REFERENCE
1．L．Carlitz．＂Restricted Compositions．＂The Fibonacci quarterly 14，No． 3 （1976）：254－264．

米米米米

CHEBYSHEV AND FERMAT POLYNOMIALS FOR DIAGONAL FUNCTIONS

A．F．HORADAM

University of New England，Armidale，N．S．W．，Australia
INTRODUCTION
Jaiswal［3］and the author［1］examined rising diagonal functions of Chebyshev polynomials of the second and first kinds，respectively．Also，in ［2］，the author investigated rising and descending functions of a wide class of sequences satisfying certain criteria．Excluded from consideration in［2］ were the Chebyshev and Fermat polynomials that did not satisfy the restrict－ ing criteria．

The object of this paper is to complete the above articles by studying descending diagonal functions for the Chebyshev polynomials in Part I，and both rising and descending diagonal functions for the Fermat polynomials in Part II．

Chebyshev polynomials $T_{n}(x)$ of the second kind are defined by

$$
\begin{equation*}
T_{n+2}(x)=2 x T_{n+1}(x)-T_{n}(x) \quad T_{0}(x)=2, T_{1}(x)=2 x \quad(n \geq 0), \tag{1}
\end{equation*}
$$

while Chebyshev polynomials $U_{n}(x)$ of the first kind are defined by

$$
\begin{equation*}
U_{n+2}(x)=2 x U_{n+1}(x)-U_{n}(x) \quad U_{0}(x)=1, U_{1}(x)=2 x \quad(n \geq 0) \tag{2}
\end{equation*}
$$

Often we write $x=\cos \theta$ to obtain trigonometrical sequences．
PART I
DESCENDING DIAGONAL FUNCTIONS FOR $T_{n}(x)$
From（1），we obtain

$$
\left\{\begin{array}{l}
T_{0}(x)=2 \tag{3}\\
T_{1}(x)=2 x \\
T_{2}(x)=4 x^{2}-2 \\
T_{3}(x)=8 x^{3}-6 x \\
T_{4}(x)=16 x^{4}-16 x^{2}+2 \\
T_{5}(x)=32 x^{5}-40 x^{3}+10 x \\
T_{6}(x)=64 x^{6}-96 x^{4}+36 x^{3}-2 \\
T_{7}(x)=128 x^{7}-224 x^{5}+112 x^{3}-14 x \\
T_{8}(x)=256 x^{8}-512 x^{6}+320 x^{4}-64 x^{2}+2 \\
T_{9}(x)=512 x^{9}-1152 x^{7}+864 x^{5}-240 x^{3}+18 x \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \ldots \ldots . .
\end{array}\right.
$$

Descending diagonal functions of $x, a_{i}(x) \quad(i=1,2,3, \ldots)$, for $T_{n}(x)$ are, from (3) [taking $\left.a_{0}(x)=0\right]$,

$$
\begin{align*}
& \left\{\begin{array}{l}
a_{1}(x)=2 \\
a_{2}(x)=2 x-2 \\
a_{3}(x)=4 x^{2}-6 x+2 \\
a_{4}(x)=8 x^{3}-16 x^{2}+10 x-2 \\
a_{5}(x)=16 x^{4}-40 x^{3}+36 x^{2}-14 x+2 \\
a_{6}(x)=32 x^{5}-96 x^{4}+112 x^{3}-64 x^{2}+18 x-2 \\
a_{7}(x)=64 x^{6}-224 x^{5}+320 x^{4}-240 x^{3}+100 x^{2}-22 x+2
\end{array}\right. \tag{4}\\
& \text {.. }
\end{align*}
$$

These yield

$$
\begin{equation*}
a_{n+1}(x)=(2 x-1) a_{n}(x)=(2 x-2)(2 x-1)^{n-1} \quad(n \geq 1) \tag{5}
\end{equation*}
$$

