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All the sequences above are complete (although repetitions must be per-
mitted in Example 1 if a > 2), but the theorem does not assume completeness. 
We conclude with an example of a sequence which is not complete but by an im-
mediate application of Corollary 1 is seen to be transformed into IN under 
f(x) = In x. The sequence in question is s2 = 1, s2 = 2, and for n >_ 3 , 
sn = 5 • 2 . To see that this sequence is not complete, observe that 

5 • 2 - 1, for n >_ 3, 

can never be expressed as the sum of distinct terms of the sequence. 
Finally, we would like to sincerely thank Professor Gerald E. Bergum for 

suggesting many improvements in the content and presentation of this article. 
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FINDING THE GENERAL SOLUTION OF A 
LINEAR DIOPHANTINE EQUATION 

SUSUMU M0RIT0 and HARVEY M. SALKIN* 
Case Western Reserve University, Cleveland, OH 44106 

ABSTRACT 

A new procedure for finding the general solution of a linear diophantine 
equation is given. As a byproduct, the algorithm finds the greatest common 
divisor (gcd) of a set of integers. Related results and discussion concern-
ing existing procedures are also given. 

1. INTRODUCTION 

This note presents an alternative procedure for computing the greatest 
common divisor of a set of n integers al9 aZ9 ..., an, denoted by 

gcd (a19 a29 . . . 9 an), 
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and for finding the general solution of a linear diophantine equation in which 
these integers appear as coefficients. A classical procedure for finding 
the gcd of integers is based on the repeated application of the standard 
Euclidean Algorithm for finding the gcd of two integers. More specifically, 
it repeatedly uses the argument: 

gcd (al9 a2, ..., an) = gcd (gcd (a1? a 2 ) , a3, ..., a n). 

A more efficient algorithm, which is related to the procedure presented 
here for computing the gcd was given by Blankinship [1] . Weinstock [2] de-
veloped a procedure for finding a solution of a linear diophantine equation, 
and Bond [3] later showed that the Weinstock Algorithm can be applied repeat-
edly to find the general solution of a linear diophantine equation. 

In this note, we present an alternative approach to finding the general 
solution, and show that the algorithm produces (n - 1) n-dimensional vectors 
with integer components whose integer linear combination generates all solu-
tions which satisfy the linear diophantine equation with the right-hand side 
0. We call a set of these (n - 1) "generating" vectors a generator. It is 
easy to show that the generator is not unique for n >_ 3. In fact, for n _> 3 
there exist infinitely many generators. The proposed algorithm has certain 
desirable characteristics for computer implementation compared to the Bond 
Algorithm. Specifically, the Bond Algorithm generally produces generating 
vectors whose (integer) components are mostly huge numbers (in absolute val-
ues). This often makes computer implementation unwieldy [5]. The approach, 
presented here, was initially suggested by Walter Chase of the Naval Ocean 
Systems Center, San Diego, California, in a slightly different form for solv-
ing the radio frequency intermodulation problem [4], 

For illustrative purposes, we will continuously use the following exam-
ple with n = 3: 

(al9 a29 a3) = (8913, 5677, 4378). 

Or, we are interested in the generator of: 

8913x1 + 5677#2 + 4378#3 = 0. 

It turns out that the Bond Algorithm [3] produces the two generating 
vectors (5677, -8913, 0) and (2219646, 3484888, -1), whereas the procedure 
we propose gives (cf. Section 3) (-57, 17, 94) and (61, -95, -1). 

Three obvious results are given without proof. Throughout this paper, 
we assume that the right-hand side of a linear diophantine equation a0 , if it 
is nonzero, is an integer multiple of d = gcd (a1, a2, • ••> a n ) . This is be-
cause of the well-known result [6] which says that a linear diophantine equa-
tion has a solution if and only if a0 is divisible by d, and if d divides aQ 
there are an infinite number of solutions. 

