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H-307 Proposed by Larry Taylor, Briarwood, NY

(A) If p = #1 (mod 10) is prime, x = V5,and a = 2¥§;i17§l (mod p), prove
that a, a+ 1, a+ 2, a + 3, and a + 4 have the same quadratic character mod-
ulo p if and only if 11 < p = 1 or 11 (mod 60) and (-2x/p) = L.

(B) Ifp =1 (mod 60), (2w/p) = 1, and b = “2E*3) (nod p), then b,
b+ 2,b+3, and b + 4 have the same quadratic character modulo p. Prove

that (llab/p) = 1.

H-308 Proposed by Paul Bruckman, Concord, CA

p, pn(al, Qps vees a,)
Let [a.,, a cees A = — denote the nth conver-
lags a,s s Anl 9y Gnlays Qus eens )
gent of the infinite simple continued fraction [a;, @,,...]s7n =1, 2, ...

Also, define p, = 1, g, = 0. Further, define

¢D) Wa,k = Dy (@ys Qps wevs Andqp@ys Qps vevs )
- p%(al, Qos woss ak)qn(al, Qs vees Gy)
D, 9, ~ Ppq,» 02k <n.

Find a general formula for W, y.

H-309 Proposed by David Singmaster, Polytechnic of the South Bank, London,
England

Let f be a permutation of {1,2, ..., m - 1} such that the terms < + f(2)
are all distinct (mod m). Characterize and/or enumerate such f. [Each such
f gives a decomposition of the m(m + 1) m-nomial coefficients, which are the
nearest neighbors of a given m-nomial coefficient, into m sets of m + 1 coef-
ficients which have equal products and are congruent by rotation—see Hoggatt
& Alexanderson, "A Property of Multinomial Coefficients," The Fibonacci Quar-
terly 9, No. 4 (1971):351-356, 420-421.]

I have run a simple program to generate and enumerate such f, but can
see no pattern. The number N of such permutations is given below for m < 10.
The ratio N/(m - 1)! is decreasing steadily leading to the conjecture that it
converges to 0.
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m 2 3 4 5 6 7 8 9 10
v 1 1 2 3 8 19 64 225 928

H-310 proposed by V. E. Hoggatt,Jr., San Jose State University, San Jose, CA

Let o = (1 +V/5)/2, [na] = a,, and [na?] = b,. Clearly, a, + n = b,.

a) Show that if n = F,,,,, then a, = F,, ., and b, = F, ..

b) Show that ifn =F, , thena,=F, ., -land b, =F, ., - 1.
c) Show that if n =L, , then a, = L,,,, and b, = L, ,.
d) show that if n = L,,,,, then q, = Lypyo — 1 and b, = L,..s — L.

SOLUTIONS

Editonial Note: Starting with this issue, we shall indicate the issue and
date when each problem was proposed.

Continue

H-278 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, CA
(Vvol. 16, No. 1, Feb. 1978)

5F,

n+2
e <3, 1\'1’\/\1/ 6>

n -1

Show

(Continued fraction nmotation, cyclic part under bar.)
Solution by Gregory Wulczyn, Bucknell University, Lewisburg, PA

F

n+2
D = = =L, and remainder (-

n

n-2 _ BYL—Z)

2< D< 3
10 < 5D £ 15
[V5D] = 3.

(F, sFp,1) = 1 implies (F,,F,,,) = 1. V5D has a unique periodic C.F. expan-
sion with first element 3 and terminal element 6. '

2 i ys 2 n+l n n
Ln+l - P n = L2n+2+ 2(—1) - L2n+2 + (_1) LZ = (—1) 3

T =Lpy1s Y =0y

is a solution of z? - SDy2 = tl.
For the p, and g; convergents formed from the C.F. expansion of V5D to

terminate with p =1, and g, =F,, the middle elements must be (n- 1) ones.

