REFERENCES

1．A．F．Horadam．＂Polynomials Associated with Chebyshev Polynomials of the First Kind．＂The Fibonacci Quarterly 15，No．3（1977）：255－257．
2．A．F．Horadam．＂Diagonal Functions．＂The Fibonacci Quarterly 16，No． 1 （1978）：33－36．
3．D．V．Jaiswal．＂On Polynomials Related to Tchebichef Polynomials of the Second Kind．＂The Fibonacci quarterly 12，No．3（1974）：263－265．
＊がが＊

ON EULER＇S SOLUTION OF A PROBLEM OF DIOPHANTUS
 JOSEPH ARKIN
 197 Old Nyack Turnpike，Spring Valley，NY 10977
 V．E．HOGGATT，JR．
 San Jose State University，San Jose，CA 95192
 and
 E．G．STRAUS＊
 University of California，Los Angeles，CA 90024

1．The four numbers $1,3,8,120$ have the property that the product of any two of them is one less than a square．This fact was apparently discovered by Fermat．As one of the first applications of Baker＇s method in Diophantine approximations，Baker and Davenport［2］showed that there is no fifth posi－ tive integer n ，so that

$$
n+1,3 n+1,8 n+1, \text { and } 120 n+1
$$

are all squares．It is not known how large a set of positive integers $\left\{x_{1}\right.$ ， $\left.x_{2}, \ldots, x_{n}\right\}$ can be found so that all $x_{i} x_{j}+1$ are squares for all $1 \leq i<j$ $\leq n$ ．

A solution attributed to Euler［1］shows that for every triple of inte－ gers x_{1}, x_{2}, y for which $x_{1} x_{2}+1=y^{2}$ it is possible to find two further in－ tegers x_{3}, x_{4} expressed as polynomials in x_{1}, x_{2}, y and a rational number x_{5} ， expressed as a rational function in x_{1}, x_{2}, y ；so that $x_{i} x_{j}+1$ is the square of a rational expression x_{1}, x_{2} ，y for all $1 \leq i<j \leq 5$ ．

In this note we analyze Euler＇s solution from a more abstract algebraic point of view．That is，we start from a field k of characteristic $\neq 2$ and ad－ join independent transcendentals $x_{1}, x_{2}, \ldots, x_{m}$ ．We then set $x_{i} x_{j}+1=y_{i j}^{2}$ and pose two problems：

I．Find nonzero elements $x_{1}, x_{2}, \ldots, x_{m}, x_{m+1}, \ldots, x_{n}$ in the ring
$R=k\left[x_{1}, \ldots, x_{m} ; y_{12}, \ldots, y_{m-1, m}\right]$ so that $x_{i} x_{j}+1=y_{i j}^{2}$ ；and
$y_{i j} \varepsilon R$ for $1 \leq i<j \leq n$ ．
II．Find nonzero elements $x_{1}, x_{2}, \ldots, x_{m}, x_{m+1}, \ldots, x_{n}$ in the field
$K=k\left(x_{1}, \ldots, x_{m} ; y_{12}, \ldots, y_{m-1, m}\right)$ so that $x_{i} x_{j}+1=y_{i j}^{2}$ ；and
$y_{i j} \in K$ for all $1 \leq i<j \leq n$ ．
In Section 2 we give a complete solution to Problem I for $m=2, n=3$ ．
In Section 3 we give solutions for $m=2$ ，$n=4$ which include both Euler＇s

[^0]solution and a solution for $m=3, n=4$ which generalize the solutions mentioned above.

In Section 4 we present a solution for $m=2$ or 3 , $n=5$ of Problem II, which again contains Euler's solution as a special case. Finally, in Section 5 we apply the results of Section 4 to Problem II for $m=2, n=3$.

The case char $k=2$ leads to trivial solutions, $x=x_{1}=x_{2}=\ldots=x_{n}$, $y_{i j}=x+1$.

