L_{r} H_{n} .
\end{aligned}
$$

Therefore, (3) is established.

Similarly,

$$
\begin{aligned}
H_{n+r}-(-1)^{r} H_{n-r} & =\left\{A \alpha^{n+r}-B \beta^{n+r}-\alpha^{r} \beta^{r} A \alpha^{n-r}+\alpha^{r} \beta^{r} B \beta^{n-r}\right\} / \sqrt{5} \\
& =\left\{A \alpha^{n} \alpha^{r}+B \beta^{n} \alpha^{r}-A \beta^{n} \alpha^{r}-B \beta^{n} \beta^{r}\right\} / \sqrt{5} \\
& =\left\{A \alpha^{n}+B \beta^{n}\right\} \cdot\left\{\alpha^{r}-\beta^{r}\right\} / \sqrt{5} \\
& =F_{r} V_{n},
\end{aligned}
$$

so (4) is also verified.

3. CONSEQUENCES OF THE IDENTITIES

It is sometimes more convenient to rewrite identities (3) and (4) as
and

$$
H_{k+2 h}-H_{k}= \begin{cases}L_{h} H_{k}+h & (h \text { odd }) \tag{5}\\ F_{h} V_{k}+h & (h \text { even })\end{cases}
$$

d

$$
H_{k+2 h}+H_{k}= \begin{cases}F_{h} V_{k+h} & (h \text { odd }) \tag{6}\\ L_{h} H_{k}+h & (h \text { even })\end{cases}
$$

In the discussion which follows, it is helpful to remember that:
i. If $H_{n}=F_{n}$, then $V_{n}=L_{n}$.
ii. If $H_{n}=L_{n}$, then $V_{n}=5 F_{n}$.
iii. For all k, F_{n} divides $F_{n k}$.
iv. If k is odd, then L_{n} divides $L_{n k}$.

By (5), we have

$$
H_{n+24}-H_{n}=F_{12} V_{n+12}=144 V_{n+12} .
$$

Therefore, with $H_{n}=F_{n}$,
$F_{n+24} \equiv F_{n}(\bmod 9)$,
as asserted in problem B-3 [9].
Direct application of (5) yields

$$
H_{n+4 m+2}-H_{n}=L_{2 m+1} H_{n+2 m+1}
$$

so that

$$
F_{n+4 m+2}-F_{n}=L_{2 m+1} F_{n+2 m+1},
$$

as claimed in problem B-17 [13].
Since $L_{0}=2$, identity (4) gives us

$$
\begin{aligned}
L_{2 k}-2(-1)^{k} & =L_{k+k}-(-1)^{k} L_{k-k} \\
& =F_{k}\left(5 F_{k}\right)=5 F_{k}^{2} .
\end{aligned}
$$

Therefore, $L_{2 k} \equiv 2(-1)^{k}(\bmod 5)$, which was the claim of problem B-88 [14].
If k is odd, then (5) tells us that
$H_{n k+2 k}-H_{n k}=L_{k} H_{n k+k}$,
$F_{(n+2) k} \equiv F_{n k} \quad\left(\bmod L_{k}\right) \quad(k$ odd $)$
as asserted in problem B-270 [6].

By (6) we have

$$
\begin{aligned}
F_{8 n-4}+F_{8 n}+F_{8 n+4} & =F_{n}+F_{8 n+4}+F_{8 n-4} \\
& =F_{8 n}+L_{4} F_{8 n}=(1+7) F_{8 n}=8 F_{8 n} .
\end{aligned}
$$

Since $21=F_{8}$ divides $F_{8 n}$, it follows that

$$
F_{8 n-4}+F_{8 n}+F_{8 n+4} \equiv 0 \quad(\bmod 168)
$$

as claimed in problem B-203 [7].
In problem B-31 [11], Lind asserted that if n is even, then the sum of $2 n$ consecutive Fibonacci numbers is divisible by F_{n}. We will establish a stronger result. Horadam [8] showed that

$$
H_{1}+H_{2}+\cdots+H_{2 n}=H_{2 n+2}-H_{2} .
$$

If n is even, then by (5) we have

$$
H_{1}+H_{2}+\cdots+H_{2 n}=H_{2 n+2}-H_{2}=F_{n} V_{n+2},
$$

which is clearly divisible by F_{n}. Because the sum of $2 n$ consecutive generalized Fibonacci numbers is the sum of the first $2 n$ terms of another generalized Fibonacci sequence (obtained by a simple shift), Lind's result holds for generalized Fibonacci numbers. In addition, we may similarly conclude from (5) that if n is odd, the sum of $2 n$ consecutive generalized Fibonacci numbers is divisible by L_{n}.

