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the three results occurring at the end of Section 3, it is possible to de-
duce the coefficient of xk~1 when k is even. The coefficient is 

k L 3(k - 2) 3* 5(fe - 2)(k - 4) 
k - 1\ 2(k - 3) 2 • 4(fc - 3)(& - 5) 

3- 5 - liX - 2)(k - 4)(fe - 6) ) 
2 • 4 • 6(fc - 3)(fc - 5)(k - 7) + " J ' 

the expression within the brackets terminating, since k is even. 
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Consider the thermodynamics of an infinite chain of alternately spaced 
IE molecules of donors and acceptors (N ->• °°) , and assume there is an average 
of one mobile electron per molecule (as is quite common for some one-dimen-
sional organic crystals [1, 2]). 

® ® ® ® 
FIGURE 1 

Each molecule may contain a maximum of two such electrons and as the 
temperature is raised two electrons may jump onto the same molecule. Because 
electrons repel each other,, it costs an energy UD or UA to put two electrons 
on a molecule type D or type A, respectively5 a common situation is that 

UD » UA. 
Under these conditions, it can cost almost no energy to have sites A doubly 
occupied, while double occupancy of sites D is effectively eliminated. 
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In the grand-canonical ensemble, the partition function Z of the elec-
trons can then be approximated by 

= \N (1) Z = X 

where X = zk sD ; zk and £D being the partition functions "per molecule" of 
type A and D, respectively. In terms of the fugacity [3], z and X can be ob-
tained easily, in fact, 

(2) zk = 1 + 2z + z2 = (1 + z)2 

and 

(3) zD = 1 + 2z. 

The three terms in (2) (in ascending powers of z) correspond to zero occupan-
cy, single occupancy (with spin up or down), and double occupancy (respec-
tively) of sites A. In (3) there is no z term, because double occupancy of 
sites D is effectively eliminated. 

In the grand-canonical ensemble, the positive quantity z is determined 
[3] by fixing the "average" number of particles (in this case, electrons). 
Since we have an average of one electron per site, z will be determined by 
the condition [3] 

(4) 3 § - 2 A . 

Substituting for X in terms of (2) and (3) and simplifying, (4) gives the 
cubic equation 

(5) (z + l)(z2 - z - 1) = 0 

for z. Finally, the positive 

(6) z+ = ^ 

The Fibonacci ratio is the only appropriate physical solution of (5) for the 
fugacity z. From the grand-partition function Z and the numerical value of 
X , 

(7) X = (1 + z)2(l + 2<0 = z7
+9 

the thermodynamics [3] then easily follows. 
In particular, the entropy S that arises from the number of possible 

arrangements of the electrons in the chain is given by 

(8) Y~ = 5N In z , 

where kB is Boltzmann's constant. 



1979] ON GROUPS GENERATED BY THE SQUARES 241 

REFERENCES 

1. For a review, see: P. Pincus. "Selected Topics in Physics, Astrophy-
sics and Biophysics." Proceedings of XIV Latin American Summer School 
of Physics, Caracas, Venezuela, July 1972. Edited by E. de Laredo and 
Jurisic. Dordecht: D. Reidel, 1973. 

2. P. J. Strebel & Z. G. Soos. J. Chem. Phys. 53 (1970):4077. 
3. K. Huang. Statistical Mechancis. New York: Wiley, 1967. Chap. 8. 
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1. INTRODUCTION 

It was known that the quaternion group and the octic group could not be 
generated by the squares of any group [5, pp. 193-194]. A natural question 
is which groups are generated by the squares of some groups. Clearly, groups 
of odd order and simple groups are generated by their own squares. In this 
paper, we show in a concrete manner that abelian groups are generated by the 
squares of some groups, and we show that every group is contained in the set 
of squares of some group. We give conditions for the dihedral and dicyclic 
groups to be generated by the squares of some groups. Also we show that sev-
eral classes of nonabelian 2-groups cannot be generated by the squares of any 
group. 

2. NOTATIONS AND DEFINITIONS 

Throughout this paper, all groups considered are assumed to be finite. 
For a group (?,we let G2 denote the set of squares, 1(G) the group of inner-
automorphisms, A(G) the group of automorphisms, Z(G) the center, |£| the or-
der of G, G1 the commutator subgroup. For any subset S of G, <£> denotes the 
subgroup generated by S. G is called an ff-group if it is generated by the 
squares of some group L; to be more precise, there is a group L such that KL > 
is isomorphic to G. 

3. CLASSES OF ̂ -GROUPS 

In a group of odd order, every element is a square; therefore, it is an 
^-group. A simple group is also an £-group since it is generated by its own 
squares; for, if the set of squares generates a proper subgroupj it WOUld be 
a normal subgroup with abelian quotient. We next show that an abelian group 
is an -S'-group. 