Many of the ideas in this paper arose from conversations between Straus and John H. E. Cohn.

$$
\begin{align*}
& \text { 2. Solutions for } x_{1} x_{3}+1=y_{13}^{2}, x_{2} x_{3}+1=y_{23}^{2} \text { with } \\
& \qquad x_{3} y_{13}, y_{23} \in R=k\left[x_{1}, x_{2}, \sqrt{x_{1} x_{2}+1}\right] . \\
& \text { We set } \sqrt{x_{1} x_{2}+1}=y_{12} \text { and note that the simultaneous equations } \\
& x_{1} x_{3}+1=y_{13}^{2} \\
& \text { (1) } \quad x_{2} x_{3}+1=y_{23}^{2} \tag{1}
\end{align*}
$$

lead to a Pell's equation

$$
\begin{equation*}
x_{1} y_{23}^{2}-x_{2} y_{13}^{2}=x_{1}-x_{2} \tag{2}
\end{equation*}
$$

In $R\left[\sqrt{x_{1}}, \sqrt{x_{2}}\right]$ we have the fundamental unit $y_{12}+\sqrt{x_{1} x_{2}}$ which, together with the trivial solution $y_{13}=y_{23}=1$ of (2), leads to the infinite class of solutions of (2) which we can express as follows:
(3) $y_{23} \sqrt{x_{1}}+y_{13} \sqrt{x_{2}}= \pm\left(\sqrt{x_{1}} \pm \sqrt{x_{2}}\right)\left(y_{12}+\sqrt{x_{1} x_{2}}\right)^{n} ; n=0, \pm 1, \pm 2, \ldots$.

In other words,

$$
\begin{aligned}
& \pm y_{23}(n)=\frac{1}{2 \sqrt{x_{1}}}\left[\left(\sqrt{x_{1}} \pm \sqrt{x_{2}}\right)\left(y_{12}+\sqrt{x_{1} x_{2}}\right)^{n}+\left(\sqrt{x_{1}} \mp \sqrt{x_{2}}\right)\left(y_{12}-\sqrt{x_{1} x_{2}}\right)^{n}\right] \\
& \pm y_{13}(n)=\frac{1}{2 \sqrt{x_{2}}}\left[\left(\sqrt{x_{1}} \pm \sqrt{x_{2}}\right)\left(y_{12}+\sqrt{x_{1} x_{2}}\right)^{n}-\left(\sqrt{x_{1}} \mp \sqrt{x_{2}}\right)\left(y_{12}-\sqrt{x_{1} x_{2}}\right)^{n}\right]
\end{aligned}
$$

Once y_{13}, y_{23} are determined, then x_{3} is determined by (1).
The cases $n=1,2$ give Euler's solutions:

$$
\begin{aligned}
y_{13}(1) & =x_{1}+y_{12}, y_{23}(1)=x_{2}+y_{12}, x_{3}(1)=x_{1}+x_{2}+2 y_{12} ; \\
y_{13}(2) & =1+2 x_{1} x_{2}+2 x_{1} y_{12}, y_{23}(2)=1+2 x_{1} x_{2}+2 x_{2} y_{12} ; \\
x_{3}(2) & =4 y_{12}\left[1+2 x_{1} x_{2}+\left(x_{1}+x_{2}\right) y_{12}\right] .
\end{aligned}
$$

The interesting fact is that
$x_{3}(1) x_{3}(2)+1=\left[3+4 x_{1} x_{2}+2\left(x_{1}+x_{2}\right) y_{12}\right]^{2}$;
and in general

$$
x_{3}(n) x_{3}(n+1)+1=\left[x_{3}(n) y_{12}+y_{13}(n) y_{23}(n)\right]^{2} .
$$