By (5),

$$
\begin{aligned}
H_{2 n(2 k+1)}-H_{2 n} & =H_{2 n+4 n k}-H_{2 n} \\
& =F_{2 n k} V_{2 n+2 n k}=F_{2 n k} V_{2 n(k+1)} .
\end{aligned}
$$

Therefore (with $H_{n}=L_{n}$ and $V_{n}=5 F_{n}$)

$$
L_{2 n(2 k+1)}-L_{2 n}=5 F_{2 n k} F_{2 n(k+1)},
$$

so not only is it true that

$$
L_{2 n(2 k+1)} \equiv L_{2 n} \quad\left(\bmod F_{2 n}\right),
$$

as asserted in problem B-277 [1], but indeed

$$
L_{2 n(2 k+1)} \equiv L_{2 n} \quad\left(\bmod F_{2 n}^{2}\right)
$$

since $F_{2 n}$ divides both $F_{2 n k}$ and $F_{2 n(k+1)}$.
In a similar fashion,

$$
\begin{aligned}
H_{(2 n+1)(4 k+1)}-H_{2 n+1} & =H_{2 n+1+4 k(2 n+1)}-H_{2 n+1} \\
& =F_{2 k(2 n+1)} V_{2 n+1+2 k(2 n+1)} \\
& =F_{2 k(2 n+1)} V_{(2 k+1)(2 n+1)}
\end{aligned}
$$

so that

$$
L_{(2 n+1)(4 k+1)}-L_{2 n+1}=5 F_{2 k(2 n+1)} F_{(2 k+1)(2 n+1)} .
$$

Therefore,

$$
L_{(2 n+1)(4 k+1)} \equiv L_{2 n+1} \quad\left(\bmod F_{2 n+1}^{2}\right)
$$

and in particular

$$
L_{(2 n+1)(4 k+1)} \equiv L_{2 n+1} \quad\left(\bmod F_{2 n+1}\right)
$$

as claimed in problem B-278 [2].

A1so,

$$
\begin{aligned}
H_{2 n(4 k+1)}-H_{2 n} & =H_{2 n+8 n k}-H_{2 n} \\
& =F_{4 n k} V_{2 n+4 n k} \\
& =F_{4 n k} V_{2 n(2 k+1)} .
\end{aligned}
$$

Therefore,

$$
F_{2 n(4 k+1)}-F_{2 n}=F_{4 n k} L_{2 n(2 k+1)},
$$

so

$$
F_{2 n(4 k+1)} \equiv F_{2 n}\left(\bmod L_{2 n(2 k+1)}\right)
$$

Since $L_{2 n}$ divides $L_{2 n(2 k+1)}$, we have

$$
F_{2 n(4 k+1)} \equiv F_{2 n}\left(\bmod L_{2 n}\right),
$$

which establishes problem B-288 [3].
Now let us consider

$$
H_{(2 n+1)(2 k+1)}-H_{2 n+1}=H_{2 n+1+2 k(2 n+1)}-H_{2 n+1}
$$

By (5) we have

$$
\begin{cases}L_{k(2 n+1)} H_{(k+1)(2 n+1)} & \text { if } k \text { is odd } \\ F_{k(2 n+1)} V_{(k+1)(2 n+1)} & \text { if } k \text { is even }\end{cases}
$$

Therefore

$$
F_{(2 n+1)(2 k+1)}-F_{2 n+1}= \begin{cases}L_{k(2 n+1)} F_{(k+1)(2 n+1)} & \text { if } k \text { is odd } \\ F_{k(2 n+1)} L_{(k+1)(2 n+1)} & \text { if } k \text { is even }\end{cases}
$$