Lzmma 1.' Consider the following two equations: 

(1) alxl + a2x2 +••• + anxn = 0; 

(2) a1x1 + a2x2
 + •••' + ccnxn = a0. 

Assume that (xF , . .. , xF ) is the generator of (1). Then, all solutions 
x = (x^) of (2) can be expressed in the form 

(3) x = x° + k^p + k2xF + ... + kn_xxF , 
where x° is any solution satisfying (2) and kl9 k29 ..., kn^1 are any inte-
gers . 
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Lmma. 2: If a[ =a1 + l2a2 + £3#3 +•• • • +lnan for some integers £2, £3, , £n, 
then gcd (ax, a2, ..., an) = gcd (a{, a2, ..., an). 
Lemma 3»* If ax + i2a2 + £3a3 + • • • + Znan = 0 for some integers £2 , £3, ... , £n, 
then gcd (ax, a2, . .., an) = gcd (a2, . .., an). 

Notice, for example, Lemma 3 is true because if 

d = gcd (a2, . . . , a„) 
then 

Thus, 

I 2-*^) * d9 for some integers £^(2 <_ £ <. n). 
\i=2 / 

gcd (a2, a2, ..., aw) = gcd (al9 d) = d. 
Finding the general solution of a linear diophantine equation having a 

right-hand side different from zero (say a0 ^ 0) is straightforward, because 
of Lemma 1, if the generator and one solution for (2) is known. The algorithm 
we propose first finds a solution, say xd

9 for the linear diophantine equa-
tion with right-hand side d = gcd (al9 a2, ..., an) as well as the generator. 
Then a solution for (2) can be found as (a0/d)xd. 

2. THE ALGORITHM 

We now present the algorithm to find the general solution of the linear 
diophantine equation (2). The method is based on Lemma 1, namely, it finds 
the generator (xF , xF , ..., ̂ Fn.x ) °f (1) a s well as any one solution x° of 
(2), so that any solution of (2) can be expressed as in (3). A solution x° 
of (2) is found as a by-product of finding the generator. We list the steps: 

Step 0. Set k = 1, b[X) = a19 &2(1) = a2, ..., b„ = an9 and N = n. 

Also let 

x{b[X)) = (1, 0, ...., 0), x(bi1}) = (0, 1, 0, ..., 0), ..., 

xib™) = (o, ..., o, l), 

where x{b) denotes the solution of (2) with right-hand side 
a0 = b. 

Stdp 7. Find i n t e g e r s £ 2 , £ 3 , . . . , &N so t h a t they s a t i s f y 

J , w 

^ 2 

= 
= 

l2bz
m 

£,*,<» 
+ 
+ 

r2> 

^ 3 > 

0 
0 

<_ 
< 

?2 

^ 3 

< 
< 

2>2<*> 

&,<» 

and thus 

^ - 1 = V ^ + V 0 <r„ -&{ < 6iW, 

><*> = £2fc2
(k) + il3&3

(fe) + • . . + &wb™ + b[. 

Step 2 . Find a s o l u t i o n #(&J) for a a: + a2x2 + ••• + anxn = bf as 
f o l l o w s : 

aK&J) = xQ><M) - £2*«>2
( / c )) - l3x(b™) - . . . - ZNx(b^k) ) . 
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Stzp 3. If b[ = 0, x(b[) is one of the generating vectors. Elimi-
nate one variable, i.e., N - N - 1, and set 

b«+1) - i « \ b«+1) = b™ (k+D _ - m 
'1 ~~ u2 

If N = 1, go to Step 4 (termination). If N > 1, increment 
the iteration count (i.e.,k = k + 1) and return to Step 1. 

If b' ± 0, set b\ (k+l) -&£*>, £ 2
( k + 1 ) 

fe- + 1 and return to Step 1. 

St&p 4. 