The main theorem of this section is the following (see [3] for a similar result).
Theorem 1: The general solution of (1) and (2) in R is given by (3).
We first need two lemmas.
Lemma 1: If $y_{13}, y_{23} \varepsilon R$ are solutions of (2), then, for a proper choice of the sign of y_{23}, we have

$$
\eta=\frac{\sqrt{x_{2} y_{13}}-\sqrt{x_{1}} y_{23}}{\sqrt{x_{2}}-\sqrt{x_{1}}} \varepsilon R\left[\sqrt{x_{1} x_{2}}\right],
$$

where η is a unit of $R\left[\sqrt{x_{1} x_{2}}\right]$.
Proof: Write $y_{13}=A+B y_{12}, y_{23}=C+D y_{12}$, where $A, B, C, D \varepsilon k\left[x_{1}, x_{2}\right]$. Then equation (2) yields

$$
\begin{equation*}
x_{2}-x_{1}=x_{2}\left(A+B y_{12}\right)^{2}-x_{1}\left(C+D y_{12}\right)^{2} \tag{4}
\end{equation*}
$$

Under the homomorphism of R which maps $x_{1} \rightarrow x, x_{2} \rightarrow x$, we get

$$
y_{12} \rightarrow \sqrt{x^{2}}+1 A\left(x_{1}, x_{2}\right) \rightarrow A(x, x)=A(x), \text { etc. }
$$

and (4) becomes

$$
\begin{equation*}
0=x\left[(A+C)+(B+D) y_{12}\right]\left[(A-C)+(B-D) y_{12}\right] \tag{5}
\end{equation*}
$$

Thus, one of the factors on the right vanishes and by proper choice of sign, we may assume $A(x)=C(x), B(x)=D(x)$, which is the same as saying that

$$
\frac{A\left(x_{1}, x_{2}\right)-C\left(x_{1}, x_{2}\right)}{x_{2}-x_{1}}=P, \quad \frac{B\left(x_{1}, x_{2}\right)-D\left(x_{1}, x_{2}\right)}{x_{2}-x_{1}}=Q
$$

with $P, Q \in \mathbb{K}\left[x_{1}, x_{2}\right]$. Thus,

$$
\begin{aligned}
\eta & =\frac{\sqrt{x_{2} y_{13}}-\sqrt{x_{1} y_{23}}}{\sqrt{x_{2}}-\sqrt{x_{1}}}=y_{13}+\sqrt{x_{1}}\left(\sqrt{x_{2}}+\sqrt{x_{1}}\right)\left(P+Q y_{12}\right) \\
& =y_{13}+\left(x_{1}+\sqrt{x_{1} x_{2}}\right)\left(P+Q y_{12}\right) \varepsilon R\left[\sqrt{x_{1} x_{2}}\right]
\end{aligned}
$$

and, if we set

$$
\bar{n}=\frac{\sqrt{x_{2} y_{13}}+\sqrt{x_{1} y_{23}}}{\sqrt{x_{2}}+\sqrt{x_{1}}}=y_{13}+\left(x_{1}-\sqrt{x_{1} x_{2}}\right)\left(P+Q y_{12}\right)
$$

we get $\eta \bar{\eta}=1$.
Lemma 2: A11 units η of $R\left[\sqrt{x_{1} x_{2}}\right]$ are of the form

$$
\eta=\kappa\left(y_{12}+\sqrt{x_{1} x_{2}}\right)^{n} ; \kappa \varepsilon k^{*} ; n=0, \pm 1, \ldots .
$$

Proof: Write $x_{1} x_{2}=s, x_{1}=x, x_{2}=s / x, t=\sqrt{s+1}$. Then,

$$
R=k[x, s / x, \sqrt{s+1}] \subset k[x, 1 / x, t]=R^{*}
$$

We now consider the units, η^{*}, of $R^{*}[\sqrt{s}]$ and show that they are of the form:

$$
\begin{equation*}
\eta^{*}=k x\left(t+\sqrt{t^{2}-1}\right)^{n}, \kappa \varepsilon k^{*} ; m, n \varepsilon Z . \tag{6}
\end{equation*}
$$

Write $\eta^{*}=A+B \sqrt{t^{2}-1}$, where A and B are polynomials in t with coefficients in $k[x, 1 / x]$ and proceed by induction on $\operatorname{deg} A$ as a polynomial in t.

If $\operatorname{deg} A=0$, then $B=0$ and A is a unit of $k[x, 1 / x]$, that is, $\eta=k x^{m}$, $\kappa \varepsilon k^{*}, m \in \mathbb{Z}$.