Also solved by the proposer.
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A Rare Mixture

H-279 Proposed by G. Wulczyn, Bucknell University, Lewisburg, PA
(Vol. 16, No. 1, Feb. 1978)

Establish the F-[ identities:

4 4 4 b
(a) Fn+6r - (Lup + 1 (Fn+l+r - Fn+2r) - F = FZrFkrFGPFkn+12r
y 4 4
(b) Frl:+5r+3 + (Lumz -1 (Fn+l+r+2 - Fn+2r+1) - Fn
=it ura o ers s uns1oms6

Solution by Paul Bruckman, Concord, CA
Lemma 1: Lam = (-1)"L,, = 5F, Fyp.
Proof: Lam = (-1)"Ly = a®™ + b3 = (@b)" (@™ + ")
@m - b"y @* - b)) = 5F,Fop.
Lemma 2: 5(F; - F3) =F,_,F, o (Ly_ Lusy = 4(-1)").
M: ZSF: = (a“ _ bu)k = al“‘ +b4u _ 4(—1)“(612“ +b2u) + 6.
Therefore,
25(Fy - Fy) =a** - a"? +p" - ¥ - 4(-1)"a?* + 4(-1) g2
- 4(=1)"p%* + 4(-1)"p??
= (gPH*TY - p2ut20y (L2u-20 _ p2u-2v)
4(—1)uau+v(au'v _ (_l)v—uav—u)
A-L*PHP(BMTT - (1)U
= FourzpFayony = 4ED @Y =P @77 - 17T
= SFoysovlou-2v = 20(-1)"F, ., F
= SFyusvFu-p (Lypplu-n = 4(¢-1)%),
which implies the statement of the lemma.
Lemma 3: (-1)"L,, + 1 = (-1)'F, JF,.

Proog: (-1)"L,, + 1 = (-1)"(Ly, + (-D") = (-1)"@*" +a"b" + b2™)

m m F
(_l)m {aa - b3 }= (_l)m 3m .

I
Q

Uu=-v

a™ - p" i

m
Now m
Froam = ((D"Loy + 1) ryom = From) - P

1F F (L I _ 4(_1)n+3m)

= 5%m  2n+3m\ Y 3m 204 3m

1
= (D"Lom + DeFpFonsam (Inlanssn = 4(-1)""2")
(applying Lemma 2 twice, with u =n + 3m, v =n and u =n + 2m, v =n + m)

1
- §F2"+3ML2n+3m F3mL3m - ((_l)mLZm + l)FmLm

- 2D nE,, L (CD7E,, = (DL, + 1)F,)
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=1 m
- _5—F2n+3mL2n+3m(F3mL3m - (_1) F3mLm)

4 m
- E(_l)nF2n+3m((_l)mF3m - (—1) Fsm)
(applying Lemma 3)

1 m
- B'FamFun+sm(L3m = (-1)"Ln)

= FmFZmF3mFHn+6m (by Lemma l)'
Therefore:

Y m u 4 bo_
Fvam ~ (1) Ly * 1)(Fn+2m = Fpym) - F' = FmFZmpsmF4n+6m'

Setting m = 2r» and m = 2r + 1 yields (a) and (b), respectively.
Also solved by the proposer.

Mod Ern
H-280 Proposed by P. Bruckman, Concord, CA (Vol. 16, No. 1, Feb. 1978)

Prove the congruences
(1) Fg. e = 2"*% (mod 2"*3%);
(2) L 2 + 22"*2 (mod 22"*"), m =1, 2, 3, ...

3.2"

Solution by Gregory Wulczyn, Bucknell University, Lewisburg, PA

(1) n=1, Fg =8 =8 (mod 16).
Since Lgk - SFik =14, (Lsg,Fax) = 2,
2 |F g s

2%|L,.,» if and only if ¢ = 1.
Assume Fy ,» = 2"*2 (mod 2 %) = 2"*% (mod 2"%%)

Fgy,pnt1 = Fg onlg,on = on+3 (mod 2n+l+)'

r>1, n>1;

(2) mn=1,Ls =18 =2+ 2% (mod 2°), L}, =L, + 2.
Assume Ly.,» = 2 + 22"%2 (mod 2°"*%)
L3_2"+1 = L%.z" -2 =92+ 22n+'+ + 2‘{n+'+ (mod 21+n+5)

Ly et =2+ 22"*% (mod 2%2"*%), n > 1.

bk

Also solved by the proposer, who noted that this is Corollary 6 in "Periodic
Continued Fraction Representations of Fibonacci-type Irrationals," by V. E.
Hoggatt, Jr. & Paul S. Bruckman, in The Fibonacci Quarterly 15,No. 3 (1977):
225-230.

3 HHH



