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1. INTRODUCTION 

In [1], the writer considered the number of compositions 

(1.1) n = a1 + a2 + ••• + ak, 

where the a^ are either nonnegative or strictly positive and in addition 

(1.2) a* * ai+1 {i = 1, 2, ..., k - 1). 

In the present paper, we consider the number of compositions (1.1) in non-
negative a,j that satisfy 

(1.3) ai £ a^+1 (mod m) (i = 1, 2, . .., k - 1), 

where m is a fixed positive integer. 
For n _> 0, k >_ 1, let fm(n,k) denote the number of solutions of (1.1) 

and (1.3) and let 

(1.4) fmM =j£fmM) 
k = l 

denote the corresponding enumerant when the number of parts in (1.1) is un-
restricted. Also, for 0 j£ j < 777, let fm .(n,k) denote the number of solutions 
of (1.1) and (1.3) with ax = j (mod 777). 

For 777 = 2 explicit results are obtained, in particular, 

(1.5) f2,i(n,k) = f + s " X) W = 0, 1), 
where 

(1.6) 8 = \(n- \{k + i) 

and [x] is the greatest integer <_ x. 
For arbitrary m >, 1, we show in particular that 

(1.7, | ; / , < » , ^ v = | S ( • • r ^ > 
where 

and 

n, k = 0 
m-1 

pm u) = n (i + ^ ) 

«m00 = Pm(s) - ^ f ( s ) . 
For additional results, see Section 4 below. 

SECTION 2 

In order to evaluate fm(n,k) 9 we define the following functions. Let 
fm-(n,k), where n >_ 0, k >_1, 0 £ j < 777, denote the number of solutions in 
nonnegative integers of 

(2.1) n = a-L + a2 + ••• + a^, 
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where 

(2.2) at t ai+1 (mod m) {i = 1, 2, ..., k - 1) 

and 

(2.3) a± = j (mod m). 

Also let fm . (n ,k ,a ) denote the number of solutions of (2.1), (2,2), (2.3), 
with ax = a. Thus fm-(n,k9a) = 0 if a ± j (mod w). 

It is convenient to extend the above definitions to include the case 
k = 0. We put 

(2.4) fm(«,0) = 6n0, 

where 6̂ - is the Kronecker delta: 

( i a = J) 

We also define 

(2.5) fm,i(-n,0) = 6/0«n0 

and 

that is, fmtj(n90) = 0 unless n=j=0 and fm - (n909a) = 0 unless n = j = a = 0 . 
It follows from the definitions that 

m-l 

(2.7) /»(«-W=E4,iW) 
m - l n 

= E E 4 i ( n ' w («>o^>o). 
j = 0 a = 0 

Moreover, we have the recurrence 

m- 1 n - a 

/„.,<".*»«> = E E/«.<<« - « ' f e - ^ 
i = 0 Z? = 0 
l*i [k > 0 , a = j (mod m) ] , 

which reduces to 
m - 1 

(2 .8 ) f (n,k,a) = £ / m > i (n - a,k - 1) [fc > 0 , a = j (mod m)]. 
i = o 
i * j 

Corresponding to the various enumerants we define a number of generating 
functions: 

*•*,*(«»!/> = E / . . ^ . ^ v 

n,k = Q 

Fm^^.y.a) = £ 4>(/ (n,k,a)xnyk. 
rc,fc = 0 



1979] RESTRICTED COMPOSITIONS II 323 

SECTION 3 

We f i r s t d i s c u s s t h e case 777 = 2. The r e c u r r e n c e (2 .8 ) r educes to 

( fi,o(ri,k,2a) = f2il(n - 2a,k - 1) (k > 1 ) , 

( 3 - 1 ) < / 0 ( n , l , 2 a ) = 6 n > 2 a 

( / 2 > 1 (n9k,2a + 1) = f2j0 (n - 2a - l,k - 1) » > 1 ) . 
Hence, 

( F2iQ (x9y92a) = 6a, 0 + * 2 a 17 + * 2 a ^ 2 > x (*,?/) 