Now assume the lemma true for $\operatorname{deg} A<n$ and write

$$
A=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots, B=b_{n-1} t^{n-1}+b_{n-2} t^{n-2}+\cdots
$$

Since η^{*} is a unit, we get that

$$
\eta^{*} \eta^{-*}=A^{2}-\left(t^{2}-1\right) B^{2}
$$

is a unit of $k[x, 1 / x]$. So, comparing coefficients of $t^{2 n}$ and $t^{2 n-1}$, we get:
or

$$
a_{n}^{2}=b_{n-1}^{2}, a_{n} a_{n-1}=b_{n-1} b_{n-2}
$$

Thus,

$$
a_{n}= \pm b_{n-1}, a_{n-1}= \pm b_{n-2}
$$

$$
\begin{aligned}
n^{* *} & =n^{*}\left(t \mp \sqrt{t^{2}-1}\right)=\left[t A \mp\left(t^{2}\right) B\right]+(t B \pm A) \sqrt{t^{2}=1} \\
& =A_{1}+B_{1} \sqrt{t^{2}-1},
\end{aligned}
$$

where $A_{1}=a_{n} t^{n+1}+a_{n-1} t^{n}+\cdots \mp\left(t^{2}-1\right)\left(a_{n} t^{n-1}+a_{n-1} t^{n-2} \ldots\right)$, so that $\operatorname{deg} A_{1}<n$ and $\eta^{* *}$ is of the form (6) by the induction hypothesis. Therefore $\eta^{*}=n^{* *}\left(t \pm \sqrt{t^{2}-1}\right)$ is also of the form (6).

Now n^{*} is a unit of $R\left[\sqrt{t^{2}-1}\right]$ if and only if $k x^{m}$ is a unit of R; that is, if and only if $m=0$.

Theorem 1 now follows directly from Lemmas 1 and 2 if we write

$$
\sqrt{x_{2} y_{13}}+\sqrt{x_{1} y_{23}}=\kappa\left(\sqrt{x_{2}} \pm \sqrt{x_{1}}\right)\left(y_{12}+\sqrt{x_{1} x_{2}}\right)^{n}
$$

and get

$$
x_{2} y_{13}^{2}-x_{1} y_{23}^{2}=\kappa^{2}=1
$$

so that $k= \pm 1$.
Note that Theorem 1 does not show that, for any two integers x_{1}, x_{2} for which $x_{1} x_{2}+1$ is a square, all integers x_{3} for which $x_{i} x_{3}+1$ are squares; $i=1,2$; are of the given forms. But these forms are the only ones that can be expressed as polynomials in $x_{1}, x_{2}, \sqrt{x_{1} x_{2}+1}$ and work for all such triples.

As mentioned above, we have the recursion relations

$$
\begin{aligned}
y_{13}(n+1) & =x_{1} y_{23}(n)+y_{12} y_{13}(n), \\
y_{23}(n+1) & =x_{2} y_{13}(n)+y_{12} y_{23}(n), \\
x_{3}(n+1) & =x_{1}+x_{2}+x_{3}(n)+2 x_{1} x_{2} x_{3}(n)+2 y_{12} y_{13}(n) y_{23}(n),
\end{aligned}
$$

and therefore

$$
\begin{equation*}
x_{3}(n) x_{3}(n+1)+1=\left[y_{12} x_{3}(n)+y_{13}(n) y_{23}(n)\right]^{2}, \tag{7}
\end{equation*}
$$

so that the quadruple $x_{1}, x_{2}, x_{3}(n)=x_{3}, x_{3}(n+1)+x_{4}$ has the property that $x_{i} x_{j}+1$ is a square for $1 \leq i<j \leq 4$.

From [3, Theorem 3], we get the following.
Theorem 2: $\quad x_{3}(m) x_{3}(n)+1$ is a square in R if any only if $|m-n|=1$.
Note that while the proof in [3] is restricted to a more limited class of solutions, the solutions there are obtained by specialization from the solutions presented here.
3. Solutions for $x_{i} x_{4}+1=y_{i_{4}}^{2}$; $i=1,2,3$ with $x_{4}, y_{i 4} \varepsilon R=k\left[x_{1}, x_{2}, x_{3}\right.$, $\left.y_{12}, y_{13}, y_{23}\right]$ where $y_{i j}=\sqrt{x_{i} x_{j}+1} ; 1 \leq i<j \leq 3$.

