1.	A. F. Horada	am. "P	olynomials A	ssociated	with	Chebyshev	Polynomials	of
	the First Ki	ind."	The Fibonacca	i Quarterly	15,	No. 3 (197)	7):255-257.	
-								

- 2. A. F. Horadam. "Diagonal Functions." The Fibonacci Quarterly 16, No.1 (1978):33-36.
- 3. D. V. Jaiswal. "On Polynomials Related to Tchebichef Polynomials of the Second Kind." *The Fibonacci Quarterly* 12, No. 3 (1974):263-265.

ON EULER'S SOLUTION OF A PROBLEM OF DIOPHANTUS

JOSEPH ARKIN

197 Old Nyack Turnpike, Spring Valley, NY 10977

V. E. HOGGATT, JR.

San Jose State University, San Jose, CA 95192

and

E. G. STRAUS*

University of California, Los Angeles, CA 90024

1. The four numbers 1, 3, 8, 120 have the property that the product of any two of them is one less than a square. This fact was apparently discovered by Fermat. As one of the first applications of Baker's method in Diophantine approximations, Baker and Davenport [2] showed that there is no fifth positive integer n, so that

$$n + 1$$
, $3n + 1$, $8n + 1$, and $120n + 1$

are all squares. It is not known how large a set of positive integers $\{x_1, x_2, \ldots, x_n\}$ can be found so that all $x_i x_j + 1$ are squares for all $1 \le i \le j \le n$.

A solution attributed to Euler [1] shows that for every triple of integers x_1 , x_2 , y for which $x_1x_2 + 1 = y^2$ it is possible to find two further integers x_3 , x_4 expressed as polynomials in x_1 , x_2 , y and a rational number x_5 , expressed as a rational function in x_1 , x_2 , y; so that $x_ix_j + 1$ is the square of a rational expression x_1 , x_2 , y for all $1 \le i \le j \le 5$.

In this note we analyze Euler's solution from a more abstract algebraic point of view. That is, we start from a field k of characteristic $\neq 2$ and adjoin independent transcendentals x_1, x_2, \ldots, x_m . We then set $x_i x_j + 1 = y_{ij}^2$ and pose two problems:

- I. Find nonzero elements $x_1, x_2, \ldots, x_m, x_{m+1}, \ldots, x_n$ in the ring $R = k[x_1, \ldots, x_m; y_{12}, \ldots, y_{m-1,m}]$ so that $x_i x_j + 1 = y_{ij}^2$; and $y_{ij} \in R$ for $1 \le i < j \le n$.
- II. Find nonzero elements $x_1, x_2, \ldots, x_m, x_{m+1}, \ldots, x_n$ in the field $K = k(x_1, \ldots, x_m; y_{12}, \ldots, y_{m-1,m})$ so that $x_i x_j + 1 = y_{ij}^2$; and $y_{ij} \in K$ for all $1 \le i \le j \le n$.

In Section 2 we give a complete solution to Problem I for m = 2, n = 3. In Section 3 we give solutions for m = 2, n = 4 which include both Euler's

^{*}Research was supported in part by Grant MCS79-03162 from the National Science Foundation.

solution and a solution for m = 3, n = 4 which generalize the solutions mentioned above.

In Section 4 we present a solution for m = 2 or 3, n = 5 of Problem II, which again contains Euler's solution as a special case. Finally, in Section 5 we apply the results of Section 4 to Problem II for m = 2, n = 3.

The case char k = 2 leads to trivial solutions, $x = x_1 = x_2 = \cdots = x_n$,

 $y_{ij} = x + 1$. Many of the ideas in this paper arose from conversations between Straus and John H. E. Cohn.

2. Solutions for
$$x_1x_3 + 1 = y_{13}^2$$
, $x_2x_3 + 1 = y_{23}^2$ with
 $x_3, y_{13}, y_{23} \in R = k[x_1, x_2, \sqrt{x_1x_2 + 1}].$

We set $\sqrt{x_1x_2 + 1} = y_{12}$ and note that the simultaneous equations

$$x_1 x_3 + 1 = y_{13}^2$$

 $x_2x_3 + 1 = y_{23}^2$

lead to a Pell's equation

(2)
$$x_1y_{23}^2 - x_2y_{13}^2 = x_1 - x_2$$
.

