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H-307 Proposed by Larry Taylor, Briarwood, NY 

(A) If p = ±1 (mod 10) is prime, x = /B", and a = .7 (mod p) , prove 

that a, a + 1, a + 2, a + 3, and a + 4 have the same quadratic character mod-
ulo p if and only if 11 < p = 1 or 11 (mod 60) and (-2x/p) = 1. 

(B) If p = 1 (mod 60), (2x/p) = 1, and b = ~ 2 ^ J ^ 5 ) (mod p), then b, 

b + 2, b + 3, and b + 4 have the same quadratic character modulo p. Prove 
that (llab/p) = 1 . 

H-3O8 Proposed by Paul Bruckman, Concord, CA 

K ?n(ai' a2> ••" Un) 
Let [a , a , . . . , an] = — — 7 - — r deno te t h e n t h conve r -

gent of t h e i n f i n i t e s imple con t inued f r a c t i o n [al9 a2, . . . ] , n = 1, 2 , . . . . 
A l s o , d e f i n e p 0 = 1, ^ 0 = 0. F u r t h e r , d e f i n e 

(1) Wn>k = p n ( a x , a 2 , . . . , a n ) q f e ( a 1 5 a 2 , . . . , afc) 

- pk ( a x , a 2 , . . . , ^ f e ) ^ n t o 1 5 az* • • •» a ^ ) 

P n ^ " Pk<7n> 0 < fc < n . 
Find a general formula for Wn>^. 

H-309 Proposed by David Singmaster, Polytechnic of the South Bank, London, 
England 

Let f be a permutation of {l, 2, ..., m - 1} such that the terms i+f(i) 
are all distinct (mod m). Characterize and/or enumerate such /. [Each such 
/ gives a decomposition of the m(m + 1) m-nomial coefficients, which are the 
nearest neighbors of a given m-nomial coefficient, into m sets of m + 1 coef-
ficients which have equal products and are congruent by rotation—see Hoggatt 
& Alexanderson, "A Property of Multinomial Coeffieients," The Fibonacci Quar-
terly 9, No. 4 (1971):351-356, 420-421.] 

I have run a simple program to generate and enumerate such /, but can 
see no pattern. The number N of such permutations is given below for m <_ 10. 
The ratio N/(m - 1)! is decreasing steadily leading to the conjecture that it 
converges to 0. 

37A 
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m 2 3 4 5 6 7 8 9 10 

N 1 1 2 3 8 19 64 225 928 

H-310 Proposed by V. E. Hoggatt, Jr. , San Jose State University, San Jose, CA 

Let a = (1 + /5)/25 [na] = an9 and [na2] = bn. Clearly, an + n = bn. 
a) Show that if n = F2m + 1, then an = F2m + 2 and £n = F2m+S. 
b) Show that if n = F2m, then an = F2m + 1 " * anc* ̂ « = ^im + i ~ *• 
e) Show that if n = -̂ 2ms then an = L2m + 1 and 2?n = ^2m + 2' 

d) Show that if n = £ 2 m + l 5 t n e n ^n = ^ 2 ^ + 2 ~ * a n d ^« = ^2m + 3 ~ 1 B 

SOLUTIONS 

EdAJtohslcit Uotzt Starting with this issue, we shall indicate the issue and 
date when each problem was proposed. 

Continue 

H-278 Proposed by V.E. Hoggatt, Jr., San Jose State University, San Jose, CA 
(Vol. 16, No. 1, Feb. 1978) 

Show J— = <3, 1, 1, ..., 1,6) 

n - 1 
(Continued fraction notation, cyclic part under bar.) 

Solution by Gregory Wulczyn, Bucknell University, Lewisburg, PA 
F 

D = -~— = L2 and remainder (-an"2 - |3n~2) 
n 

2 < D < 3 

10 < 5D < 15 

[/5D] = 3. 

(Fn5Fn + 1) = 1 implies (Fn,Fn + 2) = 1. /BF has a unique periodic C.F. expan-
sion with first element 3 and terminal element 6. 

^ + 1 - ^ - F „ 2 = L 2 n + 2 + 2 ( - l ) - 1 - L2n + 2 + (-1)% = (-1)", 

x = ^n + l* 1J = Fn 

is a solution of x2 - 5Dy2 = ±1. 
For the p. and qi convergents formed from the C.F. expansion of v5D to 

terminate with p -L _,, and q -F^^ the middle elements must be (n- 1) ones. 

Also solved by the proposer. 
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A Rare Mixture 

H-279 Proposed by G. Wulczyn, Bucknell University, Lewisburg, PA 
(Vol. 16, No. 1, Feb. 1978) 

Establish the F-L identities: 

(a) ^ n + 6 r ~ ^hr + *•' ^n + hr ~ ™n.+ 2r' * = ^ 2v™i+2> ™6r^hn+ 12r 

(b) ^n+er + 3 + (•k'tr + 2 *~ •*•' ^n+hr+2 ~ ^n + 2r + l^ "" ™n 

— jp p ~p jp 
2r + lr hr + 2 Sr + 3 hn + 12r+B' 

Solution by Paul Bruckman, Concord, CA 

LmmcL 1: L3m - (-l)mLm = 5FmF2m. 

