MAXIMUM CARDINALITIES FOR TOPOLOGIES ON FINITE SETS

JAMES E. JOSEPH
Howard University, Washington, D.C. 20059

If [n] represents the first # natural numbers, D. Stephen showed in [3]
that no topology on [n] with the exception of the discrete topology has more
than 3(2"'2) elements and that this number is a maximum. 1In this article we
show that, if kX is a nonnegative integer and k < z, then no topology on [#]
with precisely #n - k open singletons has more than (1 + 2%¥)2%-%-1 clements
and that this number is attainable over such topologies for k < nm. We also
show that the topology on [n] with no open singletons and the maximum number
of elements has cardinality 1 + 2,_,.

Recently, A. R. Mitchell and R. W. Mitchell have given a much simpler
proof of Stephen's result [2]. Their proof consists of showing (1) If n > 2
and x,y € [n] with & # y, then

I'(z,y) {4 CIn): xedoryt A}

is a topology on [#n] with precisely 32" %) elements, and (2) If I is a non-
discrete topology on [#n], there exist x,y € [n] with T C I'(x,y). In Section
1, we give proofs of two theorems which in conjunction produce Stephen's re-
sult and which dictate what form the nondiscrete topology of maximum cardi-
nality must have.

1. STEPHEN'S RESULT

We let ]AI denote the cardinality of a set 4. If I is a topology on
[n] and x € [n], we let M(I',x) be the open set about x with minimum cardinal-
ity. Evidently, I' = {4 C [n]: M(T,x) C A whenever x € 4}.

Theorem 1.1: If k is a positive integer and T is a topology on [xn] with pre=-
cisely n - k open singletons, there is a topology A on [#n] with precisely
n - k + 1 open singletons and |T'| < |A].

Proo4: Choose x € [n] such that {x} is not open. Let
p={4U@NhH: 4,8 €T}

Then A is a topology on [n] with precisely n - k + 1 open singletons, which
satisfies TC A and I' # A. The proof is complete.

Theorem 1.2: If k is a positive integer and T' is a topology on [n] with pre-
cisely n — k open singletons and for some x € [n], {y} is open for each

y € M(T,x) - {z} and |[M(T,x)| > 2,

there is a topology I on [n] with precisely n - k open singletons satisfying
IT| < fal.

Proof: Choose y € M(T',x) - {x} and let
A={aU BN W@, - y): 4,8 T}

Then A is a topology on [n] with precisely n - k open singletons, which sat-
isfies T C A and T # A. The proof is complete.

Coroflarny 1.3: Each nondiscrete topology on [#] has at most-3(2n-2) elements
and this number is a maximum.
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Proog: 1f I' is a nondiscrete topology on [#], then n > 2. From Theorem 1.1,
if I has the maximum cardinality over all nondiscrete topologies on[n], then
I' has precisely n -1 open singletons; and by Theorem 1.2, if {n} is the non-
open singleton, we must have [M(l",n)l = 2. So there is an ¢ € [n - 1] with
M(T,n) = {n, x}. Thus,

I ={4Cilnl:n¢apU{acCinl: {n, =} C4f.
Consequently, |Fl =2""1 4272 -32" % and the proof is complete.
Remark 1.4: The topology A in the proof of Theorem 1.1 (1.2) is known as the
simple extension of I' through the subset {x} (M(T,x) - {y}) [1].
2. SOME PRELIMINARIES

In this section we present some notation and prove a theorem which will
be useful in reaching our main results. If k €[n], let A(k) be the collection
of topologies on [n] which have {1}, {2}, ..., {k} as the nonopen singletons.
If 1 <m < k, let C(m) be the set of increasing functions from [m] to [k];
for each g € C(m), let

u(r,mg) = U uT,g(2))
and Z€[m

QT,m,g) = {4C [n]: U(Tym,g) C A and |4 N [k]] = m}.
Lemma 2.1: The following statements hold for each topology I' € A(k).

k
@ T={4Ccn:4nkl =0ulU U T,mg).

m=1 gec(m)

(b) For each m € [k] and g € C(m), we have
[Q(T,myg)| = 0 or |2(,mg)]| = g n-k+m-lu@mal|
(¢) (T,ymg) N Q(T,4,h) =@ unless (m,g) = (J,h).

Proof o4 (a): Let A represent the set on the right-hand side of the equality
sign in (a), and let W € I'. If WN[k] = @, then W € A. If WN[k] # @, then
|[WN[k]| = m for some me [k]. Let g be the strictly increasing function from
[m] to WN[k]. For each g(Z) we have WD M(I‘,g(i)), so

WO Uul,myg), WeQl,mg), and T C A.