( F 2 j j Or,z/,2a + 1) = * 2 a + 12/F2,o Or,?/). 
Summing over a , we ge t 

F 2 j 0 (x9y) = 1 + ^ + 2 F 2 x (x,z/) 
1 - x2 1 - x2 

xy 
F2,1 te>2/) = F 2 ,0 ^»2/) • 

1 - x 2 

1 + _ ^ _ 2 L _ 1 + _ 1 L 
It follows that 

(3 .2 ) F2)0(x,y) = — — , F 2 s l 0 r , z / ) = ^—^ —— 
3 _ ^ 1 _ xy 

( l - * 2 ) 2 ( l - * 2 ) 2 

so t h a t 

(3 .3 ) F2(x,y) = F 2 j 0 (a;,2/) + F 2 > 1 (a;,2/) 
1 + — 2 — 1 + - ^ -

1 - * 2 / \ 1 - x2 

1 s i ! 
(1 - x2)2 

From t h e f i r s t of ( 3 . 2 ) , we ge t 

\ 1- xz)^o(l - x2)2r 

-t'Vti2"*;-1)'*' 
V=0 8=0 X ' 

+ E - v r + 1 E ( 2 p
s

+ s W s 
r = 0 8 - 0 * ' 

(3.4) - 1 (2r+;- V / r + E (2 r; 8 ) * v + i . 
n = 0 V ' n = 0 X ' 

Since r + l8-n r+2s-n 

i t fo l lows from (3 .4 ) t h a t 
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(3.5) f 2 t 0 ( n , k ) = (fc + J ' X ) , 
where ( 

2\ ~ 2~^)) ^ e v e n) 

that is, 

(3.6) s = ± (n- |±(&) 

Similarly, 

|(n - |(fc - 1)) (fc odd), 

+ J^ + i i / 2 r + 2 £ ; ( 2 r + s + x)x2s 

r= 0 s = 0 ^ / 

(3.7) - £ • . ( 2 p
8

+ e ) * y i
+ £ ( 2 r +

s
s + 1),v-2. 

r + 2 s + l = n p + 2 s + l = rc Since 

F2,i <*>*/> = £ fZtl(n9k)x"y*9 
n,k = l 

it follows from (3.7) that 

where 
(3.8) f2tl(n,k) = ( * + * " X ) , 

| / n - y(fc + 1)] (k odd) 

(3.9) e = ifn - [j(fe + 1)1 V 
that is 

Hence, we can combine ,(3.5), (3.6), (3.8), (3.9) in the formula 

(3.10) f2,i(.n,k) = (fe + J " ̂  (i-0, 1), 
where 

(3.11) fl = |(n - [j(fc + i)Jj. 

For z/ = 1, (3.4) reduces to 

n = 0 2s <_n 
so that 

(3.i2) f2>0M = E { ( 2 n " 3 s _ 1 ) + ( 2 n : 3 s ) } -
2s £ n 
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Similarly, (3.7) yields 

*„<..«-2> E {(*: ^+{* * r *•)} • 
n = l r+2s+l = n 

which implies 

(3.i3) / 2 i l ( » ) - E {{2n ~ T -2) + (2n ~ T -')} • 
2s <_n- 1 

We can combine (3.12) and (3.13) in the single formula 

(3-14) f2,i(n)= Z { ( 2 n " 3 V i _ 1 ) + (2W"aS_i)} «-° . D-
2s <_ n - i 

It follows from (3.14) that 

(3.i5) f2M - 2 g J ( 2 n ; 3 s ) + 2(2n - Is -x) + (2n - Is - 2 ) } . 

SECTION k 
For arbitrary m _>. 1, we have, by (2.8), 

fm (n,k,a) = ^2 fm,i (n " a>k " ^ [k > 0, a = j (mod m) ] 
i = 0 

together with z*3 

/ m ? 0 ( n , l , a ) = 6nia [a = 0 (mod m) ] 

/« n (tt,0,a) = 6 n6 n . *> m , 0 v ' ' ' n o a 0 

I t follows that 
m-l 

FmfQ(x,y,a) = 6a>0 + *az/ + * a 2 / X X , ; ^ ' ^ [ a E ° ( m o d m)] 

i = l 

Fm,3(x>y>a>> = xay^2Fm,i (x>y) [i <, j < m; a = d (mod ^ ) ] . 
i = 0 

Summing over a we get 
m - l 

Fm>0fe,z/) = 1 + ^ + y— £ F W ^ ( * , 2 / ) 
1 - ar* 1 - xw i - i 

(4.1) 
j m - 1 

^ (̂*>2/> = * ^ X X , ; ( ^ } (1 - «7 < * > • 
1 - Xm i - 0 

S i n c e * *J" 

w - l 

Z X , *(*»#> = Fm^X^ ™ Fm,j(x>y)> 
i = 0 
i ¥ J 
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(4 .1 ) becomes 

(4.2) 
1 - x' 

l i + —^—\K. o (*.2/> = 1 + —^—_ + — V — Fm (a,y) 
1 - Xm 1 - X" 

(l + c J y W . (x,y) = a J y Fm (ar.j/) . (1 
\ 1 - xa/ 1 - xm 

<0 < m). 