Ak) h(k+l) = h , 

We now have (n - 1) generating vectors for (1), and b\ 
is the gcd (a2, a2, ..., a n). A solution for (2) can be 
found as 

a0 

fc(*+D 
x(b«+1)) 

,<*) 

a1x1 + #2^2 + 

j« . .o , &2
(fe) ^ o , . . . . . . i A ' 

+ <2nXn 0; 

Stop. 

We now give three results which show the validity of the algorithm. 

TktQKQJfn 1: There is a one-to-one correspondence between the solutions of (4) 
and (5): 

(4) 

(5) 

Here b±K) ^ 0 , b^K) ^ 0 , ...., b^} + 0 correspond to the values obtained for 
bi in the kth. iteration of Step 1, as far as N - n. 

VKOO^' Consider the following two equations corresponding to any two consec-
utive iterations of the algorithm: 

+ b(k) u ^ un Hn 0. 
(*) 

(*),.(*) ,<*>,.<*> (kth i t e r a t i o n ) b^' y\K) + b™y± 

( k + l s t i t e r a t i o n ) (b\ (k) iMk) - -WPW + V + bPy?*1* 
+ &J*).vi*+1) - 0. 

The second equation can be wr i t t en as 

i l
< f c ) i / 1

( k + 1 > + i a
( * ) ( » 2

< k + 1 ) - * 2 y 1
( * + 1 > ) + -

This means 
' (fc) = W(fe+D w (fe) = ^ ( f c + l ) _ 0 y & + V 

y 1 y l > y2 #2 2 " i . ! 

Using vector-matrix no ta t ion , we have 

+ ^ ( y „ ( f c + 1 ) 
^nU \ 

(k+l) 

•2/n 
(*) 

J/n 
(k+l) 

W 
(k+l) 

,(fc) 

(fc+l)> 

#2 

(k+l) 

Ty (k+l) 

Notice that |det T\ (i.e., the absolute value of the determinant of T) - 1. 
We now show inductively on k that there exists a matrix M such that 
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x 2 
Mym 

which satisfies |det M\ = 1. Clearly, for the first iteration, T = M and 

|det T\ = |det M\ = 1. 

Assume that there exists a matrix Mr with |det MT\ = 1 such that x = Mry . 

Substituting y(7c) = 572/(k+1), we get x = MfTy^k+1). As 

| det (MfT) | = |det Af'| x | det T\ = 1. 

Thus, x = My(k+1) where A? = Af'27 and | det M| = 1. 
It is well known (e.g., see [7]) that, if there exists a matrix M such 

that x - My with |det M\ - 1, there is a one-to-one correspondence between 
the solutions x and z/. Thus, the theorem is proved. Q.E.D. 

lk<LOh,QM 2: If (yF , z/̂, , ... , yF ) is the generator of (5) , the correspond-
ing (xp , xF , ...,xF ) is the generator of (4). 

• c l i 7 2 n - 1 

RjLOO_£: Assume that (xF , xF , .. . , xF ) is not the generator of (4). Then 
there exists a solution vector x satisfying (4) such that it cannot be ex-
pressed as an integer linear combination of xF , xp , .. . , Xp . However, 
because of the one-to-one correspondence (Theorem 1) , there exists a unique 
y which corresponds to x (i.e., My = x), and there are integers 3i, $2> •••» 
3M_i such that y = 3 ^ + &2yp + . . . 4- S>.n_1yFn x as (yF , yp , . . . , z/F ) 
is the generator. However, 2 "~1 1 2 

x = My <* ^ ( 3 ^ + 3 ^ + ••• +'Bn.i2/Fn.1 > 

= 3 ^ + 32^F2 + ... + K-IXFH_X > 
and thus a contradiction. Q.E.D. 

Tkzofi&m 3: Assume that £Z = gcd (ax, a2, — , an) = gcd (a2, ..., an) . Then 
the general solution of (6) can be expressed as x = kx° + xf, where k is an 
integer, x° any solution of (7), and xT the general solution of (8). 