If W ¢ A and WN[k] = @, then W € I'. Otherwise, W € Q(I',m,g) for some m e [k]
and g € C(m). For this (m,g) we have

g([m]) C u(l',m,g) C W;

thus, W € I', since

W =uUT,mg) U (W - U(F,m,g)), u(l,m,g) eI,

W - uT,mg)) N [k] = @3

so ACT and (a) is verified.

|

and |

Proof o4 (b): It is easy to verify that Q(T,m,g) is the set of all subsets
of [n] - ([k] - g(Im])) which contain U(T,m,g) for each pair (m,g). Conse-
quently (b) holds.
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Proog of (c): If 4 e Q(T,m,g) N Q(T,j,h), thenm = |A N [k]| = . Also,
g(Iml) U h(lm]) C 4 N [k],

which gives
lg(Im]) U h([m])| = m.

Since g and % are strictly increasing, we must have g = h, and the proof is
complete.

We are now in a position to establish the following useful theorem.

Theorem 2.2: 1If T is an element of A(k), then

k
,FI izn—k +z Z 2n—k+m—|U(F,m,g)|

m=1 gec(m)
with equality if and only if Q(T,m,g) # @ for any pair (m,g).
Proof: From Lemma 2.1(a) and (c), we have

k
IT| = {aCnl: AN (k] = 0} +Y, D, [eT.mg)].

m=1 geC(m)
So from Lemma 2.1(b) we get

k
,Fl izn_k +Z Z 2n—k+m-]U(l",m,g)|

m=1 geC(m)
with equality if and only if Q(I',m,g) # @ for any pair (m,g9). The proof is
complete.
3. THE FIRST TWO OF OUR MAIN RESULTS

The Case 0 < k < n: The results are clear for kK = 0. In the following, we
assume that k € [n].

Theonem 3.1: 1If n is a positive integer and T € A(k), then
IT| < @+ 2%)2 7%,

Proof: We proceed by induction on #n. The case n=1 is true vacuously. Sup-
pose n > 1 and the result holds for all integers J € [n - 1].

Case 1: |U(T,m,g)| = m for some pair (m,g). Then we have
UT,m,g) C [k].

Let W ¢ T with ¥ C [k] and |W| a minimum. Then |W| > 2 and M(T,z) = W for
each x € W. Without loss, assume that 1 € ¥ and if [n] - W # @, assume that
[n] - W=12, 3, ..., n - |W| +1}. Define a topology A on [n - |W| + 1] by
the following family of minimum-cardinality open sets:

M(,1) = {1}, M(A,x) = (M(T,x) - W)U{1} if M(T,x) N W # ¢
and
M(A,x) = M(T',x) otherwise.
It is not difficult to show that |A| =|T'| and that A has n - k + 1 open sin-

gletons. So by the induction hypothesis, we have
IT| < (1 + 2%-1P1)on =% (1 4 2¥%ypn koL,
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Case 2: ]U(T,m,g)[ > m for each pair (m,g). Here we have
IU(F;m9g)| >m+ 1

for each pair (m,g) and, from Theorem 2.2, we get

k k
n-k * n=k+m-|U(T,m,gl n-k (k) n-k-1,
| <2"F 437 D2 <2 +<Zm 2 ;

m=1 gecm) m=1
we see easily that

k
2"k 4 (Z (;)) 2" o @+ 2Ry TR

m=1
The proof is complete.

It is obvious that if T ¢ A(k) with IU(F,m,g)] =m+ 1 for each pair
(m,g) then !F] will be a maximum over )(k) and we will have

IT| = @1+ 2)n"k-1

If such a T has |Ti a maximum over A(k), we must have
|[M(T,2) | = 2 and |M(T,x) N [k]] =1

for each x € [k], since g € C(1) defined by g(1) = x must satisfy
|U(F,l,g)| =2 and Q(T,l,9) # ¢

from Lemma 2.1(b). Moreover, if x <y and x,y € [k], then
|M(T,2) U M(T,y) | = 3

since g € ((2) defined by g(1) = x and g(2) = y must satisfy

|u(r,2,9)| = 3.
Thus,
M(T,x) N M(T,y) # 0.

This implies that there must be a j €[n] - [k] with M(T',x) = {x, j} for each
x € [k] and that

I={4Clnl: 4N [kl = 8} U{4C [nl: {®, j} C4 for each x € 4 N [k]}.
We have
IT| = @ + 2¢)2"~*!
from the arguments above and the second of our main results is realized.

Theorem 3.2: For 0 < k < n, there is a topology on [n] with precisely n - k
open singletons and (1 + 2")2"""1 elements.