DESCENDING DIAGONAL FUNCTIONS FOR $U_{n}(x)$
From (2), we obtain
(6)

$$
\begin{aligned}
& \left\{\begin{array}{l}
U_{0}(x)=1 \\
U_{1}(x)=2 x \\
U_{2}(x)=4 x^{2}-1 \\
U_{3}(x)=8 x^{3}-4 x \\
U_{4}(x)=16 x^{4}-12 x^{2}+1 \\
U_{5}(x)=32 x^{5}-32 x^{3}+6 x \\
U_{6}(x)=64 x^{6}-80 x^{4}+24 x^{2}-1 \\
U_{7}(x)=128 x^{7}-192 x^{5}+80 x^{3}-8 x \\
U_{8}(x)=256 x^{8}-448 x^{6}+240 x^{4}-40 x^{2}+1
\end{array}\right. \\
& \text {. }
\end{aligned}
$$

Descending diagonal functions of $x, b_{i}(x) \quad(i=1,2,3, \ldots)$, for $U_{n}(x)$ are, from (6) [taking $b_{0}(x)=0$,
(7)

$$
\left\{\begin{array}{l}
b_{1}(x)=1 \\
b_{2}(x)=2 x-1 \\
b_{3}(x)=4 x^{2}-4 x+1=(2 x-1)^{2} \\
b_{4}(x)=8 x^{3}-12 x^{2}+6 x-1=(2 x-1)^{3} \\
b_{5}(x)=16 x^{4}-32 x^{3}+24 x^{2}-8 x+1=(2 x-1)^{4} \\
b_{6}(x)=32 x^{5}-80 x^{4}+80 x^{3}-40 x^{2}+10 x-1=(2 x-1)^{5} \\
b_{7}(x)=64 x^{6}-192 x^{5}+240 x^{4}-160 x^{3}+60 x^{2}-12 x+1=(2 x-1)^{6} \\
\ldots \ldots
\end{array}\right.
$$

These yield

$$
\begin{aligned}
b_{n+1}(x)= & (2 x-1) b_{n}(x)=(2 x-1)^{n} \\
& \text { PROPERTIES OF } a_{i}(x), b_{i}(x)
\end{aligned}
$$

Notice that

$$
\begin{equation*}
a_{n}(x)=b_{n}(x)-b_{n-1}(x) \quad(n \geq 2) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{a_{n}(x)}{a_{n-1}(x)}=\frac{b_{n}(x)}{b_{n-1}(x)}=(2 x-1) \quad(n>2) \tag{10}
\end{equation*}
$$

Write

$$
\begin{align*}
& b \equiv b(x, t)=[1-(2 x-1) t]^{-1}=\sum_{n=1}^{\infty} b_{n}(x) t^{n-1} \tag{11}\\
& a \equiv a(x, t)=(2 x-2)[1-(2 x-1) t]^{-1}=\sum_{n=2}^{\infty} a_{n}(x) t^{n-2} \tag{12}
\end{align*}
$$

Calculations yield

$$
\begin{equation*}
2 t \frac{\partial b}{\partial t}-(2 x-1) \frac{\partial b}{\partial x}=0 ; \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
2 t \frac{\partial a}{\partial t}-(2 x-1) \frac{\partial a}{\partial x}+2(2 x-1) b=0 \tag{14}
\end{equation*}
$$

Also

$$
\begin{align*}
& (2 x-1) b_{n}^{\prime}(x)-2(n-1) b_{n}(x)=0 \tag{15}\\
& (2 x-1) a_{n+2}^{\prime}(x)-2(n+1) a_{n+2}(x)-2(2 x-1) b_{n}(x)=0 \tag{16}
\end{align*}
$$

where the prime (dash) represents the first derivative w.r.t. x.
Results (9), (10), and (13)-(16) should be compared with corresponding results in [2] for the class of sequences studied there.

PART II

RISING AND DESCENDING DIAGONAL FUNCTIONS FOR FERMAT POLYNOMIALS
The First Fermat Polynomials $\phi_{n}(x)$; The Second Fermat Polynomials $\theta_{n}(x)$
The sequence $\left\{\phi_{n}\right\}=\{0,1,3,7,15, \ldots\}$ for which
(17^{\prime}) $\quad \phi_{n+2}=3 \phi_{n+1}-2 \phi_{n} \quad \phi_{0}=0, \phi_{1}=1 \quad(n \geq 0)$
is generalized to the first Fermat polynomial sequence $\left\{\phi_{n}(x)\right\}$ for which

$$
\begin{equation*}
\phi_{n+2}(x)=x \phi_{n+1}(x)-2 \phi_{n}(x) \quad \phi_{0}(x)=0, \phi_{1}(x)=1 \quad(n \geq 0) \tag{17}
\end{equation*}
$$