If k is odd, $L_{k(2 n+1)}$ is divisible by $L_{2 n+1}$; if k is even, then $k+1$ is odd, so $L_{2 n+1}$ divides $L_{(k+1)(2 n+1)}$. Hence, in any case,

$$
F_{(2 n+1)(2 k+1)} \equiv F_{2 n+1} \quad\left(\bmod L_{2 n+1}\right),
$$

which was the claim in problem B-289 [4].
Finally, we note that adding (3) and (4) yields
$F_{n+r}=\left(L_{r} F_{n}+F_{r} L_{n}\right) / 2$
if $H_{n}=F_{n}$ (and $V_{n}=L_{n}$), and
$L_{n+r}=\left(L_{r} L_{n}+5 F_{r} F_{n}\right) / 2$
if $H_{n}=L_{n}$ (and $V_{n}=5 F_{n}$). Subtraction of the same two identities gives us

$$
F_{n-r}=(-1)^{r}\left(L_{r} F_{n}-F_{r} L_{n}\right) / 2
$$

and

$$
L_{n-r}=(-1)^{r}\left(L_{r} L_{n}-5 F_{r} F_{n}\right) / 2
$$

These results appear to be new.

4. GENERALIZATION OF THE IDENTITIES

Let $\left\{u_{n}\right\}$ be the generalized second order recurring sequence defined by

$$
u_{0}=q, \quad u_{1}=p, \quad u_{n+1}=g u_{n}+h u_{n-1},
$$

where $g^{2}+4 h \neq 0$ (to avoid having repeated roots of the associated finite difference equation). Define $\left\{v_{n}\right\}$ by

$$
v_{n}=u_{n+1}+h u_{n-1},
$$

let $\left\{s_{n}\right\}$ be defined by

$$
s_{0}=0, \quad s_{1}=1, \quad s_{n+1}=g s_{n}+h s_{n-1},
$$

and let $\left\{t_{n}\right\}$ be defined by

$$
t_{n}=s_{n+1}+h s_{n-1} .
$$

Extend each sequence to negative subscripts by means of the recurrence relation.

Then if

$$
\alpha=\left(g+\sqrt{g^{2}+4 h}\right) / 2 \quad \text { and } \quad \beta=\left(g-\sqrt{g^{2}+4 h}\right) / 2,
$$

the Binet-like identities are easy to prove:

$$
\begin{aligned}
& s_{n}=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta) \\
& t_{n}=\alpha^{n}+\beta^{n} \\
& u_{n}=\left(A \alpha^{n}-B \beta^{n}\right) /(\alpha-\beta) \\
& v_{n}=A \alpha^{n}+B \beta^{n},
\end{aligned}
$$

where $A=p-q \beta$ and $B=p-q \alpha$.
Then it is a simple matter to establish that

$$
u_{n+r}+(-h)^{r} u_{n-r}=t_{r} u_{n}
$$

and

$$
u_{n+r}-(-h)^{r} u_{n-r}=s_{r} v_{n}
$$

REFERENCES

1. P. Bruckman, Problem B-277, The Fibonacci Quarterly 12, No. 2 (1974):101.
2. P. Bruckman, Problem B-278, The Fibonacci Quarterly 12, No. 2 (1974):101.
3. P. Bruckman, Problem B-288, The Fibonacci Quarterly 12, No. 4 (1974):313.
4. P. Bruckman, Problem B-289, The Fibonacei Quarterly 12, No. 4 (1974):313.
5. L. Dickson, History of the Theory of Numbers, Vol. I (Chelsea, 1952), p. 404.
6. H. Freitag, Problem B-270, The Fibonacci Quarterly 11, No. 6 (1973):550.
7. R. Grassi, Problem B-203, The Fibonacci Quarterly 9, No. 2 (1971):106.
8. A. Horadam, "A Generalized Fibonacci Sequence," Amer. Math. Monthly 68 (1961);455-459.
9. J. Householder, Problem B-3, The Fibonacci Quarterly 1, No. 1 (1963):73.
10. J. King \& P. Hosford, Problem E2497, Amer. Math. Monthly 81 (1974):902.
11. D. Lind, Problem B-31, The Fibaoncci Quarterly 2, No. 1 (1964):72.
12. C. Wall, "Sums and Differences of Generalized Fibonacci Numbers" (Master's thesis, Texas Christian University, 1964).
13. C. Wall, Problem B-17, The Fibonacci Quarterly 1, No. 1 (1963):75.
14. J. Wessner, Problem B-88, The Fibonacci Quarterly 4, No. 2 (1966):190.