The solution (7) using $x_{3}=x_{3}(n), x_{4}=x_{4}(n)$ as polynomials in x_{1}, x_{2}, y_{12} can be generalized as follows.
Theorem 3: For $x_{4}=x_{1}+x_{2}+x_{3}+2 x_{1} x_{2} x_{3}+2 y_{12} y_{13} y_{23}$, we have

$$
x_{i} x_{4}+1=y_{i 4}^{2}, y_{i 4}=x_{i} y_{j k}+y_{i j} y_{i k} ;\{i, j, k\}=\{1,2,3\}
$$

Proof: We have

$$
\begin{aligned}
y_{i 4}^{2}-1 & =-1+x_{i}^{2}\left(x_{j} x_{k}+1\right)+\left(x_{i} x_{j}+1\right)\left(x_{i} x_{k}+1\right)+2 x_{i} y_{12} y_{13} y_{23} \\
& =x_{i}\left(x_{1}+x_{2}+x_{3}+2 x_{1} x_{2} x_{3}+2 y_{12} y_{13} y_{23}\right) \\
& =x_{i} x_{4} .
\end{aligned}
$$

Note that since the choice of the sign of $y_{i j}$ is arbitrary, we always get two conjugate solutions for $x_{4} \varepsilon R$. This corresponds to the choices

$$
x_{4}=x_{3}(n \pm 1)
$$

in the previous section.
Theorem 4: The values x_{4} in Theorem 3 are the only nonzero elements of R with $\overline{x_{i} x_{4}+1}$ squares in R for $i=1,2,3$.
Proo6: Let $x_{4}=P\left(x_{1}, x_{2}, x_{3}, y_{12}, y_{13}, y_{23}\right) \varepsilon R$ where, in order to normalize the expression we assume that P is linear in the $y_{i j}$ and $P \neq 0$. By Theorem 2, we have

$$
P\left[x_{1}, x_{2}, x_{3}(n), y_{12}, y_{13}(n), y_{23}(n)\right]=x_{3}(n+1)
$$

for each $n=0, \pm 1, \pm 2$, Without loss of generality we may assume that $P=x_{3}(n+1)$ for infinitely many choices of n. Then the algebraic function of x_{3}

$$
P\left(x_{1}, x_{2}, x_{3}, y_{12}, y_{13}, y_{23}\right)-x_{1}-x_{2}-x_{3}-2 x_{1} x_{2} x_{3}-2 y_{12} y_{13} y_{23}
$$

has infinitely many zeros $x_{3}=x_{3}(n)$ and hence is identically 0 .
The values x_{4} in Theorem 3 can be characterized in the following symmetric way.
Lemma 3: Let $\sigma_{i} ; i=1,2,3,4$ be the elementary symmetric functions of x_{1}, $\overline{x_{2}, x_{3},} x_{4}$. Then x_{4} is the value given by Theorem 3 if and only, if

$$
\begin{equation*}
\sigma_{1}^{2}=4\left(\sigma_{2}+\sigma_{4}+1\right) \tag{8}
\end{equation*}
$$

Proob: If we write $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$ for the elementary symmetric functions of x_{1}, \bar{x}_{2}, x_{3}, then $x_{4}=\Sigma_{1}+2 \Sigma_{3}+2 Y$ where

$$
Y=y_{12} y_{13} y_{23}=\sqrt{\Sigma_{3}^{2}+\Sigma_{1} \Sigma_{3}+\Sigma_{2}+1}
$$

