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1. INTRODUCTION 

That reflections of light rays within two glass plates can be expressed 
in terms of the Fibonacci numbers is well known [Moser, 1], In fact* if one 
starts with a single light ray and if the surfaces of the glass plates are 
half-mirrors such that they both transmit and reflect light, the number of 
possible paths through the glass plates with n reflections is Fn+2 . Hoggatt 
and Junge [2] have increased the number of glass plates, deriving matrix 
equations to relate the number of distinct reflected paths to the number of 
reflections and examining sequences of polynomials arising from the charac-
teristic equations of these matrices. 

Here, we have arranged the counting of the reflections across the two 
glass plates in a fresh manner, fixing our attention upon the number of paths 
of a fixed length. One result is a physical interpretation of the composi-
tions of an integer using lfs and 2fs (see [3], [4], [5]). The problem is 
extended to three glass plates with geometric and matrix derivations for 
counting reflection paths of different types as well as analyses of the nu-
merical arrays themselves which arise in the counting processes. We have 
counted reflections in paths of fixed length for regular and for bent reflec-
tions, finding powers of two, Fibonacci numbers and convolutions, and Pell 
numbers. 

2. PROBLEM I 

Consider the compositions of an even integer In into ones and twos as 
represented by the possible paths of length In taken in reflections of a 
light ray in two glass plates. 

REFLECTIONS OF A LIGHT RAY IN PATHS OF LENGTH In 

For a path length of 2, there are 2 possible paths and one reflection; for a 
path length of 4, 4 possible paths and 8 reflections; for a path length of 6, 
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8 possible paths and 28 reflections. Notice that an odd path length would 
end at the middle surface rather than exiting. 

First, the number of paths possible for a path length of In is easily-
derived if one notes that each path of length 2 in - 1) becomes a path of 
length In by adding a segment of length 2 which either passes through the 
center plate or reflects on the center plate, so that there are twice as many 
paths of length In as there were of length 2(n - 1). 

ReALlkt 1: There are 2n paths of length In. 

Continuing the same geometric approach yields the number of reflections 
for a path length In. Each path of length 2(n - 1) gives one more reflection 
when a length 2 segment is added which passes through the center plate, and 
two more reflections when a length 2 segment is added which reflects on the 
center plate, or, the paths of length In have 3 •2"""1 new reflections coming 
from the 2n~1 paths of length 2 in - 1) as well as twice as many reflections 
as were in the paths of length 2 (n - 1). Note that the number of reflections 
for path lengths In is 2n~1(3n - 2) for n = 1, 2, 3. If there are 

2n"2(3(n - 1) - 2) 

reflections in a path of length 2(n - 1), then there are 

2 • 2n"2(3(n - 1) - 2) + 3 • 2n'1 = 2n_1(3n - 2) 

reflections in a path of length 2n, which proves the result following by mathe-
matical induction. 

RQAuZt 2: There are 2*~1(3n - 2) reflections in each of the paths of length 
In. 
VKOQ.fa: Let A represent a reflection down / \ or up \/ , and B represent a 

straight path down t or up L where both A and B have length two. Note that 

it is impossible for the two types of A to follow each other consecutively. 
Now, each path of length In is made up of A1 s and 5!s in some arrangement. 
Thus, the expansion of (A + B)n gives these arrangements counted properly, 
and N = 2n, so that the number of distinct paths is 2n. 

Now, in counting reflections, there is a built-in reflection for each A 
and a reflection between A and B9 A and A9 and B and B. Consider 

n 
1 + 3 , 

Each term in (A + B)n has degree n and there are (n - 1) spaces between fac-
tors . The xn~1 counts the (n - 1) spaces between factors, since each A has 
a built-in reflection. The exponents of x count reflections from A; there 
are no reflections from B. Since we wish to count the reflections, we dif-
ferentiate f{x) and set x = 1. 

f'(x) = {{n - l)£n-2(l + x)n + nxn'Hl + ^)""1}| 

= in - l)2n + n • 2 n _ 1 = 2n"1(3n - 2). 

Interpretation as a composition using ones and twos: All the even in-
tegers have compositions in which, whenever strings of ones appear, there 
are an even number of them. Each A is a 1 + 1 (taken as a pair) and each B 
is a 2, and each reflection is a plus sign. From fix), let s = n - 1 + j so 
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that j = s - n + 1, and we get 
\s-n+ 1/ 

compositions of'2n, each with ex-

actly s plus signs. Note that s>_n-±, with equality when all twos are used. 
We note in passing that the number of possible paths through the two 

plates with n reflections is Fn+2 , while the number of compositions of n us-
ing all ones and twos is Fn+i [3]. 

3. PROBLEM II 

Given a particular configuration (path), how many times does it appear 
as a subconfiguration in all other paths with a larger but fixed number of 
reflections? 

This leads to convolutions of the Fibonacci numbers. 

PATHS WITH A FIXED NUMBER OF REFLECTIONS 

N - 0 

Note that the subconfigurations + , ^ ^ e a c h occur 1, 2, 5, 10, 20, ... times 

in successive collections of all possible paths with a larger but fixed num-
ber of reflections. The same sequence occurs for any subconfiguration chosen. 

Consider a subconfiguration that contains N reflections. It could be 
preceded by s reflections and followed by k reflections. Clearly, since each 
path starts at the upper left, the configurations in the front must start in 
the upper left and end up in the upper right, which demands an odd number of 
reflections. Thus, s is odd, but conceivably there are no configurations in 

1 • — i 

s 
r i 

N r e f l ec t ions 
» 1 
" k j 

the part on the front. Now, the part on the end could join up at the top or 
the bottom, depending on whether N is odd or even. In case N is even, then 
the regular configurations may be turned over to match. Thus, if the total 
number of reflections is specified, the allowable numbers will be determined. 
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4. RESULTS OF SEPARATING THE REFLECTION PATHS 

In Sections 2 and 3, the reflection paths \ and /9 and / \ and \ / , 

were counted together. If one separates them, then, with the right side up, 
one obtains {l, 1, 4, 5, 14, 19, 46, 65, . ..} which splits into two convolu-
tion sequences: 

{Al9 A39 A59 ...} = {1, 2, 5, 13, ...} * {1, 2, 5, 13, ... } ; 

{A29 Ah9 AB9 ...} = {1, 2, 5, 13, ...} * {1, 3, 8, 21, ...}. 