This ±n turn gives 

Fm. 0 <*>2/> " 1 + 1~*u Fm (*,2/> 
1 + 

1 - xm 

Fm,j(x>yy 

xjy 
1 - x" 

1 + _E1^_ 
•F W ' ( J J , 2 / ) ( 1 £ J < 7??). 

1 - xm 

Hence, by adding t o g e t h e r t h e s e e q u a t i o n s , we ge t 

(4.3) 
j - o 

1 - xr 

1 + 
x3y 

1 - xn 

>Fm(x,y) = 1. 

For brevity, put z = y I (1 - xm), so that (4.3) reduces to 

i - i 
(4.4) x"z 

j-0 1 + X(/S 
•Fm(x9y) = 1. 

Put 

(4.5) Pm(3) = Pm(s,ar) = 0 (1 + ̂ J"̂ )< 
j-o 

I t i s well-known t h a t 

j = o L J 

2 3U-DZ3 (4 .6 ) 

where 

(1 - a?w)(l - a?""1) ... (1 - xm'J+1) 

(1 - x)(l - x2) ... (1 - xJ") 

Moreover, it follows from (4.5) that 
8P»<a> y ^ 

[ ? ] • 

Thus (4.4) becomes 
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and therefore 

(A. 7) ^ ( ^ ) = ^ y ( - ^ 
where 

(4 .8 ) C B 0 0 = P B 0 0 - 3Pm'(3) = £ (1 - j ) | " ? l a : ^ " 

1 - x2) 

V. 
3 '• 

For example, fo r m - 2 , (4 .7 ) g ives 

(1 + a ) ( l + ara) (4 .9 ) F2(ar,2/) = 
1 - xz2 

w h i l e , for m = 3 , we ge t 

(4 .10) F3(x,y) = ( ! + « ) ( ! + « « ) ( ! + » » ) ( s . _ 1 _ \ 
1 - (x + x 2 + x 3 ) s 2 - 2ir 3s3 \ 1 - x3 / 

SECTION 5 

A few words may be added about the limiting case m = °°. We take \x\ < 1 
so that xm -* 0 and 

2/ 
1 - icm 

Thus (4 .3 ) becomes 

(5.D K-Z-^-Wi+E f.<»,*>*v} -i. 
I j = 0 1 + XJZ/ 1 I n,fc«l 

On the other hand, the condition 
a-£ £ ai + i (mod w ) (£ = 1, 2, ..., k - 1) 

becomes 

(5.2) at f ai + 1 (i = 1, 2, ..., fc - 1). 
In the notation of [1], the number of solutions in nonnegative integers of 
n = ax + ••• + afe and (5.2) is denoted by o(n,k) and it is proved that 

(5.3) 

Clearly, 

(5.4) £(«,&) = c(n9k). 
To verify that (5.1) and (5.3) are equivalent, we take 

1 - E *Jy. = i - E *jVE<-i>8*aV = i + E E (-uk*dkyk 

j=o 1 + xJzy j=o e=o j=o fe = i 

-x + £ (-1}* T^T • 
fe«l 1 - #* 
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INTRODUCTION 

Jaiswal [3] and the author [1] examined rising diagonal functions of 
Chebyshev polynomials of the second and first kinds, respectively. Also, in 
[2], the author investigated rising and descending functions of a wide class 
of sequences satisfying certain criteria. Excluded from consideration in [2] 
were the Chebyshev and Fermat polynomials that did not satisfy the restrict-
ing criteria. 

The object of this paper is to complete the above articles by studying 
descending diagonal functions for the Chebyshev polynomials in Part I, and 
both rising and descending diagonal functions for the Fermat polynomials in 
Part II. 

Chebyshev polynomials Tn (x) of the second kind are defined by 

(1) Tn+2(x) = 2xTn + 1(x) - Tn(x) TQ(x) = 2, T^x) = 2x 
while Chebyshev polynomials [/„ (x) of the first kind are defined by 

(2) Un + 2(x) = 2xUn + 1(x) - Un{x) UQ(x) = 1 , Ux{x) 2x 

(n > 0), 

(n >. 0). 

Often we write x = cos 0 to obtain trigonometrical sequences. 

PART I 

DESCENDING DIAGONAL FUNCTIONS FOR Tn{x) 

From (1), we obtain 

T0(x) = ^ 

Tx(x) 

(3) 


