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INTRODUCTION 

Jaiswal [3] and the author [1] examined rising diagonal functions of 
Chebyshev polynomials of the second and first kinds, respectively. Also, in 
[2], the author investigated rising and descending functions of a wide class 
of sequences satisfying certain criteria. Excluded from consideration in [2] 
were the Chebyshev and Fermat polynomials that did not satisfy the restrict-
ing criteria. 

The object of this paper is to complete the above articles by studying 
descending diagonal functions for the Chebyshev polynomials in Part I, and 
both rising and descending diagonal functions for the Fermat polynomials in 
Part II. 

Chebyshev polynomials Tn (x) of the second kind are defined by 

(1) Tn+2(x) = 2xTn + 1(x) - Tn(x) TQ(x) = 2, T^x) = 2x 
while Chebyshev polynomials [/„ (x) of the first kind are defined by 

(2) Un + 2(x) = 2xUn + 1(x) - Un{x) UQ(x) = 1 , Ux{x) 2x 

(n > 0), 

(n >. 0). 

Often we write x = cos 0 to obtain trigonometrical sequences. 

PART I 

DESCENDING DIAGONAL FUNCTIONS FOR Tn{x) 

From (1), we obtain 

T0(x) = ^ 

Tx(x) 

(3) 
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Descending diagonal functions of x9ai(x) (i = 1, 2, 3, . . . ) s for Tn(x) 
are, from (3) [taking a0(x) = 0], 

(4) 

aY (x) 

az (x) 

a 3 (x) 

ah(x) 

a5(x) 

a 6 (x) 

a7 (x) 

= 
= 
= 
= 
= 
= 
= 

2 
2a: - 2 

4a:2 - 6x + 2 

8x3 - 16a:2 + 10a: - 2 

16a:4 - 40a:3 + 36a:2 - 14a: + 2 

32x5 - 96a:4 + 112a:3 - 64a:2 + 18a: - 2 

64a:6 - 224a:5 + 320a:4 - 240a:3 + 100a;2 22a: + 2 

These yield 

(5) an + 1(x) = (2a: - l)an(x) = (2a: - 2) (2a: - if"3 

DESCENDING DIAGONAL FUNCTIONS FOR Un{x) 

From (2), we obtain 

(n >_ 1) , 

(6) 

Descending d i agona l f u n c t i o n s of x9b^(x) (i = 1 , 2 , 3 , 
a r e , from (6) [ t a k i n g b0(x) = 0 ] , 

bl{x) = 1 

. ) ' , f o r Un(x) 

(7) 

£ ? (a:) = 2a: 

b3(x) 
bk(x) 

kxl 

8a:3 

4a: + 1 = (2a: - l ) 2 

12a:2 + 6x - 1 = (2a: - 1 ) ; 

Z?5Gc) = 16a:4 - 32a:3 + 24a:2 - 8a: + 1 = (2a: - l ) 4 

b6(x) = 32a:5 - 80a:4 + 80a:3 - 40a:2 + 10a: - 1 = (2a: - 1 ) 5 

{ b7(x) = 64a:6 -192a:5 + 240a:4 -160a:3 +60a:2 -12a: + 1 = ( 2 a : - 1 ) ( 
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These yield 

(8) *>„ + !<*> = (2x - DM*> = <2* - D"-
PROPERTIES OF a^x) , bt (x) 

Notice that 

(9) an(x) = bn(x) - bn_±(x) (n >. 2) 

and 
^n (x) &n (a?) 

(10) ^T^y - W ^ T • ( 2* - 1 } ( K > 2 ) 

Write 

(11) 6 = b(x,t) = [1 ~ (2ar - l)t]'1 = Y,bn(x)tn-1; 

oo 

(12) a E aGc,£) = (2* - 2) [1 - (2a - l)t]"1 = ^an(x)tn'z. 
n = 2 

Calculations yield 

(13) 2 * H - < 2 * - l > 1 | - 0 ; 
(14) 2 t | § - - (2a; - 1)-—- + 2(2x - 1)2? = 0. 

at ax 
Also 

(15) (2x - l ) i n ' t e ) - 2(n - D £ n t e ) = 0 , 
(16) (2x - l)a^ + 2(x) - 2(w + l ) a n + 2"(a?) - 2 (2* - ±)bn{x) = 0 , 

where the prime (dash) represents the first derivative w.r.t. x. 
Results (9), (10), and (13)-(16) should be compared with corresponding 

results in [2] for the class of sequences studied there. 

PART I I 

RISING AND DESCENDING DIAGONAL FUNCTIONS FOR FERMAT POLYNOMIALS 

The First Fermat Polynomials (f>M(#); The Second Fermat Polynomials dn(x) 

The sequence {()>„} = {0, 1, 3, 7, 15, ...} for which 

(17') *n + 2 = 3*n + i - 2(|>n cf)0 = 0 , cf), = 1 (n >. 0 ) 

is generalized to the first Fermat polynomial sequence {$n(x)} for which 

(17) ^n + 2 ^ = x *n + i(*) ~ 2(})n(x) c()0(a) = 0, cj^Or) = 1 (n ̂  0 ) . 

Similarly, the sequence {8n} = {2, 3, 5, 9, •..-} for which 

(18') 6n+2 = 3 6 n + 1 - 29n 60 = 2, 6X = 3 (n > 0) 

is generalized to the second Fermat polynomial sequence {Qn(x)} for which 

(18) e n + 2 ^ ) = *en + l(*) - 29n(*) 6 0 (») = 2, 0 x (x) = X (n >. 0) . 