This second set agrees with the upside-down case {0, 1, 1, 5, 6, 19, 25, 65, 
...} which splits into two convolution sequences: 

{Bl9 B3, B5, ...} = {0, 1, 3, 8, ...} * {1, 3, 8, 21, .., } ; 

{ S 2 , Bh9 B69 ...} = {A2, A k 9 A S 9 . . . } . 

Clearly, there are only two cases, \ , \ y , where we assume that the 

configurations in which these appear start at the left top and end at either 
right top or right bottom. 

First we discuss the number of occurrences of \ . Here we consider only 

those patterns which start in the upper left. If there are no prepatterns, 
then we consider odd and even numbers of reflections separately. We get one 

free reflection by joining \ to a pattern which begins on the bottom left. 

\ I . rr: A 

Let us assume that the added-on piece has k (even) internal reflections. 
There are Fk+2 such right-end pieces and FQ+2 -F2 =1 left-end pieces. Next, 
let the piece on the right have k - 2 internal reflections and the one on the 
left have one internal reflection: 

7^/ 
X / (fc - 2) 
—^e 

-̂ 1 + 2 °  ^k-2+2 

Generally, 

Specifically, 
V * + 2 + F3Fk + V * - 2 + 

k = 0: F1F2 = 1 

k = 2: FxFk + F3F2 = 1 * 3 + 2 * 1 = 5 



122 REFLECTIONS ACROSS TWO AND THREE GLASS PLATES [April 

k = 4: F1F6 + F3Fk + F5F2 = 1-8 + 2*3 + 5-1 = 19 

k = 6: FXFQ + F3F6 + FsFh + F7F2 = 1 • 21 + 2 • 8 + 5• 3 + 13 • 1 = 65 

If k is odd, the same basic plan holds, so that for no pieces front or back, 
F2F2 = 1, 

k = 1: FlF3 + F3Fl = 1-2 + 2-1 = 4 

fc = 3: F1F5 + F3F3 + F5FX = 1 • 5 + 2 • 2 + 5 • 1 = 14 

This is precisely the same as the other case except that it must start at the 
top left, have a free reflection where it joins a section at the top, a free 
reflection where it joins the right section at the bottom, and the right sec-
tion must end at the bottom. 

\ 
-&~ 

\ • \ / . v -*£-

Any of our subconfigurations can appear complete by itself first. Our sam-
ple, of course, holds for any block with an even number of reflections. The 
foregoing depends on the final configuration starting on the upper left and 
the subconfiguration (the one we are watching) also starting on the upper 
left. However, if we "turn over" our subconfiguration then we get a differ-
ent situation 

^o-

which must fit into a standard configuration which starts in the upper left. 
Hence, this particular one cannot appear normally by itself, nor can any one 
with an even number of reflections. Here we must have a pre-configuration 
with an even number of reflections. 

Let k be even again. 

F F 
r 2 r2 

1-1 = 1 

1 - 3 + 3 - 1 

F9FR + FhFL + F^F, + 3-3 + 8-1 25 

Let k be odd. 

F2F3 + FhFl = 1-2 + 3 

FoF* + FuF, + FRF hL 3 er 1 

1 = 5 

1 • 5 + 3 • 2 + 19 

These sequences are {l, 1^ 4, 5^ 14, 19̂ , ...} (right side up) and {0, 1̂ , 1, 
5_, 6, _19̂  ...} (upside down), and added together, they produce the first Fi-
bonacci convolution {l, 2, 5, 10, 20, 38, ...}. 
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Each subconfiguration which starts at the upper left and comes out at 
the lower right can be put in place of the configuration which makes a straight 
through crossing with the same results, of course. 

For the results dealing with 

the restrictions on the left are exactly the same as just described, and the 
endings on the right are merely those for the earlier case endings turned up-
side down to match the proper connection. 

Reconsidering the four sequences of this section gives some interesting 
results. In the sequences {An} (right side up) and {Bn} (upside down), adding 
Ai and Bi gives successive terms of the first Fibonacci convolution sequence. 
Taking differences'of odd terms gives 1-0=1, 4-1=3, 14-6=8, ..., which 
is clearly 1,3,8,21, ..., Flk , ..., the Fibonacci numbers with even subscripts. 

Further, for {An}, 

1 + 1 + 2 = 4 1 + 4 = 5 
4 + 5 + 5 = 14 5 + 14 = 19 

14 + 19 + 13 = 46 1 9 + 46 = 65 

An + An+1 = An+29 n even An + An + i + Fn + 2 - An + 2, 
while for {Bn}, 

1 + 1 + 3 = 5 
5 + 6 + 8 = 19 
19 + 25 + 21 = 65 

Bn + Bn + i + Fn + 2 = BnJj_2, 

n odd 

n even 

0 
1 
6 

+ 
+ 
+ 

1 
5 
19 

= 
= 
= 

1 
6 
25 

Bn + Bn + i = Bn + 2, n odd 
The results of this section can be verified using generating functions 

as follows. (See, for example, [6].) The generating function for the first 
convolution of the Fibonacci sequence, which sequence we denote by {Fn }, is 

/ 1 V = \T FW x 
\1 — x — x J «»o 

w h i l e t h e sequence of odd terms of {An} i s t he f i r s t convolu t ion of F ibonacc i 
numbers w i t h odd s u b s c r i p t s , o r , 

/ 1 _ x2 \ 2 ^ • 
i -̂) = > A2n + 1x 
\ 1 - 3xz + x* I frrQ 

'0 

and the sequence of odd terms of {Bn} is the first convolution of Fibonacci 
numbers with even subscripts, or, 

v2 

(l - J2 +x0 =S 5 2" H 

and the even terms of {An} as well as of {Bn} are the convolution of the se-
quence of Fibonacci numbers with even subscripts with the sequence of Fibo-
nacci numbers with odd subscripts, or, 

That {F^2)} is given by the term-wise sum of {An} and {Bn} is then simply 
shown by adding the generating functions, since 
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(1 - x2)2
 ( 2a?(l - x2) ] 

(1 - 3x2 + xh)2 (1 - 3*2 + xh)2 (1 - 3a;2 + xh)2 

_ (1 + x - x2)2 _ (1 + x - x 2 ) 2 

(1 - 3x2 + x 4 ) 2 (1 - 2*2 + xh - x2): 

(1 + x - xz) 2^2 

(1 - x2 + ^)2(1 - x2 - x)2 (1 - x - x2)2 

Quite a few identities for the four sequences of this section could be derived 
by the same method. 