Vtiooji L3m - (-l)mLm = a3m + b3m - (ab)m(am + bm) 

= (am - bm)(a2m -b2m) = 5FmF2m. 

Imma 2: 5(F* - **) = FU_VFU + V(LU_VLU + V - 4 ( - l ) w ) . 

VKooji 25Fh
u = (au -bu)h = ahu + bhu - h(-l)u(a2u + b2u ) + 6 . 

T h e r e f o r e , 

25<y£ - F%) = ahu - ahv + bhu - ^ - 4 ( - l ) * a 2 w + 4 ( - l ) a2 

- 4(- l )Mfc2" + h(-l)vb2v 

= (a2w + 2 y - b2u + 2v)(a2u~2v -b2u~2v) 

- ^(-l)uau + v(au-v - (-Dv-Uav-U) 
- 4 ( - l ) ^ w + y(Zpu"y - ( - l f V ' * ) 

- 5F2u + 2vF2u„2v - 4 ( - l ) * ( a » + y - bu + v)(au~» - bu~v) 
= 5F F - 20(-l)uF F 

J 2U+2V 2U-2V K J ^U + VL U-V 

= 5Fu+vFu-v(Lu+vLu-v " 4 ( - l ) ) , 

which i m p l i e s t h e s t a t e m e n t of t h e lemma. 
Umm±: ( - l ) % n + 1 = (-l)V3m /Fm . 
TMOj: ( - D % m + 1 = (-Dm(L2m + (-If) = (-lf(a2m + amba + b2m) 

I ~3m -u3m l -f7-

= (-l)m<^ = A _ U (-if -22.. 
( a" - 6" j F* 

Now 
^n+3m "" ( ( _ 1 ) L2rn + 1) P n + 2m ~ Fn + m) ~ Fn 

= —F F (L L - 4 C - n n + 3 m y 
5 3 m 1 2n + 3mK 3m 2n+3m *K 1J ' 

- {(-l)mL2m + l)jrFmF2n+3m (LmL2n + 3m - h(-l)n + 2m) 

(app ly ing Lemma 2 t w i c e , w i t h u = n + 3m, v = n and u = n + 2m, v = n + m) 

= 5" F2n + 3m^2n + 3m F3m^3m ~ ( ( " ! ) ^2m + ^)FmLm 
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~ 5 F2n + 3mLZn+3m(F3mL3m ~ ^ _ 1 ^ F3mLm) 

( app ly ing Lemma 3) 

= J F3mFkn + 6m(L3m " ( _ 1 ) L*) 

= FmFZmFBmFhn+6m ^ Lemma ^ ' 

T h e r e f o r e : 

p^ _ ((-l}mL + l)(Fk - Fh )-Fh=FFFF 

S e t t i n g m - 2v and m - 2v + 1 y i e l d s (a) and ( b ) , r e s p e c t i v e l y . 

Also solved by the proposer. 

Mod Ern 

H-280 Proposed by P. Bruckman, Concord, CA (Vol. 16, No. 1, Feb. 1978) 

Prove t h e congruences 

(1) F 3 . 2 „ = 2* + 2 (mod 2 n + 3 ) ; 

(2) L3,zn = 2 + 2 2 " + 2 (mod 2 2 n + 1() , n = 1, 2 , 3 

Solution by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

(1) n = 1, Fe = 8 = 8 (mod 16). 

Since L\k - 5F\k = ± 4 , (L3k,F3k) = 2 , 

2r\F3,2n 9 r > 19 n >_ 1; 

2t\L3.zn i f and only i f t = 1. 
Assume F 3 . 2 n = 2n + 2 (mod 2 3) = 2n + 2 (mod 2n + lf) 

F3.2n+i = F 3 . 2 n L 3 . 2 n E 2n + 3 (mod 2n + I t ) . 

(2) n = 1, L6 = 18 E 2 + 2h (mod 26) , L2
2k = L ^ + 2. 

Assume L3.2»-= 2 + 22 n + 2 (mod 2 2 n + £f) 

L3.2n + i = L2.2« - 2 = 2 + 2 2 n + t> + 2 4 n + If (mod 2 4 n + 5) 

£3.2»+i E 2 + 22 n + lf (mod 2 2 n + 6 ) 9 n > 1. 

Also solved by the proposer, who noted that this is Corollary 6 in "Periodic 
Continued Fraction Representations of Fibonacci-type Irrationals /' by V. E. 
Hoggatt, Jr. & Paul S. Bruckman, in The Fibonacci Quarterly 15, No. 3 (1977): 
225-230. 