In $R[\sqrt{x_1}, \sqrt{x_2}]$ we have the fundamental unit $y_{12} + \sqrt{x_1x_2}$ which, together with the trivial solution $y_{13} = y_{23} = 1$ of (2), leads to the infinite class of solutions of (2) which we can express as follows:

(3)
$$y_{23}\sqrt{x_1} + y_{13}\sqrt{x_2} = \pm(\sqrt{x_1} \pm \sqrt{x_2})(y_{12} + \sqrt{x_1x_2})^n$$
; $n = 0, \pm 1, \pm 2, \ldots$.
In other words,

$$\pm y_{23}(n) = \frac{1}{2\sqrt{x_1}} \left[\left(\sqrt{x_1} \pm \sqrt{x_2} \right) \left(y_{12} + \sqrt{x_1 x_2} \right)^n + \left(\sqrt{x_1} \pm \sqrt{x_2} \right) \left(y_{12} - \sqrt{x_1 x_2} \right)^n \right];$$

$$\pm y_{13}(n) = \frac{1}{2\sqrt{x_2}} \left[\left(\sqrt{x_1} \pm \sqrt{x_2} \right) \left(y_{12} + \sqrt{x_1 x_2} \right)^n - \left(\sqrt{x_1} \pm \sqrt{x_2} \right) \left(y_{12} - \sqrt{x_1 x_2} \right)^n \right].$$

Once y_{13}, y_{23} are determined, then x_3 is determined by (1). The cases n = 1, 2 give Euler's solutions:

$$y_{13}(1) = x_1 + y_{12}, y_{23}(1) = x_2 + y_{12}, x_3(1) = x_1 + x_2 + 2y_{12};$$

$$y_{13}(2) = 1 + 2x_1x_2 + 2x_1y_{12}, y_{23}(2) = 1 + 2x_1x_2 + 2x_2y_{12};$$

$$x_3(2) = 4y_{12}[1 + 2x_1x_2 + (x_1 + x_2)y_{12}].$$

The interesting fact is that

 $x_{3}(1)x_{3}(2) + 1 = [3 + 4x_{1}x_{2} + 2(x_{1} + x_{2})y_{12}]^{2};$ and in general $x_{2}(n)x_{2}(n+1) + 1 = [x_{3}(n)y_{12} + y_{12}(n)y_{22}(n)]^{2}.$

The main theorem of this section is the following (see [3] for a similar result).

Theorem 1: The general solution of (1) and (2) in R is given by (3).

We first need two lemmas.

Lemma 1: If $y_{13}, y_{23} \in R$ are solutions of (2), then, for a proper choice of the sign of y_{23} , we have

(1)

$$\eta = \frac{\sqrt{x_2}y_{13} - \sqrt{x_1}y_{23}}{\sqrt{x_2} - \sqrt{x_1}} \varepsilon R[\sqrt{x_1x_2}],$$

where η is a unit of $R[\sqrt{x_1x_2}]$.

<u>Proof</u>: Write $y_{13} = A + By_{12}$, $y_{23} = C + Dy_{12}$, where $A, B, C, D \in k[x_1, x_2]$. Then equation (2) yields

$$x_2 - x_1 = x_2 (A + By_{12})^2 - x_1 (C + Dy_{12})^2$$

Under the homomorphism of R which maps $x_1 \rightarrow x$, $x_2 \rightarrow x$, we get

$$y_{12} \rightarrow \sqrt{x^2 + 1A(x_1, x_2)} \rightarrow A(x, x) = A(x), \text{ etc.},$$

and (4) becomes

(5)
$$0 = x[(A + C) + (B + D)y_{12}][(A - C) + (B - D)y_{12}].$$

Thus, one of the factors on the right vanishes and by proper choice of sign, we may assume A(x) = C(x), B(x) = D(x), which is the same as saying that