Hence

$$
\begin{aligned}
& \sigma_{1}=2\left(\Sigma_{1}+\Sigma_{3}+Y\right) \\
& \sigma_{2}=\Sigma_{2}+x_{4} \Sigma_{1}=\Sigma_{2}+\Sigma_{1}^{2}+2 \Sigma_{1} \Sigma_{3}+2 \Sigma_{1} Y \\
& \sigma_{4}=x_{4} \Sigma_{3}=\Sigma_{1} \Sigma_{3}+2 \Sigma_{3}^{2}+2 \Sigma_{3} Y .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\sigma_{1}^{2} & =4\left[\Sigma_{1}^{2}+2 \Sigma_{1} \Sigma_{3}+\Sigma_{3}^{2}+2 \Sigma_{1} y+2 \Sigma_{3} y+Y^{2}\right] \\
& =4\left[\sigma_{2}+\sigma_{4}-\Sigma_{2}-\Sigma_{1} \Sigma_{3}-\Sigma_{3}^{2}+\left(x_{1} x_{2}+1\right)\left(x_{1} x_{3}+1\right)\left(x_{2} x_{3}+1\right)\right] \\
& =4\left(\sigma_{2}+\sigma_{4}+1\right) .
\end{aligned}
$$

Conversely, if we solve the quadratic equation (8) for x_{4}, we get the two values in Theorem 3.
4. Solutions for $x_{i} x_{5}=y_{i 5}^{2} ; i=1,2,3,4$ with $x_{4}, y_{i 5} \varepsilon K=k\left(x_{1}, x_{2}, x_{3}\right.$, y_{12}, y_{13}, y_{23}) where x_{4} is given by Theorem 3.

If we use the x_{4} of the previous section and define

$$
\begin{equation*}
x_{5}=\frac{4 \sigma_{3}+2 \sigma_{1}+2 \sigma_{1} \sigma_{4}}{\left(\sigma_{4}-1\right)^{2}} \tag{10}
\end{equation*}
$$

we get the following.
Theorem 5: We have

$$
x_{i} x_{5}+1=\left(\frac{2 x_{i}^{2}-\sigma_{1} x_{i}-\sigma_{4}-1}{\sigma_{4}-1}\right)^{2} ; i=1,2,3,4 .
$$

Proo 6: The x_{i} are the roots of the equation
(11)

$$
x_{i}^{4}-\sigma_{1} x_{i}^{3}+\sigma_{2} x_{i}^{2}-\sigma_{3} x_{i}+\sigma_{4}=0
$$

Hence

$$
\begin{equation*}
\left(\sigma_{4}-1\right)^{2}\left(x_{i} x_{5}+1\right)=4 \sigma_{3} x_{i}+2 \sigma_{1} x_{i}+2 \sigma_{1} \sigma_{4} x_{i}+\left(\sigma_{4}-1\right)^{2} \tag{12}
\end{equation*}
$$

If we substitute $4 \sigma_{3} x_{i}=4\left(x_{i}^{4}-\sigma_{1} x_{i}^{3}+\sigma_{2} x_{i}^{2}+\sigma_{4}\right)$ from (11), we get

$$
\begin{align*}
\left(\sigma_{4}-1\right)^{2}\left(x_{i} x_{5}+1\right) & =4 x_{i}^{4}-4 \sigma_{1} x_{i}^{3}+4 \sigma_{2} x_{i}^{2}+2 \sigma_{1}\left(\sigma_{4}+1\right) x_{i}+\left(\sigma_{4}+1\right)^{2} \tag{13}\\
& =\left(2 x_{i}^{2}-\sigma_{1} x_{i}-\sigma_{4}-1\right)^{2}-\left(\sigma_{1}^{2}-4 \sigma_{4}-4-4 \sigma_{2}\right) x_{i}^{2} \\
& =\left(2 x_{i}^{2}-\sigma_{1} x_{i}-\sigma_{4}-1\right)^{2}
\end{align*}
$$

since the last bracket vanishes by Lemma 3 .
Thus, the famous quadruple $1,3,8,120$ can be augmented by

$$
x_{5}=\frac{777480}{2879^{2}}
$$

We conjecture that the quintuple given by Theorem 5 is the only pair of quintuples in which x_{4} is a polynomial in $x_{1}, x_{2}, x_{3} ; y_{12}, y_{13}, y_{23}$ and x_{5} is rational in these quantities.