5. THREE STACKED PLATES 

IhtOKzm A: In reflective paths in three stacked glass plates, there are Fn_1 
paths of length n that enter at the top plate and exist at the top or bottom 
plate. 

length 

number of 
paths 

ViACUAAion: Note that the paths 
We therefore assume of the paths 
in 3, Fn_3 which end in 1 + 1, 
1 + 2, where n >_ 5. This is the 
length n - 3 reflecting inwardly 

VK.00^' We proceed by induction. 
of paths which end in 3, 1 + 1 
Ffc_3 paths which end in 3, F^_2 
2 + 2, and Fk_ 3 which end in 1 + 
will have a proof by induction i 
lengths. The first three are s 
1 + 2 needs further elaboration. 
1 + 2, the ray must have been on 
ning: 

end in lengths 3, 2 + 2, 1 + 1, or 1 + 2. 
of length n, that there are Fn.h which end 

which end in 2 + 2, Fn which end in 
same as saying that there are Fn_h paths of 
at an inside surface. 

Thus the paths of length k + 1 are made up 
, 2 + 2, or 1 + 2. We assume that there are 
paths which end in 1 + 1, F̂ _i+ which end in 
2. Since Fk_3 + Fk_2 + Fk_h + Fk_3 = Fk , we 
f we can establish the assumption about path 
traightforward, but that F^_3 paths end in 

In order to be on an outside edge after 
plate x or y with a reflection at the begin-

^ S 
How can the paths get to the x-dot for n even or the y-dot for n odd? Assume 
that there are Fk_6 paths of length k - 5 which come from the upper surface, 
go to plate 2/, and then to the x-dot (note that the total path would then 
have length k + 1, since a path of 2 + 1 would be needed to reach the #-dot 
and a path of 1 + 2 to leave the x-dot). There are Fk_5 paths which reflect 
from plate x, go to plate y and return to the tf-dot, and Fk_5 paths which re-
lect from the bottom surface upward to the #-dot. Thus, there are 
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Fk-e + **-5 + Fk-5 = Fk-s 
paths of length k - 2 coming upward to a reflection x-dot if k is even and 
downward to a y-dot if k is odd. 

By careful counting, one can establish several other results involving 
Fibonacci numbers. 

Tko.QH.Qjm B: There are Fn paths of length n in three stacked plates that enter 
at the top plate and terminate on one of the internal surfaces. 

Tkd.OK.Qjm C: There are Fn+i paths of length n which enter at the top plate and 
terminate on one of the four surfaces, and Fn_l that terminate on outside 
surfaces. 

Tko.OH.om V: Of paths of length n terminating on any one of the four surfaces, 
there are Fn paths that end in a unit jump. There are 2Fn_3 paths that end 
in a two unit jump, and there are Fn_h paths that end in a three unit jump. 

Tko.OH.Qjm E: There are nFn_3 ones used in all paths of length n which termi-
nate on outside plates. 

Thz.OH.Qjm F: 'For n >_ 3, the number of threes in paths of length n which ter-
minate on outside plates is a convolution of 1, 0, 1, 1, 2, 3, ..., Fn_29 
. .., with itself. The convolution sequence is given by 2Fn_h + Cn_69 where 
Cn = (nLn+l + Fn)/5. 
Tko.OH.Qjm G*' Let T„ be the number of threes in all paths of length n that end 
on an inside line. Then the number of twos used in all paths of length n 
which terminate on outside faces is 2T„ + 1 = 2Fn_3 + 2Cn_5. 

Tko.OH.Qjm tf: T£ = Tn - Fn_hf9 where Tn is the number of threes used totally in 
all paths of length n which terminate on outside faces, and T^ is the number 
of threes in all paths of length n which end on an inside plate. 

CoH.ottaAy.* The number of twos used in all paths of length n which terminate 
on outside surfaces is 

2(2'„+i " Fn-,) = 2<2F„_3 + Cn_5 - Fn_3) = 2[5F„_3 + (n - 5)L„_, + 2Fn.5]/5. 

From this, of course, we can now discuss the numbers of ones, twos, and 
threes used in the reflections. We will let Un be the number of ones used, 
Dn the number of twos, Tn the number of threes used in all paths of length n 
terminating on outside faces , while we will prime these to designate paths 
that only terminate on inside plates. 

We return to the proof of Theorem A, that there are Fn_1 paths of length 
n in three stacked glass plates, to glean more results. Recall that the plate 
paths end in 3, 1-fl, 2 + 2, and 1 + 2. 

Let Pn be the number of paths of length n. Then 

Pn = Pn-3 + Pn-2 + ^n-4 + 0n-3> 

where Pn_3 paths end in 3, P„.2 in 1 + 1, Pn_h in 2 + 2S and 0M_3 is the nUffl-
ber of paths terminating on an inside plate and of length n9 but the last 
path segment was from the inside (i.e., from plate y to x). Suppose we ap-
proach x from below and the path is n - 3 units long; then we add the dotted 
portion. However, we can get to x from y or we can get to x from z. The 
number of paths from z is Fn_6 by induction since there are Fn_l paths. The 
number of paths from y is 0n_4. Assume 0n = Fn_l also so that 
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+ F - F + F = F 

25 2̂  
X 

y 
z 

Now 
^n + 1 "n - 2 + ^n - 1 + ^n - 3 + ™n - 2 

= ^n - 1 + Fn - 2 = Fn • 

If we display all Fn_x paths of length n, the number of ones used is nFn_3. 

We need some further results. Earlier we saw that there were Fn_1 paths 
from the inside approaching one of the inside plates. We now need to know 
how many paths approach the inside lines from outside (a unit step from an 
outside line). Clearly, it is Fn_2; since the path length to the inside line 
is n, then the path length to the outside line is n - 1, making Fn_2 paths. 
Let Un be the number of ones used: 

Un+1 = (Un_2 + 2Un_3) +07n_3) +(Z7n_4> +(^n-3 + tfn-if), 

considering paths ending in 1 + 1 , 3, 2 + 2, and 1 + 2 . 
Let us look at Tn, the number of threes used in paths of length n. By 

taking paths ending in 3, then 1 + 1 , 2 + 2 , and 1 + 2, we have 

(A) Tn = (2>„_3 + Fn.h) + Tn_2 + Tn_k + T;.S 

(B) K = Tn-l + Tn-2 
Writing (A) for Tn+1 and subtracting the expression above for Tn gives 

•Fn+i ~ Tn = Tn_ x - Tn_h + Tn_2 - Tn_ 3 + Fn_3 - Fn_k 

= Tn-1 + Fn-5 + (̂ n-2 - Tn-3 ~ Tn-h) 

?n-l + Fn.5 + 0. 

