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(11) "p" is a prime if and only if it appears exactly (p - 1) times in 
line (p - 1). 

(12) s(n,r) will appear again at locations s(n + k, 2k(r - 1) + 1) for 
k = 1, 2, 3, ... ,. 

(13) If the sequence r1,r2 occurs in row n, v1 > r2, the smallest ele-
ment in row n + k positioned between P X and r2 is 

s(n + k, 2kr) ='r1 + kr2. 
(14) In any row, there are two equal terms greater than all others in 

the row. 
(15) For Fibonacci followers: 

s(n,r) = Fn + l9 for r = (2n_1 + 2 + {l + (-l)n})/3 - 1, 
and it is the largest element in the row. 

(See [3], p. 65; notation changed to standard form.) 

Not all of the discovered results are considered here, since there are 
remote connections to so many areas of number theory. 
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The purpose of this note is to extend the results of Berzsenyi [1] and 
Zeilberger [3] on sums of products-by using the generalized sequence 

{Wn(a,b;p,q)} 
described by the author in [2], the notation of which will be assumed. 

Equation (4.18) of [2, p. 173] tells us that 

(1) Wn_rWn+r + t - WnWn + t = eqn~rUr_1Ur+t_r 

Putting n - v = k and summing appropriately, we obtain 

n n n 

k=0 k=0 k=o 

Values t = 1, t .= 0 give, respectively, 
n n n 

<3> E^+2» + i =HWk+^k+r + i+eUr_1Ur^qK 
and 
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k = 0 k=0 fc=0 

If q = -1, then 

(5) \T ak = [l ±f n is even 
K J L^^ \0 if n is odd. 

fc = o 
Using t h e Bine t form fo r J/n and Un9 we f ind a f t e r c a l c u l a t i o n t h a t (3) 

and ( 4 ) , under t h e r e s t r i c t i o n s ( 5 ) , become, r e s p e c t i v e l y , 

_ "Wr+n+l- ^r+l) ~ ^o^r + 1 i f n ± S e V e n 

( 6 > X > A + 2 , + i = i ,/2 _ r.72x 

and 
fe = o f ~ ( ^ p + n + i ~ ^ p ) i f n i s odd, 

-(Wr + nWr + n+i - WrWr + 1) + WQW2r i f n i s even 

k = 0 | ~(^P + n^p + n+l ~ ^ r-i^) l f n l s o d d 

When p = 1, so that J/n = #n (and £/„ = Fn) , (6) and (7) reduce to the 
four formulas given by Berzsenyi [ 1] . That is, BerzsenyiTs four formulas are 
special cases of (1), i.e., of equation (4.18) of [2], 

Zeilberger's theorem [3] then generalizes as follows: 

TkzotKim: If {Zn} and {Wn} are two generalized Fibonacci sequences, in which 
q = -1, then 

Z aaWi = ° 
if and only if 

P(s,03) = J2 
i> j = 0 

vanishes on {(a,a), (a,3)» (3>a), (3>3)} where a,3 are the roots of 

x2 - px - 1 = 0 . 

Zeilberger's example [3[ now refers to 

n 

(8) X Z A : ^ + 2 P + 1 = -(Zr+n + lMr + n + l " Z>r+1Wr+1) + Z0W2p+1. 
k = 0 ^ 

(In both [1] and [3], m is used instead of our p.) 
Verification of the above results involves routine calculation. Diffi-

culties arise when q £ -1. 
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A CONJECTURE IN GAME THEORY 
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We consider a team composed of n players, with each member playing the 
same r games, G±9 G2, .•.9 Gr. We assume that each game Gj has two possible 
outcomes, success and failure, and that the probability of success in game 
Gj is equal to p. for each player. We let X^j be equal to one (1) if player 
i has a success in game J and let X^j be equal to zero (0) if player i has a 
failure in game J. We assume throughout this paper that the random variables 
Xij , i = 1, 2, ..., n, j = 1, 2, ..., r are independent. 

Let Sjn denote the total number of successes in the jth game. We define 
the point-value of a team to be 

yn = min Sjn . 
l<,3<^v 

This means that the point-value of a team is equal to the minimum number of 
successes in any particular game. Clearly, 

and 
PiSj„ = m} = (")pj"(l - Ppn~\ rn = 0, 1, 2, . . . , n, 

n-1 

(1) E[Vn] = £feP{Y„ = k] = ] T p { ^ > k} 

k=0 k=0 

n-1 

= X P{Sm > k, S2n > k, ..., Srn > k) 
k = 0 
n - 1 r 

= X UPiSjn > k] 
k=0 J=1 

- 1 

fc = 0 J = 1 m-k + l V " / 

It follows from the definition of ̂ n that the expected point-value for 
a team is an increasing function of n, i.e., 

tf[Yn] < E[Vn+1], n = 1, 2, 3, ... . 

Since a team can add players in order to increase its expected point-value, 
it seems reasonable to define the score to be the expected point-value per 
player. Namely, we denote the score by 