Finally, we show that the value x_{5} given by Theorem 5 is never an integer when $x_{1}, x_{2}, x_{3}, y_{12}, y_{13}, y_{23}$ and, hence, x_{4} and y_{14}, y_{24}, y_{34} are positive integers.
Theorem 6: If the quantities $x_{1}, x_{2}, x_{3}, y_{12}, y_{13}, y_{23}$ in Theorem 5 are positive integers, then $0<x_{5}<1$.
Proof: Since we have already verified the theorem for the case $x_{1}=1, x_{2}=$ $\overline{3, x_{3}}=8$, we may assume that

$$
\frac{\Sigma_{1}}{\Sigma_{3}}=\frac{1}{x_{1} x_{2}}+\frac{1}{x_{1} x_{3}}+\frac{1}{x_{2} x_{3}}<\frac{1}{3}+\frac{1}{8}+\frac{1}{24}=\frac{1}{2}
$$

and the smallest Σ_{1} is obtained for the triple 2, 4, 12. Thus,

$$
\begin{equation*}
18 \leq \Sigma_{1}<\frac{1}{2} \Sigma_{3} . \tag{14}
\end{equation*}
$$

Similarly

$$
\frac{\Sigma_{2}}{\Sigma_{3}}<1+\frac{1}{3}+\frac{1}{8}<\frac{3}{2}
$$

and

$$
\begin{equation*}
80 \leq \Sigma_{2}<\frac{3}{2} \Sigma_{3} . \tag{15}
\end{equation*}
$$

Next, $Y=y_{12} y_{13} y_{23}$ satisfies $Y=\sqrt{\Sigma_{3}^{2}+\Sigma_{1} \Sigma_{3}+\Sigma_{2}+1}$, so that from (14) and (15) we get

$$
\begin{equation*}
\Sigma_{3}+9 \leq Y<\frac{3}{2}\left(\Sigma_{3}+1\right) \tag{16}
\end{equation*}
$$

Thus, the numerator of $1-x_{5}$ is

$$
\begin{align*}
\left(\sigma_{4}-1\right)^{2}-2 \sigma_{1} \sigma_{4}-4 \sigma_{3}-2 \sigma_{1} & =\left(\sigma_{4}-\sigma_{1}-1\right)^{2}-\sigma_{1}^{2}-4 \sigma_{3}-4 \sigma_{1} \tag{17}\\
& =\left(\sigma_{4}-\sigma_{1}-1\right)^{2}-4\left(\sigma_{4}+\sigma_{2}+1\right) \\
& -4 \sigma_{3}-4 \sigma_{1} \\
& =\left(\sigma_{4}-\sigma_{1}-3\right)^{2}-4 \sigma_{3}-4 \sigma_{2}-8 \sigma_{1}-8
\end{align*}
$$

$$
\begin{aligned}
=\left(2 \Sigma_{3}^{2}\right. & \left.+2 \Sigma_{3} Y+\Sigma_{1} \Sigma_{3}-2 \Sigma_{3}-2 Y-2 \Sigma_{1}-3\right)^{2}-8 \Sigma_{2} \Sigma_{3}-8 \Sigma_{2} Y \\
& -4 \Sigma_{1} \Sigma_{2}-4 \Sigma_{3}-8 \Sigma_{1} \Sigma_{3}-8 \Sigma_{1} Y-4 \Sigma_{1}^{2}-4 \Sigma_{2}-16 \Sigma_{3}-16 Y \\
& -16 \Sigma_{1}-8 \\
>\left(4 \Sigma_{3}^{2}\right. & \left.+30 \Sigma_{3}-6\right)^{2}-12 \Sigma_{3}^{2}-18 \Sigma_{3}\left(\Sigma_{3}+1\right)-3 \Sigma_{3}^{2}-4 \Sigma_{3}-4 \Sigma_{3}^{2} \\
& -6 \Sigma_{3}\left(\Sigma_{3}+1\right)-\Sigma_{3}^{2}-6 \Sigma_{3}-16 \Sigma_{3}-24\left(\Sigma_{3}+1\right)-8 \Sigma_{3}-8 \\
=\left(4 \Sigma_{3}^{2}\right. & \left.+30 \Sigma_{3}-6\right)^{2}-44 \Sigma_{3}^{2}-82 \Sigma_{3}-32 \\
>\left(4 \Sigma_{3}^{2}\right. & \left.+30 \Sigma_{3}-12\right)^{2}>0 .
\end{aligned}
$$