Therefore, 

•*• n + 1 -F-n "*~ ™n _ l + Fn _ 5 , 

which shows that { n̂} is a Fibonacci convolution (first) sequence. It is 
easy to verify that 

Tn = 2Fn_, + Cn_6, T, = 0,.T2 = 0, T3 = 1, 

2\ = 0, T5 = 2, T6 = 2, 

where {Cn} is the first Fibonacci convolution sequence. 

Also, 
Tn ~ Tn - Fn.h, 

Next, consider Dn9 the number of twos used in paths of length n. Again 
taking paths ending in 3, then in 1 + 1, 2 + 2 , and 1 + 2 , we have 

(C) Dn = (Dn_k + 2Fn_5) + Dn_3 + Dn_2 + (Z?n'_3 + Fn_h) 

(D) ^ = ^ - 1 + ^ - 2 + ^ - 3 
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Proceeding exactly as before, writing (C) for Dn+1 and subtracting the expres-
sion for Dn, and then using identity (D) , one derives 

2T-; + 1. From T£ = Tn - Fn_^9 then 

2-^n + i ~ 2Tn + 2 2Fn_ 2 
= 2Tn+1 - 2Fn_3 + 2Tn - 2Fn_h + 2Fn_k 

by taking advantage of Tn = Tn-1 4- Tn_2 + Fn.6. Therefore, 

^« + 2 = ^n + 1 + Tn + ^n - 2 ~ Fn - 3 = ^n + 1 + ^n + ^n - if 

From the total length of Fn_1 paths of length n9 we know that 

I7n + 2Dn + 3Tn = nFn_l9 

so that 

On the right-hand side, each term will satisfy a recurrence of the form 

• Hn = Hn,l + Hn_ 2 + Zn, 

where Zn is a generalized Fibonacci sequence. In this case, by looking at 

Ux = 0, U2 = 2, U3 = 0, #„ = 4, 

"» = y„-.i + Un-2 + K-H-
This is precisely satisfied by Un = nFn_3. 

If Un is the number of ones used, Dn the number of twos, and Tn the num-
ber of threes, then, clearly every number is followed by a reflection except 
the last one. Thus, if there are Fn total paths, then the number of reflec-
tions in paths of length n which terminate on outside faces is 

5-, _. 
In 

+ 2F 

U„ + Dn + Tn - Fn.1 

inFn„3) + ( | [ 5 F B _ 3 +•(n 
+ ( 2 ^ . , + [ (« -

- 5), 

6)L, 
» - 5 ] ) Jn-h 

i.5 + 2 ^ « -6]/ 5 ) " Fn-1 

= [(5n - 3)Fn_3 + (n - 3)Ln_2]/5, n >. 1. 

In summary, we write 

TkZQfiQJfn I «• In the total paths of length n which exit at outside plates, the 
number of paths is Fn_l9 and the number of reflections Rn is 

Un + Dn + Tn - Fn.l9 

where 

Dn = (f[5**-3 + (" - 5)^-<* + 2F„_5]) 

Tn = 2Fn_, + [(n - 6)Ln_5 + 2Fn.6]/5 

i?n = [(5n - 3)Fn_3 + {n - 3)Ln_2]/5. 

To conclude our discussion of paths and reflections in three glass plates, 
we consider a fixed number of reflections for paths which exit through either 
outside surface. 
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When there are r = 0 reflections, there is 1 path possible; for v = 1, 3 paths, 
and for v = 2, 6 paths. The number of paths Pr for v reflections yields the 
sequence 1, 3, 6, 14, 31, 70, 157, ... . 

ThzoJlCJfn J" Let Pr be the number of paths which exit through either outside 
face in three glass plates and contain v reflections. Then 

where 
2P„ + v 

1, P1 = 3, 14. 

It is easy to derive the sequence {Pr }. Pr+i is formed by adding a re-
flection at the outside face for each Pv path, and by adding a reflection at 
surface 1 or 2, which is the number of paths in Pr that end in a two unit jump 
plus twice the number ending in a three unit jump, which is Pr_l. The number 
ending in a unit jump in Pr paths is Pr_Z' ^ e numt>er ending in a two unit 
jump in Pr paths is Pv - Pr_2 ~ ^r-i* Thus, 

p,+i =p + (Pr ~ Pr-2 ~ 
2Pr + Pr _ i - Pr . 2 • 

Pr.j) + 2P,_! 

Fults [7] has given an explicit expression for Pr as well as its generating 
function. 

6. A MATRIX APPROACH TO REFLECTIONS IN TWO AND THREE STACKED PLATES 

Besides counting paths of constant length or paths of a constant number 
of reflections, there are many other problems, one could consider. Here, 
matrices give a nice method for solving such counting problems. 

We return to two glass plates and the paths of length n, where we con-
sider paths that go from line zero to lines one and two, one step at a time. 
Let un, Vn, and wn be the paths of length n to lines 0, 1, and 2, respective-
ly, and consider the matrix Q defined in the matrix equation below, where we 
note that QVn - vn+l 

QVn -

and 

/° 
h \o 

e'Vj 

i 
0 

1 

= 

oN 
I 

0 

yn+ 

\/u 

r V 

as below: 

= K + i 

It is easy to see that un+l = Vn, since a path to line zero could have come 
only from line 1; therefore, each path to line zero was first a path of length 
n to line 1, then one more step to line zero. Paths to line 1 could have come 
from line zero or line two, so that Vn + 1 = un + wn. Paths to line 2 came 
from line 1, or, Wn+l = vn. This sets up the matrix Q whose characteristic 
polynomial is x2 - 2x = 0 with solutions x = 0 or x2 = 2, so that 

2u„ 2vn, . and wn+2 = 2wn 
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All paths of length zero start on line zero, and in one step of unit length 
one obtains only one path to line 1, or, using matrix Q, 