$$\frac{A(x_1,x_2) - C(x_1,x_2)}{x_2 - x_1} = P, \quad \frac{B(x_1,x_2) - D(x_1,x_2)}{x_2 - x_1} = Q,$$

with $P, Q \in k[x_1, x_2]$. Thus,

$$\eta = \frac{\sqrt{x_2}y_{13} - \sqrt{x_1}y_{23}}{\sqrt{x_2} - \sqrt{x_1}} = y_{13} + \sqrt{x_1}(\sqrt{x_2} + \sqrt{x_1})(P + Qy_{12})$$
$$= y_{13} + (x_1 + \sqrt{x_1}x_2)(P + Qy_{12}) \in R[\sqrt{x_1}x_2]$$

and, if we set

$$\overline{\eta} = \frac{\sqrt{x_2}y_{13} + \sqrt{x_1}y_{23}}{\sqrt{x_2} + \sqrt{x_1}} = y_{13} + (x_1 - \sqrt{x_1x_2})(P + Qy_{12})$$

we get $\eta \overline{\eta} = 1$.

Lemma 2: All units η of $R[\sqrt{x_1x_2}]$ are of the form $\eta = \kappa (y_{12} + \sqrt{x_1x_2})^n$; $\kappa \in k^*$; $n = 0, \pm 1, \ldots$. *Proof:* Write $x_1x_2 = s$, $x_1 = x$, $x_2 = s/x$, $t = \sqrt{s+1}$. Then,

$$R = k[x, s/x, \sqrt{s+1}] \subset k[x, 1/x, t] = R^{*}.$$

We now consider the units, η^* , of $R^*[\sqrt{s}]$ and show that they are of the form: (6) $\eta^* = \kappa x \ (t + \sqrt{t^2 - 1})^n, \ \kappa \in k^*; \ m, n \in \mathbb{Z}.$

Write $n^* = A + B\sqrt{t^2 - 1}$, where A and B are polynomials in t with coefficients in k[x,1/x] and proceed by induction on deg A as a polynomial in t. If deg A = 0, then B = 0 and A is a unit of k[x,1/x], that is, $n = \kappa x^m$,

Findeg A = 0, then B = 0 and A is a unit of $\kappa[x, 1/x]$, that is, $\eta = \kappa x$ $\kappa \in k^*$, $m \in \mathbb{Z}$. Now assume the lemma true for deg A < n and write

assume the remma true for deg A < n and write

$$A = a_n t^n + a_{n-1} t^{n-1} + \cdots, B = b_{n-1} t^{n-1} + b_{n-2} t^{n-2} + \cdots$$

Since η^* is a unit, we get that

$$\eta^*\eta^{-*} = A^2 - (t^2 - 1)B^2$$

is a unit of k[x,1/x]. So, comparing coefficients of t^{2n} and t^{2n-1} , we get:

1979]

(4)

$$a_n^2 = b_{n-1}^2, a_n a_{n-1} = b_{n-1} b_{n-2}$$

or

$$a_n = \pm b_{n-1}, a_{n-1} = \pm b_{n-2}$$

Thus,

$$\eta^{**} = \eta^{*}(t \mp \sqrt{t^{2} - 1}) = [tA \mp (t^{2})B] + (tB \pm A)\sqrt{t^{2}} = 1$$
$$= A_{1} + B_{1}\sqrt{t^{2} - 1},$$

where $A_1 = a_n t^{n+1} + a_{n-1} t^n + \cdots \neq (t^2 - 1)(a_n t^{n-1} + a_{n-1} t^{n-2} \dots)$, so that deg $A_1 < n$ and n^{**} is of the form (6) by the induction hypothesis. Therefore $\eta^* = \eta^{**}(t \pm \sqrt{t^2 - 1})$ is also of the form (6).

Now η^* is a unit of $R[\sqrt{t^2 - 1}]$ if and only if κx^m is a unit of R; that is, if and only if m = 0.