Terms of these sequences are as follows: 
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(19) 

o W = 
xto) = 
2to) = 
3to) = 
,to) = 
5(x) = 

6 (a?) = 

7fe) = 
8to) =-
9 to) = 

0 

3£ 

* 8 

^ > < 
^ > a < r ^ 
- ^ a ? ^ + ^ > < ^ 

^B^C+^2^\ 
^ 0 < V > 4 < 
- 12#5 + > 0 ^ 

- 14a:6 + 60xk 

(20) 

and 

RISING AND DESCENDING DIAGONAL FUNCTIONS FOR <frn(x), 6n to) 

Label the rising and descending diagonal functions 

i?^to), Di(x) for Hn(x)} 

i^'to), Dl(x) for {9„to)}. 

Of course, in this context the primes do not represent derivatives. 
Reading from the listed information in (19) and (20) , 

if 2?! to) = 1, D[{x) = 2, 

(n > 2) 

we have , 
(21) 

(22) 

whence 

Dn(x) = 

0„'(x) = 

(x -

(x -

- 2 ) " - \ 

- h){x - 2)»-2 
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(23) 

n̂ + i W 0„' + i(aO 

Dn(x) 

D'(x) - 4 

Also 

(24) 

Dn(x) x ~ 2 

Dn (x) = X ~ 

Dn(x) - 2Dn_1(x) = D^x), 

(n > 2) 

(w >. 2; a; ̂  2) 

Rising diagonal functions may be tabulated thus: 

i = 

(25) R^x) 

(26) R[(x) 

1 

1 

2 

2 

^ 

# 

3 

x2 

x2 

4 

* 3 - 2 

x 3 - 4 

5 

xh -kx 

xh - 6x 

6 

x5 - 6x2 

x5 - 8x2 

1 

x 6 -Sx3 + 4 

# 6 - 10#3 + 8 

8 

x7 - l O x 4 +12a; 

re7 -Ux1* + 20a? 

with the properties (n > 3), 

(27) 

i?n'Gc) = i?nte) - 2Bn_3(x) 
Rn(x) = xRn„±(x) - 2Rn_3(x) 

Ri(x) = xRl_±(x) - 2R^3(x). 

Calculations of results similar to those in (13)-(16) follow as a mat-
ter of course for both rising and descending diagonal functions, but these 
are left for the curious reader. (A comparison with corresponding results in 
[2] is desirable.) 

However, it is worthwhile to record the generating functions for the 
diagonal functions associated with the two Fermat sequences. These are, for 
Di(x)9 D}(x), R±(x), R[(x) , respectively: 

(28) 

(29) 

(30 

(31) 

£ Dn(x)tn'1 = [1 - Or - 2)*]-1'; 
n=l 

Y^D^ix)^-1 = (x - 4)[1 - (x - 2)t]"1; 
rc = 2 

J^Rn(x)tn-x = [1 - (xt - 2t3)]"1; 
n = l 

00 

Y^K^t"'1 = t1 - 2 t 3 ) [ l - (art - 2t3)Vl. 

It is expected that the results of [1], [2], and [3] will be generalized 
in a subsequent paper. 



1979] ON EULER'S SOLUTION OF A PROBLEM OF DIOPHANTUS 333 

REFERENCES 

1. A. F. Horadam. "Polynomials Associated with Chebyshev Polynomials of 
the First Kind." The Fibonacci Quarterly 15, No. 3 (1977):255-257. 

2. A. F. Horadam. "Diagonal Functions." The Fibonacci Quarterly 16, No. 1 
(1978):33-36. 

3. D. V. Jaiswal. "On Polynomials Related to Tchebichef Polynomials of the 
Second Kind." The Fibonacci Quarterly 12, No. 3 (1974):263-265. 

ON EULER1S SOLUTION OF A PROBLEM OF DIOPHANTUS 

JOSEPH ARK1N 
197 Old Nyack Turnpike, Spring Valley, NY 10977 

V. E. HOGGATT, JR. 
San Jose State University, San Jose, CA 95192 

and 
E. G. STRAUS* 

University of California, Los Angeles, CA 90024 
1. The four numbers 1, 3,8, 120 have the property that the product of any 
two of them is one less than a square. This fact was apparently discovered 
by Fermat. As one of the first applications of Baker's method in Diophantine 
approximations, Baker and Davenport [2] showed that there is no fifth posi-
tive integer n, so that 

n + 1 , 3n + 1, 8n + 1, and 120n + 1 

are all squares. It is not known how large a set of positive integers {xl9 
x29 . . . 9 xn] can be found so that all x^Xj + 1 are squares for all 1 <_ i < j 
<_ n. 

A solution attributed to Euler [1] shows that for every triple of inte-
gers xl9 x29 y for which xlx2+l = y1 it is possible to find two further in-
tegers x3, xh expressed as polynomials in xl9 x29 y and a rational number x59 
expressed as a rational function in x19 x29 y; so that x^Xj +1 is the square 
of a rational expression xl9 xl9 y for all 1 <_ i < J £ 5. 

In this note we analyze EulerTs solution from a more abstract algebraic 
point of view. That is, we start from a field k of characteristic ±2 and ad-
join independent transcendentals xl9 x29 ..., xm. We then set XjX. +1 = y%j 
and pose two problems: 

I. Find nonzero elements xl9 xl9 ..., xm9 xm+l9 ..., xn in the ring 
R = k[xl9 ..., xm; y129 ..., yn.un] so that xtx. + 1 = y2..9 and 
yic- e R for 1 <. i < j <_ n. 

II. Find nonzero elements x19 x29 ..., xm9 xm+l9 . . . , xn in the field 
K = k(xl9 ..., xm; yl29 ..., 2/m.lfW) so that x^x. + 1 = y^. ; and 
yi{J- e K for all 1 <. i < J £ w. 

In Section 2 we give a complete solution to Problem I for m = 2, n = 3. 
In Section 3 we give solutions for m - 2, n = 4 which include both Eulerfs 
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