QVo = Vi 

Sequentially, we see QnVQ 

'6 

Now, notice that there are 2i~"L paths coming out of the top line and 2r 

paths coming out of the bottom line, each of length 2n, so that there are 2n 

such paths. 
If one lets u%9 v*9 and w* be the number of regular reflections on the 

paths of. length n beginning on the top plate and terminating on the top, mid-
dle, or bottom plate, respectively, then it can be shown that, from the geom-
etry of the paths, 

n+l u: + W* + 2vn 

= V* + Wr Jn+l un ' wn~1 _ 
We can write both systems of equations in a 6 x 6 matrix 

1° ' 1 -

0 

0 

i o 
V 

1 
0 

1 
0 
0 

0 

0 1 
1 

0 
0 
0 

0 

1 

0 
0 
0 

1 
0 

0 
2 

0 

1 
0 

1 

0 
0 

1 
0 
1 
0 

0\ iul \ fu*\ 

V 
The method of solution now can be through solving the system of equations 

directly and, once the recurrence relations are obtained, recognize them. Or 
one can work with the characteristic polynomial [x(x2 -2)]2 via the Hamilton-
Cayley theorem and go directly for the generating functions. The recurrence 
-relations yield the general form of the generating function 

Pn(x) A °  + AYx + A2x 

whence one can get as many values as needed from the matrix application re-
peated to a starting column vector, as 
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1° 
1 

0 

0 

0 

\ o 

1 
0 

1 
0 
0 

0 

o ! I 

I ; o 
o ! o 
o ; o 
o ! i 
o ; o 

0 
2 

0 

1 
0 

1 

0 
0 

1 
0 
1 

0 

:\ d\ 

to use the method of undetermined coefficients for v(x). 
The regular reflections are /\ or \ / , while the bends look like / 

\ J \ . These occur in paths which permit horizontal moves as well 

as jumps between surfaces. These are necessarily more complicated. The ma-
trix Q* yields paths of length n where "bend" reflections are allowed. That 
is, 

'l 1 0' 

Q*Vn v, n + l 

allows paths to move along the lines themselves as well as between the lines. 
The same reasoning prevails. The characteristic polynomial (1 - x) (x -2x-V) 
yields Pell numbers for the paths of length n, sequentially, as 

1 
1 

0 

1 
1 

1 

0 
1 

1 

The formation of the number sequences themselves is easy, since 
Un+1 = Vn + Un9 Wn+1 = Un+1 - 1, and Vn+1 = 2vn + Vn_1. 

We see that paths of length n to line 1 are the Pell numbers Pn , 

-̂ rc + 1 = 2-Pn +^n_i? ^o = 05 P\ = 1J 

while the paths to lines 0 and 2 have sums 1, 3, 7, 17, ... , the sum of two 
consecutive Pell numbers. In terms of Pell numbers Pn , we can write 

un + wn = Pn + Pn-i and un - wn = 1, 
so that 

Un = (Pn + Pn-1 + D/ 2 

Vn = Pn 

' Un = (Pn + Pn.x - l)/2. 

This means that un and Wn separately obey the recurrence 

Un + 3 = 3Un+2 - Un+] 

whose characteristic polynomial is 

• i - U n , 

X" 3x2 + x + 1 = (x - 1)(x2 - 2x - 1). 
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The corresponding matrix for the system with bend reflections is 

1 
1 
0 
0 
0 

\ o 

1 
1 
1 
0 
0 
0 

0 
1 
1 
0 
0 

0 

; o 
1 2 

! o 
! i 
; i 
s 0 

2 
0 
2 

1 
1 
1 

0 
2 
0 
0 
1 
1 

Now, there are, of course, regular reflections along these paths, too, 
as well as bends, and the corresponding matrix for these is 

/ : 
0 

0 

° \ o 

1 
1 
1 

0 
0 
0 

0 

1 
1 

0 
0 
0 

1 
0 
0 

1 
1 
0 

0 
2 
0 

1 
1 
1 

0 
1 

0 

ll 
un- 1 

with starting vector u\ 

1I Wl/ 
0, u0 = 1, vc 

Wn 

0. 

One can verify that the generating functions for u%, V*9 and w^ are 

(1 - x)h + 2x2 

(i - x)za 2x x1)2 

3(1 - x)6x 

(i - x)za -

4(1 - x)2 

2x x2)2 

2xz 

(1 - x)2(l - 2x - x2)2 

while their sum, u% + V* + w%, yields the generating function 

1 + x + 2xz 

(1 - 2x x2)2 

all clearly related to the Pell sequence, Pell first convolution, and partial 
sum of the Pell first convolution sequence. 

In three stacked plates, these three systems of matrices generalize 
nicely. For regular reflections in paths of equal length n without horizon-
tal moves, 
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0 

1 

0 

0 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

o ; o 
0 

0 

0 

1 

0 

0 

0 

2 

0 

0 

1 

0 

1 

0 

0 

0 

2 

0 

0 

1 

0 

1 

0 

0 

0 

1 

0 

0 

1 

0 

r ' < 
Vn 

< 
y*n 

un-l 

Vn-1 
wn-l 

- 2 / » - i 

" w » + l l 

n + 1 

<+l 1 
y * 
J n + 1 
un 

vn 

^n 

yn 

while the bend reflections have the system 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

2 

0 

0 

1 

1 

0 

! o 

2 

0 

2 

0 

1 

1 

1 

0 

0 

2 

0 

2 

0 

1 

1 

1 

0 

0 

2 

0 

0 

0 

1 

1 

'< 
K 
< 
y*n 

U„-l 

Vn-l 

Wn-1 

^n-l 

= 

K+i~] 
K+i 
<+i 

y n+1 

un 

Vn .. 

Wn 

yn 

and the regular reflections in bent -paths are given by 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

1 

0 

0 

0 

1 

1 

0 

0 

0 

2 

0 

0 

1 

1 

1 

0 

0 

0 

2 

0 

0 

1 

1 

1 

0 

0 

0 

1 

0 

0 

1 

1 

" n 

v*n 

< 
y*n 
un~ 1 

V l 

Wn-1 

2 / » - i '. 

= 

un+l 

Vn+1 

K + l 
J n + l 

Un 

Vn 

Wn 

yn,. 