Theorem 1 now follows directly from Lemmas 1 and 2 if we write

$$\sqrt{x_2}y_{13} + \sqrt{x_1}y_{23} = \kappa(\sqrt{x_2} \pm \sqrt{x_1})(y_{12} + \sqrt{x_1}x_2)^n$$

and get

$$x_2 y_{13}^2 - x_1 y_{23}^2 = \kappa^2 = 1.$$

so that $\kappa = \pm 1$.

Note that Theorem 1 does not show that, for any two integers x_1 , x_2 for which $x_1x_2 + 1$ is a square, all integers x_3 for which $x_ix_3 + 1$ are squares; i = 1, 2; are of the given forms. But these forms are the only ones that can be expressed as polynomials in x_1 , x_2 , $\sqrt{x_1x_2 + 1}$ and work for all such triples.

As mentioned above, we have the recursion relations

$$y_{13}(n + 1) = x_1 y_{23}(n) + y_{12} y_{13}(n),$$

 $y_{23}(n + 1) = x_2 y_{13}(n) + y_{12} y_{23}(n)$,

 $x_{3}(n + 1) = x_{1} + x_{2} + x_{3}(n) + 2x_{1}x_{2}x_{3}(n) + 2y_{12}y_{13}(n)y_{23}(n),$ and therefore

(7)

$$x_{3}(n)x_{3}(n+1) + 1 = [y_{12}x_{3}(n) + y_{13}(n)y_{23}(n)]^{2}$$

so that the quadruple $x_1, x_2, x_3(n) = x_3, x_3(n + 1) + x_4$ has the property that $x_i x_j + 1$ is a square for $1 \le i < j \le 4$.

From [3, Theorem 3], we get the following.

Theorem 2: $x_3(m)x_3(n) + 1$ is a square in R if any only if |m - n| = 1.

Note that while the proof in [3] is restricted to a more limited class of solutions, the solutions there are obtained by specialization from the solutions presented here.

 $\begin{array}{ccc} \underline{3. \quad \text{Solutions for}} & x_i x_4 + 1 = y_{i_4}^2; \ i = 1, \ 2, \ 3 \ \underline{\text{with}} & x_4, y_{i_4} \in \mathbb{R} = k[x_1, x_2, x_3, y_{i_2}, y_{i_3}, y_{2_3}] \ \underline{\text{where}} & y_{i_j} = \sqrt{x_i x_j + 1}; \ 1 \leq i < j \leq 3. \end{array}$

The solution (7) using $x_3 = x_3(n)$, $x_4 = x_4(n)$ as polynomials in x_1, x_2, y_{12} can be generalized as follows.

Theorem 3: For
$$x_4 = x_1 + x_2 + x_3 + 2x_1x_2x_3 + 2y_{12}y_{13}y_{23}$$
, we have

$$x_{i}x_{4} + 1 = y_{i4}^{2}, y_{i4} = x_{i}y_{ik} + y_{ii}y_{ik}; \{i,j,k\} = \{1,2,3\}$$

Proof: We have

$$y_{i_{4}}^{2} - 1 = -1 + x_{i}^{2}(x_{j}x_{k} + 1) + (x_{i}x_{j} + 1)(x_{i}x_{k} + 1) + 2x_{i}y_{12}y_{13}y_{23}$$

$$= x_{i}(x_{1} + x_{2} + x_{3} + 2x_{1}x_{2}x_{3} + 2y_{12}y_{13}y_{23})$$

$$= x_{i}x_{\mu}.$$

336

[Dec.

Note that since the choice of the sign of y_{ij} is arbitrary, we always get two conjugate solutions for $x_4 \in R$. This corresponds to the choices

$$x_{\mu} = x_{3}(n \pm 1)$$

in the previous section.

Theorem 4: The values x_{μ} in Theorem 3 are the only nonzero elements of R with $\overline{x_i x_4 + 1}$ squares in R for i = 1, 2, 3.