Thus，our algebraic method has the result that for every three positive integers x_{1}, x_{2}, x_{3} so that $x_{i} x_{j}+1$ is a square for $1 \leq i<j \leq 3$ there always exists a fourth positive integer（and usually two distinct fourth integers） x_{4} so that $x_{i} x_{4}+1$ ；$i=1,2$ ， 3 ，is a square．Finally，there always exists a fifth rational number，x_{5} ，always a proper fraction，so that $x_{i} x_{5}+1$ ；$i=$ 1，2，3， 4 is a square．

The question of finding more than four positive integers remains open．
5．Solutions of $x_{i} x_{3}^{\prime}+1=y_{i 3}^{\prime 2} ; i=1,2$ with $x_{3}^{\prime}, y_{i 3}^{\prime} \in K=k\left(x_{1}, x_{2}, y_{12}\right)$ ．The field $K=k\left(x_{1}, x_{2}, y_{12}\right)$ is，of course，the pure transcendental extension $k\left(x_{1}\right.$ ， y_{12} ）．Sections 4 and 5 show that K contains many solutions $x_{3}^{\prime}, y_{i 3}^{\prime}$ of equa－ tion（1）that are not in $R=k\left[x_{1}, x_{2}, y_{12}\right]$ and，therefore，are not given in Theorem 1.

For example，we may define a quadruple $x_{1}, x_{2}, x_{3}=x_{3}(n), x_{4}=x_{3}(n+1)$ which satisfies Theorem 3 and then define

$$
x_{3}^{\prime}(n)=x_{5}=\frac{1}{\left(\sigma_{4}-1\right)^{2}}\left[2 \sigma_{1}+4 \sigma_{3}+2 \sigma_{1} \sigma_{4}\right]
$$

as in（10）to get an infinite sequence of triples $x_{1}, x_{2}, x_{3}^{\prime}(n) \varepsilon K$ which sat－ isfy（1）．The triple $x_{1}, x_{2}, x_{3}^{\prime}(n)$ can be augmented，by Theorem 3，to a quad－ ruple $x_{1}, x_{2}, x_{3}(n), x_{4}^{\prime}(n)$ ，where $x_{4}^{\prime}(n)$ has the same denominator

$$
\left[\sigma_{4}(n)-1\right)^{2}=\left[x_{1} x_{2} x_{3}(n) x_{3}(n+1)-1\right]^{2}
$$

as $x_{3}^{\prime}(n)$ ．By Theorem 5，this quadruple can be augmented to a quintuple

$$
x_{1}, x_{2}, x_{3}^{\prime}(n), x_{4}^{\prime}(n), x_{5}^{\prime}(n) .
$$

Once this process is completed we can start anew，beginning with the triples $x_{1}, x_{2}, x_{4}^{\prime}(n)$ or $x_{1}, x_{2}, x_{5}^{\prime}(n)$ ．Each of the triples can be augmented to quadru－ ples and quintuples，etc．In short，the family of solutions of（1）with x_{3} ， $y_{13}, y_{23} \varepsilon K$ appears to be very large，and is quite difficult to characterize completely．

REFERENCES

1．American Math．Monthly 6 （1899）：86－87．
2．A．Baker \＆H．Davenport．＂The Equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$ ．＂ Quarterly J．Math．，Oxford Series（2）， 20 （1969）：129－137．
3．B．W．Jones．＂A Variation on a Problem of Davenport and Diophantus．＂ Quarterly J．Math．，Oxford Series（2）， 27 （1976）：349－353．

[^0]: ＊Research was supported in part by Grant MCS79－03162 from the National Science Foundation．