7. REFLECTIONS ALONG BEND PATHS IN THREE STACKED PLATES 

Here we count bend reflections and regular reflections in paths where 
bends are allowed. We begin with bend reflections in bend paths. Let Un, Vn, 
Wn, and Yn be the number of paths of length n terminating on lines 0,1, 2, 
and 3, respectively. Let U£, 7^, W* , and Y* be the number of bend reflections 
for those paths, and let a bend be a horizontal segment in a path. We shall 
show the following: 

(A) V* + U* + 27„.! 
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(B) 

(C) 

(D) 

K+i = K + U* + W* + 2(Un_x + Wn_{) 

K+i = K + n + n + 2a„.! + v o 
YUl = n + K + Wn-1 

We need a geometric derivation for the bends. 

-0- -e -e 
-Or 

u„ 
-Bi 

^n+] 

-e-
'n-1 

-e-
-e-

-BT 

^n + 3 

-0-

-e -e-r„ 
The paths to the point marked Un contain U£ bends, and there are Un such 
paths. We can go to L7„ + 1 from Vn_i by either the upper or lower path, but we 
have added a bend at the upper path and a bend at the lower path; 

Un + 1 

thus, 2Vn_1 merely counts the extra bends by these end moves. We can reach 
Un+i from Un and from Vn and each of these path bundles contains by declara-
tion U* and 7* bends, respectively. Thus, 

UUl = U* + V* + 27„_1, 
establishing (A). The derivation for (D) is similar. 

We now tackle (B) . Notice that we can reach Vn + 1 in a unit step from 
Un? Vn s o r n̂> s o that we must count all bends in each of those previously 
counted paths, with no new bends added. We cannot use Vn_l9 but paths routed 
through Wn-i and Un or Wn-± and Wn as well as those through Un-i and Un or 
through Un_x and Vn each collect one new bend, so that the number of added 
bends is 2(Un_i + Wn-±) 9 making 

V*n + i = U* + V* + W* + 2 (£/„_! + Wn.x) , 
which is identity (B). Similarly, we could establish (C). 

To solve the system of equations (A), (B), (C), (D), let 

A* = U* + Y* A n = Un + ln 
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and 
K = v* + w* Bn = vn + wn 

Then (A) a d d e d t o (D) y i e l d s 

(E*) A*+1 = Al + B*.+ 2Bn_1 

w h i l e (B) p l u s (C) y i e l d s 

(G*) B*+1 = A*n + 2B\ + 2(An.1 + S n _ x ) . 

L e t 
^n~~^n~Yn Cn = Un - Yn 

and 
K = Vn ~ Wn Dn = Vn - Wn 

Then subtracting (D) from (A) and (C) from (B) yields, respectively, 

(F*) C*+1 = CI + D* + 20„_1 

and 

(H*) D*+1 = C* + 2(1-„.1 + /)„.,). 

Now, An, Bn, Cn, and Dn are easily found. Returning to the first diagram of 
this section, from Un+1 = Un + Vn and Yn+1 = Yn + Wn, we have 

(E) An+1'= An.+ Bn 

(F) Cn+1 = Cn + Dn 

while Vn + 1 = Un + Vn + J/n and J/n + 1 = J/n + Vn -f 7„ yield 

(G) Bn + 1 = 2Bn + ,4n 

(H) ^n + 1 = ̂ n-

From (E), we get Bn = An+1 - An, which we use in (G) to obtain 

(An + 2 - An + 1) = 2(An + 1 - An) + An9 

so that 
An + 2 - 3An + 1 + An = 0. 

From the starting data, A1 = 1, A2 = 2, so that^4n is a Fibonacci number with 
odd subscript, and 

^ = F2n_± 

Bn = ^n+l ~ A
n = F2n+1 " F 2 n - 1 = F2n ' 

From (F) and ( H ) , i n a s i m i l a r m a n n e r , o n e f i n d s t h a t 

Cn = Fn+1 and Dn = Fn • -

From these, we can find f/n , 7n , Wn, and Jn by simultaneous linear equations, 
using 

' Un + Y„ = F2n_1 (Vn+Wn = F2n 

K ~ ?n = Fn + 1 \Vn - Wn = Fn 

The s o l u t i o n s a r e 

'"n = (F2n-1 + ^» + l ) / 2 ( f „ = (?2» + ^ n ) / 2 
/ „ = ( ^ . i - Fn + 1)/2 (Wn = (F2n - Fn)/2 
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Notice that 

Next, we can solve the full system for A*, B*, C£, and D*, since we now 
know An, Bn, Cn, and Dn . From (E*), 

B*n = A* + 1 - A* - 2Bn_±, 

which substituted into (G*) gives us 

W» + 2 - An + i ~ 2Bn) = A* + 2(A*+1 - A% - 2Bn.1) + 2W„_ 1 + Bn.1) 
which simplifies to 

An + 2 ~ 3An + l + K = 2Bn + 2An_1 - 2Bn_1 = 2L2n-2 
where we recognize the recursion relation for alternate Fibonacci numbers on 
the left while, as seen above, Bn and An_± are alternate Fibonacci numbers. 
It can be verified directly that if 

A* = 2(n - l)F2n_k, 
then A*n + 2 - 3A*n + 1 + A* = 2LZn_2. From B% = A* + 1 - A*n - 2Bn_1 and Bn = F2n 
we ge t 

Bn = 2nF2n_3 - 2F 2 n _ 3 = 2(n - l)F2n^. 
In a similar fashion, we can verify that 

is satisfied by 

C* = 2(n - 1)F„_2 

and from 

K = C*_± + 2{Cn_2 + Dn_2) 

where Cn = Fn + 1 and Dn = Fn, we obtain 

K = Un - l)Fn.3. 

From these, we get 

U* = (n 

V*n = {n 

W* = (n 

Y* = (n 

- D(F2n.h + Fn_2) 

~ D ( ^ 2 n - 3 + F n - 3 > 

- 1) (^2n-3 ~ Fn-3^> 

- V(F2n_k - Fn_2) 

This completes our solution for bend reflections in bend paths in three glass 
plates. 