Similarly, the sequence $\left\{\theta_{n}\right\}=\{2,3,5,9, \ldots\}$ for which
(18') $\quad \theta_{n+2}=3 \theta_{n+1}-2 \theta_{n} \quad \theta_{0}=2, \theta_{1}=3 \quad(n \geq 0)$
is generalized to the second Fermat polynomial sequence $\left\{\theta_{n}(x)\right\}$ for which

$$
\begin{equation*}
\theta_{n+2}(x)=x \theta_{n+1}(x)-2 \theta_{n}(x) \quad \theta_{0}(x)=2, \theta_{1}(x)=x \quad(n \geq 0) \tag{18}
\end{equation*}
$$

Terms of these sequences are as follows:

RISING AND DESCENDING DIAGONAL FUNCTIONS FOR $\phi_{n}(x), \theta_{n}(x)$
Label the rising and descending diagonal functions

$$
R_{i}(x), D_{i}(x) \text { for }\left\{\phi_{n}(x)\right\}
$$

and

$$
R_{i}^{\prime}(x), D_{i}^{\prime}(x) \text { for }\left\{\theta_{n}(x)\right\}
$$

Of course, in this context the primes do not represent derivatives. Reading from the listed information in (19) and (20),

$$
\text { if } D_{1}(x)=1, D_{1}^{\prime}(x)=2,
$$

we have,

$$
\begin{align*}
& D_{n}(x)=(x-2)^{n-1} \tag{21}\\
& D_{n}^{\prime}(x)=(x-4)(x-2)^{n-2} \quad(n \geq 2) \tag{22}
\end{align*}
$$

whence

$$
\begin{cases}\frac{D_{n+1}(x)}{D_{n}(x)}=\frac{D_{n+1}^{\prime}(x)}{D_{n}^{\prime}(x)}=x-2 & (n \geq 2) \\ \frac{D_{n}^{\prime}(x)}{D_{n}(x)}=\frac{x-4}{x-2} & (n \geq 2 ; x \neq 2) \\ \frac{D_{n+1}^{\prime}(x)}{D_{n}(x)}=x-4 & \end{cases}
$$

A1so
(24)

$$
D_{n}(x)-2 D_{n-1}(x)=D_{n}^{\prime}(x) .
$$

Rising diagonal functions may be tabulated thus:
(25)

$i=$	1	2	3	4	5	6	7	8	\ldots
$R_{i}(x)$	1	x	x^{2}	$x^{3}-2$	$x^{4}-4 x$	$x^{5}-6 x^{2}$	$x^{6}-8 x^{3}+4$	$x^{7}-10 x^{4}+12 x$	\ldots
$R_{i}^{\prime}(x)$	2	x	x^{2}	$x^{3}-4$	$x^{4}-6 x$	$x^{5}-8 x^{2}$	$x^{6}-10 x^{3}+8$	$x^{7}-12 x^{4}+20 x$	\ldots

with the properties ($n>3$),
(27)

$$
\left\{\begin{array}{l}
R_{n}^{\prime}(x)=R_{n}(x)-2 R_{n-3}(x) \\
R_{n}(x)=x R_{n-1}(x)-2 R_{n-3}(x) \\
R_{n}^{\prime}(x)=x R_{n-1}^{\prime}(x)-2 R_{n-3}^{\prime}(x) .
\end{array}\right.
$$

Calculations of results similar to those in (13)-(16) follow as a matter of course for both rising and descending diagonal functions, but these are left for the curious reader. (A comparison with corresponding results in [2] is desirable.)