<u>Proof</u>: Let $x_4 = P(x_1, x_2, x_3, y_{12}, y_{13}, y_{23}) \in R$ where, in order to normalize the expression we assume that P is linear in the y_{ij} and $P \neq 0$. By Theorem 2, we have

$$P[x_{1}, x_{2}, x_{3}(n), y_{12}, y_{13}(n), y_{23}(n)] = x_{3}(n + 1)$$

for each $n = 0, \pm 1, \pm 2, \ldots$ Without loss of generality we may assume that $P = x_3(n + 1)$ for infinitely many choices of n. Then the algebraic function of x_3 - /

$$P(x_1, x_2, x_3, y_{12}, y_{13}, y_{23}) - x_1 - x_2 - x_3 - 2x_1x_2x_3 - 2y_{12}y_{13}y_{23}$$

has infinitely many zeros $x_3 = x_3(n)$ and hence is identically 0.

The values x_4 in Theorem 3 can be characterized in the following symmetric way.

Lemma 3: Let σ_i ; i = 1, 2, 3, 4 be the elementary symmetric functions of $x_{i,j}$ $\overline{x_2, x_3, x_4}$. Then x_4 is the value given by Theorem 3 if and only if

(8)
$$\sigma_1^2 = 4(\sigma_2 + \sigma_1 + 1).$$

σ,

<u>Proof</u>: If we write Σ_1 , Σ_2 , Σ_3 for the elementary symmetric functions of x_1 , x_2 , x_3 , then $x_4 = \Sigma_1 + 2\Sigma_3 + 2Y$ where

Hence

$$Y = y_{12}y_{13}y_{23} = \sqrt{\Sigma_3^2 + \Sigma_1\Sigma_3 + \Sigma_2 + 1}.$$

$$\sigma_1 = 2(\Sigma_1 + \Sigma_3 + Y)$$

$$\sigma_2 = \Sigma_2 + x_4\Sigma_1 = \Sigma_2 + \Sigma_1^2 + 2\Sigma_1\Sigma_3 + 2\Sigma_1Y$$

$$\sigma_4 = x_4\Sigma_2 = \Sigma_1\Sigma_3 + 2\Sigma_2^2 + 2\Sigma_3Y.$$

Thus.

(9)

 $\sigma_{1}^{2} = 4[\Sigma_{1}^{2} + 2\Sigma_{1}\Sigma_{3} + \Sigma_{3}^{2} + 2\Sigma_{1}Y + 2\Sigma_{3}Y + Y^{2}]$ $= 4 [\sigma_2 + \sigma_4 - \Sigma_2 - \Sigma_1 \Sigma_3 - \Sigma_3^2 + (x_1 x_2 + 1) (x_1 x_3 + 1) (x_2 x_3 + 1)]$ = $4(\sigma_2 + \sigma_4 + 1)$.

Conversely, if we solve the quadratic equation (8) for x_{μ} , we get the two values in Theorem 3.

 $\frac{4. \text{ Solutions for }}{y_{12}, y_{13}, y_{23}} \underset{k_{4}}{\text{ where }} x_{4} \underset{k_{4}}{\text{ is given by Theorem 3}} x_{5}, 4 \underset{k_{4}}{\text{ with }} x_{4}, y_{i5} \in K = k(x_{1}, x_{2}, x_{3}, x_{3}$

If we use the x_4 of the previous section and define

(10)
$$x_5 = \frac{4\sigma_3 + 2\sigma_1 + 2\sigma_1\sigma_4}{(\sigma_4 - 1)^2}$$

we get the following.

Theorem 5: We have

$$x_{i}x_{5} + 1 = \left(\frac{2x_{i}^{2} - \sigma_{1}x_{i} - \sigma_{4} - 1}{\sigma_{4} - 1}\right)^{2}; i = 1, 2, 3, 4.$$

Proof: The
$$x_i$$
 are the roots of the equation

 $x_{i}^{4} - \sigma_{1}x_{i}^{3} + \sigma_{2}x_{i}^{2} - \sigma_{3}x_{i} + \sigma_{4} = 0.$ (11)Hence

(12)
$$(\sigma_4 - 1)^2 (x_i x_5 + 1) = 4\sigma_3 x_i + 2\sigma_1 x_i + 2\sigma_1 \sigma_4 x_i + (\sigma_4 - 1)^2.$$