As a by-product of these main results, we obtain Stephen's result.

Conoflary 3.3: The only topology on [n] having more than 3(2""%) open sets
is the discrete topology. Moreover, this upper bound cannot be improved.

Proof: If the topology I' on [n] is not discrete, then n > 1 and there is at
least one nonopen singleton. If X is the number of nonopen singletons, we
have, from Theorem 3.1, that

lrl < 271-1 + zn—k—l

n-1 n-2

= 302" Y,

and since 7 # 1, there is a topology on [n] with precisely 3(2"7%) elements,
from Theorem 3.2. The proof is complete.

<2"t 42
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L. OUR FINAL TWO MAIN RESULTS
The Case kR = n: It is obvious that for k = n, no topology on [n] has
(1 + 2k)on-k-1

elements. If I € A(n), we let
P ={4C[nl: A= MT,x) for each x € 4, and # 0.
It is clear from the argument in Case 1 of Theorem 3.1 that P([') # 0.

Theorem 4.1: 1If T is an element of A(k) which has maximum cardinality over
X(k), then |4| = 2 for each 4 € P(I).

E&ggﬁ} If 4 € P(I') with IA] > 2, choose x,y € 4 with & # y and let
s={vu@n iz, yH: v,B e T}

Then A € A(k), TC A, and T # A. The proof is complete.

Theorem 4.2: If T is an element of A(n), then || <1 + 2" 2,

Proog: Lé£ T' e AX(n) with ]Tl a maximum. Then ]A’ = 2 for each 4 € P(T'). For
each 7 € [|P(D)]], let

PG) = {n - 2|P(D)| +4, n -4+ 1};
without loss, assume that

P(TY = {P(E): ¢ € [|P(T)|1}

and that

[n] —H)A = [n - 2|P(D)|1 if n # 2|PMD)].
Define a topology A on [n - |¢(T)|] by specifying its minimum-cardinality
open sets for each x ¢ [n - ‘@(F)]] as

M(h,x) = <M(T,x) - U A> Uin - 2| +42: PG)N M(T,x) # 91

()
Then A has precisely ]@(T)[ open singletons and |F| = !A]. By Theorem 3.1,

IT] < (1 + 2"'2""””)2""”"'1

where the expression on the right side of the inequality decreases as l@(T)]
increases. Thus, IFI <14 2" 2% for all T € A(n) and the proof is complete.
Theorem 4.3: TFor n > 1, there is a topology on [n] with no open singletons
and 1L + 272 elements.

Proog: From Theorem 3.2, there is a topology T on [ -1} with 1 + 2"7% ele-
ments. For this topology, M(T,x) = {x, n - 1} for x # n = 1 and (T, n- 1) =
{n - 1} may be assumed to be the minimum-cardinality open sets. Let

5 ={4Cnl: MT,x) U {n} C A when M(T,z) C 4}.

Then A is a topology on [n] with no open singletons and [A| = [I'|. The proof
is complete.

5. SOME FINAL REMARKS

The following observations may be made from the Theorems and construc—
tions above.
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Remark 5.1: 1t is easy to comnstruct for each 1 <j<n-k a topology T & A(k)
with cardinality (2% + (-1 + 27))2" %9 Let M(T,x) = {z} for each x ¢ [n] -
[k] and m(T,x) = {x, k+ 1, k+ 2, ...,k + 7} for each x € [k]. We see from
Theorem 2.1 that |T] is the required number.

Remasrk 5.7: More generally, if k € [n] and for each x € [k], W(x) is a non-
empty subset of [n] - [k], let T be the topology on [#] having minimal cardi-
nality open sets M(T',z) = {x} U W(x) for x e [k] and M(T,x) = {x} otherwise.
Then from Theorem 2.1

k .
IFI _ zn_k +Z Z 2n—k+m—(m+ H]W(g(z)))
m=1 gec(m)
since
lu(r,m,g) | = ; [U]M(T,g(vl))l = |gmD | + [U] W(g (L)) ‘ =m+ [U]W(g(i))l.

Remark 5.3: For each k e {n], let '
wk) = {T € A(®): QT,m,g) # @ for any pair (m,g)}.

Then u(k) = {T e A(k): for each x e [k], M(T,z) = {x} U W(x) for some nonempty
W(x) C [n] - [k]}. Thus ’U(k)f = (-1 + 2""%k for each subset of [n] of cardi-
nality k. Therefore,

(Z)(—l + 277k
is the number of topologies, I', on [n] such that
I'e AM(k) and Q(T,m,g) # @ for any pair (m,g).

The total number of such topologies is

> (Z)(—l + 2Rk

kenl
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