However, it is worthwhile to record the generating functions for the diagonal functions associated with the two Fermat sequences. These are, for $D_{i}(x), D_{i}^{\prime}(x), R_{i}(x), R_{i}^{\prime}(x)$, respectively:

$$
\begin{align*}
& \sum_{n=1}^{\infty} D_{n}(x) t^{n-1}=[1-(x-2) t]^{-1} ; \tag{28}\\
& \sum_{n=2}^{\infty} D_{n}^{\prime}(x) t^{n-2}=(x-4)[1-(x-2) t]^{-1} ; \tag{29}\\
& \sum_{n=1}^{\infty} R_{n}(x) t^{n-1}=\left[1-\left(x t-2 t^{3}\right)\right]^{-1} ; \\
& \sum_{n=2}^{\infty} R_{n}^{\prime}(x) t^{n-1}=\left(1-2 t^{3}\right)\left[1-\left(x t-2 t^{3}\right)\right]^{-1}
\end{align*}
$$

It is expected that the results of [1], [2], and [3] will be generalized in a subsequent paper.

REFERENCES

1．A．F．Horadam．＂Polynomials Associated with Chebyshev Polynomials of the First Kind．＂The Fibonacci Quarterly 15，No．3（1977）：255－257．
2．A．F．Horadam．＂Diagonal Functions．＂The Fibonacci Quarterly 16，No． 1 （1978）：33－36．
3．D．V．Jaiswal．＂On Polynomials Related to Tchebichef Polynomials of the Second Kind．＂The Fibonacci quarterly 12，No．3（1974）：263－265．
＊がが＊

ON EULER＇S SOLUTION OF A PROBLEM OF DIOPHANTUS
 JOSEPH ARKIN
 197 Old Nyack Turnpike，Spring Valley，NY 10977
 V．E．HOGGATT，JR．
 San Jose State University，San Jose，CA 95192
 and
 E．G．STRAUS＊
 University of California，Los Angeles，CA 90024

1．The four numbers $1,3,8,120$ have the property that the product of any two of them is one less than a square．This fact was apparently discovered by Fermat．As one of the first applications of Baker＇s method in Diophantine approximations，Baker and Davenport［2］showed that there is no fifth posi－ tive integer n ，so that

$$
n+1,3 n+1,8 n+1, \text { and } 120 n+1
$$

are all squares．It is not known how large a set of positive integers $\left\{x_{1}\right.$ ， $\left.x_{2}, \ldots, x_{n}\right\}$ can be found so that all $x_{i} x_{j}+1$ are squares for all $1 \leq i<j$ $\leq n$ ．

A solution attributed to Euler［1］shows that for every triple of inte－ gers x_{1}, x_{2}, y for which $x_{1} x_{2}+1=y^{2}$ it is possible to find two further in－ tegers x_{3}, x_{4} expressed as polynomials in x_{1}, x_{2}, y and a rational number x_{5} ， expressed as a rational function in x_{1}, x_{2}, y ；so that $x_{i} x_{j}+1$ is the square of a rational expression x_{1}, x_{2} ，y for all $1 \leq i<j \leq 5$ ．

In this note we analyze Euler＇s solution from a more abstract algebraic point of view．That is，we start from a field k of characteristic $\neq 2$ and ad－ join independent transcendentals $x_{1}, x_{2}, \ldots, x_{m}$ ．We then set $x_{i} x_{j}+1=y_{i j}^{2}$ and pose two problems：

I．Find nonzero elements $x_{1}, x_{2}, \ldots, x_{m}, x_{m+1}, \ldots, x_{n}$ in the ring
$R=k\left[x_{1}, \ldots, x_{m} ; y_{12}, \ldots, y_{m-1, m}\right]$ so that $x_{i} x_{j}+1=y_{i j}^{2}$ ；and
$y_{i j} \varepsilon R$ for $1 \leq i<j \leq n$ ．
II．Find nonzero elements $x_{1}, x_{2}, \ldots, x_{m}, x_{m+1}, \ldots, x_{n}$ in the field
$K=k\left(x_{1}, \ldots, x_{m} ; y_{12}, \ldots, y_{m-1, m}\right)$ so that $x_{i} x_{j}+1=y_{i j}^{2}$ ；and
$y_{i j} \in K$ for all $1 \leq i<j \leq n$ ．
In Section 2 we give a complete solution to Problem I for $m=2, n=3$ ．
In Section 3 we give solutions for $m=2$ ，$n=4$ which include both Euler＇s

[^0]
[^0]: ＊Research was supported in part by Grant MCS79－03162 from the National Science Foundation．