If we substitute
$$4\sigma_3 x_i = 4(x_i^4 - \sigma_1 x_i^3 + \sigma_2 x_i^2 + \sigma_4)$$
 from (11), we get

 $(\sigma_4 - 1)^2 (x_i x_5 + 1) = 4x_i^4 - 4\sigma_1 x_i^3 + 4\sigma_2 x_i^2 + 2\sigma_1 (\sigma_4 + 1)x_i + (\sigma_4 + 1)^2$ (13) $= (2x_i^2 - \sigma_1 x_i - \sigma_4 - 1)^2 - (\sigma_1^2 - 4\sigma_4 - 4 - 4\sigma_2)x_i^2$ $= (2x_i^2 - \sigma_1 x_i - \sigma_4 - 1)^2,$

since the last bracket vanishes by Lemma 3.

Thus, the famous quadruple 1, 3, 8, 120 can be augmented by

 $x_5 = \frac{777480}{2879^2}$.

We conjecture that the quintuple given by Theorem 5 is the only pair of quintuples in which x_4 is a polynomial in $x_1, x_2, x_3; y_{12}, y_{13}, y_{23}$ and x_5 is rational in these quantities.

Finally, we show that the value \boldsymbol{x}_{5} given by Theorem 5 is never an integer when $x_1, x_2, x_3, y_{12}, y_{13}, y_{23}$ and, hence, x_4 and y_{14}, y_{24}, y_{34} are positive integers.

Theorem 6: If the quantities $x_1, x_2, x_3, y_{12}, y_{13}, y_{23}$ in Theorem 5 are positive integers, then $0 < x_5 < 1$.

<u>**Proof</u>**: Since we have already verified the theorem for the case $x_1 = 1$, $x_2 = 1$ </u> $\overline{3, x_3} = 8$, we may assume that

$$\frac{\Sigma_1}{\Sigma_3} = \frac{1}{x_1 x_2} + \frac{1}{x_1 x_3} + \frac{1}{x_2 x_3} < \frac{1}{3} + \frac{1}{8} + \frac{1}{24} = \frac{1}{2} ,$$

and the smallest Σ_1 is obtained for the triple 2, 4, 12. Thus,

$$(14) 18 \leq \Sigma_1 < \frac{1}{2}\Sigma_3.$$

Similarly

$$\frac{\Sigma_2}{\Sigma_3} < 1 + \frac{1}{3} + \frac{1}{8} < \frac{3}{2}$$

and

 $80 \leq \Sigma_2 < \frac{3}{2}\Sigma_3$. (15)

Next, $Y = y_{12}y_{13}y_{23}$ satisfies $Y = \sqrt{\Sigma_3^2 + \Sigma_1\Sigma_3 + \Sigma_2 + 1}$, so that from (14) and (15) we get

(16)
$$\Sigma_3 + 9 \le Y < \frac{3}{2}(\Sigma_3 + 1)$$

Thus, the numerator of $1 - x_5$ is

$$(17) \quad (\sigma_{4} - 1)^{2} - 2\sigma_{1}\sigma_{4} - 4\sigma_{3} - 2\sigma_{1} = (\sigma_{4} - \sigma_{1} - 1)^{2} - \sigma_{1}^{2} - 4\sigma_{3} - 4\sigma_{1}$$
$$= (\sigma_{4} - \sigma_{1} - 1)^{2} - 4(\sigma_{4} + \sigma_{2} + 1)$$
$$- 4\sigma_{3} - 4\sigma_{1}$$
$$= (\sigma_{4} - \sigma_{1} - 3)^{2} - 4\sigma_{3} - 4\sigma_{2} - 8\sigma_{1} - 8$$