It is instructive, however, to consider a matrix approach to counting 
bend reflections in bend paths. A matrix which corresponds to the system of 
equations just given, counting the number of paths of length n and the number 
of bend reflections for those paths, is 
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U*n 

K 
y n 

n 
Un-1 

Vn-1 

K-l 
*»-l 

u* 
u n + l V* 

n + l 
n + l 

Y* 
n + l 

un 
Vn 

Wn 

yn 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

1 

0 

2 

0 

1 i 0 
4 

0 ' 1 

0 

0 

0 

1 

0 

0 

2 

0 

2 

0 

1 

1 

1 
0 

0 

2 

0 

2 

0 

1 

1 

1 

0 

0 

2 

0 

0 

0 

1 

1 

Expanding the characteristic polynomial, 

[(x - l)h - 3(x - l ) 2 + l ] 2 

= [ ( ( x - I ) 2 - I) 2 - (x - I) 2] 2 

= [x2 - 2x + 1 - 1 - (x - 1) ] 2 [x2 - 2x + 1 - 1 + (x - 1) ] 2 

= (x2 - 3x + 1 ) 2 0 2 - x - l) 2 = 0 

Notice that (x - 3x + 1) = 0 yields the recurrence relation for the alternate 
Fibonacci numbers, while (x2 - x - 1) = 0 gives the regular Fibonacci recur-
rence. A generating function derivation could be made for all formulas given 
in this section. 

Values of the vector elements generated by the matrix equation for 

n = 1, ..., 7 

are given in the table below. 

BEND REFLECTIONS 

n 

n 
n 
w* 

n 
vn-
Vn-

K-
?n-

1 

1 

1 

1 

1 

0 

0 

0 

0 

1 

0 

0 

0 

2 

0 

2 

0 

0 

1 

1 

0 

0 

3 

4 

4 

4 

0 

2 

2 

1 

0 

4 

12 

18 

12 

6 

4 

5 

3 

1 

5 

40 

56 

48 

24 

9 

12 

9 

4 

6 

120 

180 

160 

90 

21 

30 

25 

13 

7 

360 

552 

516 

300 

51 

76 

68 

38 

Finally, we list values for A^, B*, C*, and D*: 
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n 

Rn un ^ 1n 

B* = Y* + W* 

n* _ JJ* _ Y* 

D* = Y* - W* 
\ u n v n yv n 

1 

0 

0 

0 

0 

2 

0 

2 

0 

2 

3 

4 

8 

4 

0 

4 

18 

30 

6 

6 

5 

64 

104 

16 

8 

6 

210 

340 

30 

20 

7 

660 

1068 

60 

36 

n 

2(n - ±)F2n_h 

2(w - l)F2n_3 

2(n - DF n _ 2 

2(n - l)Fn_3 

We now shift our attention to the problem of counting regular reflections 
which occur in paths of length n in which bends are allowed. The matrix which 
solves the system of equations in that case follows, where starred entries 
denote regular reflections; otherwise, the definitions are as before. Notice 
that the characteristic polynomial is the same as that of the preceding ma-
trix. 

1 

1 
0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

1 
1 

1 

0 

0 

0 

0 

0 ' 

0 

1 

1 

0 

0 

0 

0 

1 

0 

0 

0 

1 

1 

0 

0 

0 

2 

0 

0 

1 

1 

1 

0 

0 

0 

2 

0 

0 

1 
1 

1 

0 

0 

0 

1 

0 

0 

1 

1 

u* 
u n 
v n 

rv n 

K 
Un-X 

Vn-1 

w , 
n - 1 

Yn-l 

u n+l 

V* 
n + l 
n+l 

n + l 

Un 

Vn 

Wn 

?n 

Values of successive vector elements for n = 1, . ..,8 are given in the table 
following: 

REGULAR REFLECTIONS IN BEND PATHS 

n 

n 
K 
n n 

n 
Un-l 

Vn-1 

Mn-1 

?n-l 

1 

0 

0 

0 

0 

1 
0 

0 

0 

2 

1 

0 

0 

0 

1 
1 
0 

0 

3 

2 

3 

0 

0 

2 

2 

1 

0 

4 

7 

9 

5 

0 

4 
5 

3 

1 

5 

20 

31 

20 

6 

9 
12 

9 

4 

6 

60 

95 

75 

30 

21 
30 

25 

13 

7 

176 

290 

250 

118 

51 
76 

68 

38 

8 

517 

868 

794 

406 

111 | 
195 

182 

106 
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The system of regular reflections in bend paths is not solved explicit-
ly here, but generating functions for successive values are not difficult to 
obtain by using the characteristic polynomial of the matrix just given. Gen-
erating functions for A^9 5*, C*, and D£ are: 

A* - n* + y*. ^2(1 ~ ^ + 6X2) 

(1 - 3x + x2)2 

V* + Wi: 

Y*: 

D* = y* - w* 

x3(3 - 4a?) 

(1 - 3x + x2)2 

x2(l + 2x2) 

(1 - x - x2Y 

x3(3 - 2x) 

(1 - x - x2)2 

Since A* + B^ = U* + V* + W^ + Y*, the generating function for regular reflec-
tions in bend paths terminating on all four surfaces is 

(x2 - x3 + 2xk) 

(1 - 3x + x2)2 

8. REGULAR REFLECTIONS IN THREE STACKED PLATES 

If one wishes equations for the number of paths ending upon certain lines 
and the number of regular reflections, the procedure is the same as when 
"bends" are allowed, as in the last section. Let Un, Vn, Wn, and Yn be the 
number of paths of length n from line 0 to lines 0, 1, 2, and 3. Let [/*, 7*, 
W^, and Y* be the number of regular reflections counted for those paths. 

The system of equations to solve is 

u* 
u n + l V* 

n + l 
% + l 

n + l 

= 
= 
= 

= 

K 
n 
Y* 
-*• n 

nn 

+ 
+ 
+ 

+ 

Un-

K 
n 
Yn-

.. i 

+ 
+ 

- 1 

2 ^ - i 

2K-i 

Un + i = 
V

n+1 = 

K+i = 
¥n + l 

V„ 

Un 

Vn 

Wn 

+ 

+ 
Wn 

?n 

These differ from the equations used in Section 7 only in that no horizontal 
moves along the lines are allowed, so that one represses terms that corre-
spond to that same line. The method of solution is exactly the same. 

