REFERENCES

1．G．Weinstein．＂Some Covering and Packing Results in Number Theory．＂J． Number Theory 8 （1976）：193－205．
2．G．Weinstein．＂An Algorithm for Complements of Finite Sets of Integers．＂ Proc．Amer．Math．Soc． 55 （1976）：1－5．

adDenda to＂pythagorean triples containing
 FIBONACCI NUMBERS：SOLUTIONS FOR $F_{n}{ }^{2} \pm F_{k}^{2}=K^{2 \prime \prime}$

MARJORIE BICKNELL－JOHNSON
A．C．Wilcox High School，Santa Clara，CA 95051
In a recent correspondence from J．H．E．Cohn，it was learned that Ljung－ gren［1］has proved that the only square Pell numbers are 0， 1 ，and 169. （This appears as an unsolved problem， $\mathrm{H}-146$ ，in［2］and as Conjecture 2.3 in ［3］．）Also，if the Fibonacci polynomials $\left\{F_{n}(x)\right\}$ are defined by

$$
F_{0}(x)=0, F_{1}(x)=1, \text { and } F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x)
$$

then the Fibonacci numbers are given by $F_{n}=F_{n}(1)$ ，and the Pell numbers are $P_{n}=F_{n}(2)$ ．Cohn［4］has proved that the only perfect squares among the se－ quences $\left\{F_{n}(\alpha)\right\}, \alpha$ odd，are 0 and 1 ，and whenever $a=k^{2}$ ，α itself．Certain cases are known for a even［5］．

The cited results of Cohn and Ljunggren mean that Conjectures 2．3，3．2， and 4.2 of［3］are true，and that the earlier results can be strengthened as follows．

If $(n, k)=1$ ，there are no solutions in positive integers for

$$
F_{n}^{2}(\alpha)+F_{k}^{2}(\alpha)=K^{2}, n>k>0, \text { when } a \text { is odd and } a \geq 3
$$

This is the same as stating that no two members of $\left\{F_{n}(\alpha)\right\}$ can occur as the lengths of legs in a primitive Pythagorean triangle，for α odd and $\alpha \geq 3$ ．

When $a=1$ ，for Fibonacci numbers，if

$$
F_{n}^{2}+F_{k}^{2}=K^{2}, \quad n>k>0
$$

then $(n, k)=2$ ，and it is conjectured that there is no solution in positive integers．When $a=2$ ，for Pell numbers，$P_{n}^{2}+P_{k}^{2}=K^{2}$ has the unique solu－ tion $n=4, k=3$ ，giving the primitive Pythagorean triple 5－12－13．

REFERENCES

1．W．Ljunggren．＂Zur Theorie der Gleichung $x^{2}+1=D y^{4} . "$ Avh．Norske Vid． Akad．Oslo I，Nr． 5 （1942）．
2．J．A．H．Hunter．Problem H－146．The Fibonacci Quarterly 6 （1968）： 352.
3．Marjorie Bicknell－Johnson．＂Pythagorean Triples Containing Fibonacci Numbers：Solutions for $F_{n}^{2} \pm F_{k}^{2}=K^{2}$ ．＂The Fibonacci Quarterly 17，No． 1 （1979）：1－12．
4．J．H．E．Cohn．＂Eight Diophantine Equations．＂Proc．London Math．Soc． XVI（1966）：153－166．
5．J．H．E．Cohn．＂Squares in Some Recurrent Sequences．＂Pacific J．Math． 41，No． 3 （1972）：631－646．