ON EULER'S SOLUTION OF A PROBLEM OF DIOPHANTUS

$$= (2\Sigma_{3}^{2} + 2\Sigma_{3}Y + \Sigma_{1}\Sigma_{3} - 2\Sigma_{3} - 2Y - 2\Sigma_{1} - 3)^{2} - 8\Sigma_{2}\Sigma_{3} - 8\Sigma_{2}Y - 4\Sigma_{1}\Sigma_{2} - 4\Sigma_{3} - 8\Sigma_{1}\Sigma_{3} - 8\Sigma_{1}Y - 4\Sigma_{1}^{2} - 4\Sigma_{2} - 16\Sigma_{3} - 16Y - 16\Sigma_{1} - 8 > (4\Sigma_{3}^{2} + 30\Sigma_{3} - 6)^{2} - 12\Sigma_{3}^{2} - 18\Sigma_{3}(\Sigma_{3} + 1) - 3\Sigma_{3}^{2} - 4\Sigma_{3} - 4\Sigma_{3}^{2} - 6\Sigma_{3}(\Sigma_{3} + 1) - \Sigma_{3}^{2} - 6\Sigma_{3} - 16\Sigma_{3} - 24(\Sigma_{3} + 1) - 8\Sigma_{3} - 8 = (4\Sigma_{3}^{2} + 30\Sigma_{3} - 6)^{2} - 44\Sigma_{3}^{2} - 82\Sigma_{3} - 32 > (4\Sigma_{2}^{2} + 30\Sigma_{2} - 12)^{2} > 0.$$

Thus, our algebraic method has the result that for every three positive integers x_1, x_2, x_3 so that $x_i x_j + 1$ is a square for $1 \le i < j \le 3$ there always exists a fourth positive integer (and usually two distinct fourth integers) x_4 so that $x_i x_4 + 1$; i = 1, 2, 3, is a square. Finally, there always exists a fifth rational number, x_5 , always a proper fraction, so that $x_i x_5 + 1$; i =1, 2, 3, 4 is a square.

The question of finding more than four positive integers remains open.

5. Solutions of $x_i x_3' + 1 = y_{i3}'^2$; i = 1, 2 with $x_3', y_{i3}' \in K = k(x_1, x_2, y_{12})$. The field $K = k(x_1, x_2, y_{12})$ is, of course, the pure transcendental extension $k(x_1, y_{12})$. Sections 4 and 5 show that K contains many solutions x'_3, y'_{13} of equation (1) that are not in $R = k[x_1, x_2, y_{12}]$ and, therefore, are not given in Theorem 1.

For example, we may define a quadruple $x_1, x_2, x_3 = x_3(n), x_4 = x_3(n+1)$ which satisfies Theorem 3 and then define

$$x'_{3}(n) = x_{5} = \frac{1}{(\sigma_{\mu} - 1)^{2}} [2\sigma_{1} + 4\sigma_{3} + 2\sigma_{1}\sigma_{4}]$$

as in (10) to get an infinite sequence of triples $x_1, x_2, x'_3(n) \in K$ which sat-isfy (1). The triple $x_1, x_2, x'_3(n)$ can be augmented, by Theorem 3, to a quadruple $x_1, x_2, x_3(n), x_4'(n)$, where $x_4'(n)$ has the same denominator

$$[\sigma_4(n) - 1)^2 = [x_1 x_2 x_3(n) x_3(n+1) - 1]^2$$

as $x'_{3}(n)$. By Theorem 5, this quadruple can be augmented to a quintuple

$x_1, x_2, x'_3(n), x'_1(n), x'_5(n).$

Once this process is completed we can start anew, beginning with the triples $x_1, x_2, x_4'(n)$ or $x_1, x_2, x_5'(n)$. Each of the triples can be augmented to quadruples and quintuples, etc. In short, the family of solutions of (1) with x_3 , y_{13} , y_{23} ε K appears to be very large, and is quite difficult to characterize completely.

REFERENCES

- 1. American Math. Monthly 6 (1899):86-87.
- 2. A. Baker & H. Davenport. "The Equations $3x^2 2 = y^2$ and $8x^2 7 = z^2$." Quarterly J. Math., Oxford Series (2), 20 (1969):129-137. 3. B. W. Jones. "A Variation on a Problem of Davenport and Diophantus,"
- Quarterly J. Math., Oxford Series (2), 27 (1976):349-353.