One finds that 

U 2k = F2k- l U2k + l = 0 

y 
-1 2k+ l 

v 2 k + 1 

»2U 

= 

= 
= 

F2k 

F2k + 

F2k 

1 

Y2k 

v2k 
W2k+l 

= 
= 

= 

0 
0 
0 
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number of paths ending at outside lines, while Vn + Wn = Fn is the number of 
paths ending on inside surfaces. Notice that Un + Vn + Wn + Yn = Fn + 1 , which 
agrees with Theorem C. 

As for the number of reflections to paths ending on outside surfaces, 

U* = Cn.1 - 2Cn_2 + 3(7n_3, n even; U* = 0, n odd; 
Yn = Cn-i ~ 2^n-2 + 3Cn - 3, « odd; J* = 0, n even; 

where {Cn} is the first Fibonacci convolution, Cn = (nLn + 1 + Fn)/5. One can 
verify that the total number of reflections for paths of length n which exit 
at either outside surface is U* + Y* = Cn_1-2Cn_2+ 3C„_3, which is equiva-
lent to the formula given for Rn in Theorem I of Section 5, 

Finally, we write, again for the first Fibonacci convolution {Cn}, 

VI = 3Cn_2 - Cn_3, n odd; 7^ = 0, n even; 

^ = 3Cn_2 - Cn__3, n even; W% = 0, n odd. 

Here, the matrix solution for the number of regular reflections in paths 
without bends follows from 

f 0 1 

1 0 

0 1 

0 0 

0 0 

0 0 

0 0 

0 0 

9. NUMERICAL ARRAYS ARISING FROM REGULAR REFLECTIONS 
IN THREE STACKED PLATES 

Let circled numbers denote reflections on paths coming to the inside 
lines from the inside. Let boxed numbers denote reflections in paths to the 
outside lines. 

0 

2 

3 

Note that Z is one longer and one reflection more than J, while it is two 
longer and one reflection more than Z. Since the paths under discussion are 
to the inside lines from the inside, paths going from 2 to 1 imply a reflec-
tion as indicated. Since the paths from 3 must have come from 2, this also 
implies a reflection as shown. Thus, ®= © + S e Secondly, the two types 

0 

1 

0 

1 
0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 
0 

0 

0 

2 

0 

0 

1 

0 

1 

0 

0 

0 

2 

0 

0 

1 

0 

1 

0 

0 

0 

1 
0 

0 

1 

0 

n 
K 

n 

K 

Y. 

l 

l 

n- 1 

1 

u* 
u n+1 
V* i n + 1 

^ n + 1 

Y* ^ n + 1 

Un 

Vn 

Wn 
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of reflections are related by h H = (Ẑ )+ PH from considering the following: 

A ® z + x 

Paths indicated which come through from the inside are extended to Y by one 
but do not add a reflection. The paths coming through which have one added 
reflection at the inside line imply a reflection at X since paths to the top 
line can come only from the middle line. 

The geometric considerations just made give the recursive patterns in 
the following array. The circled numbers are the number of reflections for 
paths of length n which enter from the top and terminate on inside lines by 
segments crossing the center space only (not immediately reflected from either 
outside face), while the boxed numbers are regular paths from the top line to 
either outside line. 

Reflections 

Path 
Length 1 

2 

3 

4 

5 

6 

7 

8 

H -

0 

® 
m 

m 
® 
0 

s + 

i 

m 
® 
m 
® 
m 

m 

® + 

2 

® 
[U 
® 
m 
® 

m 
0 + 

3 

m 
® 
® 
® 
0 

[j*l 

© 

m 

4 

® 
m 
® 

© 

5 

B' 
® 
E 

6 

® 

0 

7 

m 

-© + \I*\ 
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Please note that each row sum is 2Fn_l9 where the sum of the circled numbers 
as well as the sum of the boxed numbers is in each case Fn_r Also note that 
the row sum is not the total number of paths of length n, since, for example, 
when n = 5, there is one path with two reflections which terminates inside, 
and one path with four reflections which terminates inside. Also note that 
the circled diagonal numbers in the table are partial sums of the boxed diag-
onal numbers in the diagonal above. 

Let Dn(x) be the generating function for the nth diagonal sequence going 
downward to the right in the table. That is, DQ(x) generates the boxed se-
quence 1, 0, 1, 0, 1, 0, 1, ... and D1(x) generates the circled sequence 1, 
1, 2, 2, 3, 3, 4, 4, ..., while D2(x) generates the beixed sequence 1, 1, 3, 
3, 6, 6, ... . From the table recurrence, C* = B* + A*, since C* and B* are 
on the same falling diagonal, 

so that 

We write 

Dl(x) = x2D1(x) + DQ(x), 

D^x) = [D0(x)]/(1 - x2), 

DAx) 

£i 0*0 

D2(x) 

1 -

1 

(1 • 

1 

( 1 • 

(1 

(1 

(1 
(1 

x2 

+ X 

- x2)2 

+ X 

- x2)" 

+ x)2 

- xV 
+ x)2 

- x2)s 

DAx) = 

Dk(x) = 

Notice that Dn(x) generates boxed numbers for n even and circled numbers for 
n odd. Summing Dn(x) for n even gives the row sum for the boxed numbers by 
producing the generating function for the Fibonacci sequence and, similarly, 
for taking n odd and circled numbers. The column sums of circled or boxed 
numbers each obey the recurrence un = 2un„1 + un_2 - un_3. 

Notice that 

D2n+l(x) = [D.ix)]^1 

D2n(x) = (1 - x)D2n+l(x) = (1 - x)[D1(x)]n + \ 

so we see once again the pleasantry of a convolution array intimately related 
to Pascal's triangle. 
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ON PSEUDO-FIBONACCI NUMBERS OF THE FORM 2S2j 

WHERE S IS AN INTEGER 

A . ESWARATHASAN 
University of Sri Lanka, Jaffna, Sri Lanka 

If the pseudo-Fibonacci numbers are defined by 
(1) u1 = 1 , w2 = 4 , un+2=un+1+un, n > 0, 
then we can show that ux = 1, u2 ~ 4, and uh = 9 are the only square pseudo-
Fibonacci numbers. 

In this paper we will describe a method to show that none of the pseudo-
Fibonacci numbers are of the form 2S , where S is an integer. 

Even if we remove the restriction n > 0, we do not obtain any number of 
the form 252, where S is an integer. 

It can be easily shown that the general solution of the difference equa-
tion (1) is given by 

(2) w„ = -^-(aB + p") kzr^"'1 + 3*"1), 
5.2 5.2 