(6) aix\ + ^2^2 + •.. + anxn = 0 ; 

(7) aY + a2x2 + ... + anxn = 0; 

(8) a2x2 + ••• + anxn = 0. 

P/L00̂ : Since <i divides ax, we have, for l integer, ax = id, and thus there 
are solutions x2, #3, .. . , #n to (7). This means (6) has solutions when x1 is 
fixed to any integer. Clearly, x° is any such solution to (6) in which xx -
1. Observe that all solutions for (6) can be characterized by fixing xx to 
any integer k and solving (6) in the remaining variables, x^, #3? ...? xn. 
More specifically, for x1 fixed to k, we want all solutions which satisfy 

(6)' a2x2 + ... + anxn = -axk. 
From Lemma 1, however, solutions for (6) f can be expressed as a sum of a 
solution for (6)' and the general solution for (8). Thus, 
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x = kx° + (fcjffj, + k2xF + ... + kn_2xF ) 

is the general solution for (6) for integer, k19 k2, ..., kn_l9 where kx°is 
a solution satisfying (6) f and (xF 9 xp 9 ...9xF ) is the generator of (8) 
with xx = 0. Setting l 2 n'2 

n-2 

i-1 

means that #' is any solution to (8), and hence the result. Q.E.D. 

3. EXAMPLE AND DISCUSSION 

Table 1 lists the computational process for finding the generator (xp , 
xp ) for a 3-variable diophantine equation with the right-hand side equal to 
zero. The two vectors 

and 

form the generator. 
From Theorem 1, there is a one-to-one relationship between (9) and (10): 

(9) 8913a: 2 + 5677x2 + 4378*3 = 0; 

(10) 10z/2 + 5y2 + 3z/3 = 0. 

The relationship is x = My 9 where 

M 

From Theorem 2, the generator (y„ , y p ) of (10), if found, will be translated 
to the generator * 2 

(xF 9 x.F ) = (MyF , Mz/F ) 

of (9). 
Iteration 10 of the algorithm (cf. Table 1) finds a solution 

y = 

for (10), and from Theorem 3, the general solution for (10) can be found as 

fc{-2 J + y \ where y > = ( y 2 J 

is the general solution for (10) with y 1 = 0. Iterations 11 through 13 are 
performed to find the general solution for 

(11) 5y2 + 32/3 = 0. 
It can easily be checked that the general solution for (11) is 

y' = i 

- 3 
- 3 
10 

27 
-10 
-42 

4 \ 1 3 J , 
- 2 5 / 

, |det M\ = 1. 
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Thus, 

(i) md (J) 
form a generator for (10). 

TABLE 1. ALGORITHM COMPUTATIONS 

Iteration 
k 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

b[k) = 

8913 = 
5677 = 
4378 = 
3236 = 
1299 = 
1142 = 
638 = 
157 = 
33 = 
10 = 
5 = 
3 = 
2 = 

l2b™ 

1(5677) 
1(4378) 
1(3236) 
2(1299) 
1(1142) 
1 (638) 
4 (157) 
4 (33) 
3 (10) 
2 (5) 
1 (3) 
1 (2) 
2 (1) 

+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

i ^ 

0(4378) 
0(3236) 
0(1299) 
0(1142) 
0 (638) 
3 (157) 
0 (33) 
2 (10) 
0 (5) 
0 (3) 

+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

K 
8913 
5677 
4378 
3236 
1299 
1142 
638 
157 
33 
10 
5 
3 
0 
2 
1 
0 

*i 

1 
0 
0 
1 
0 
-1 
1 
1 
-5 
-3 
27 
4 

-57 
23 
-19 
61 

x2 

0 
1 
0 
-1 
1 
1 
-3 
0 
4 
-3 
-10 
13 
17 
-23 
36 
-95 

x3 

0 
0 
1 
0 
-1 
1 
2 
-2 
5 
10 
-42 
-25 
94 
-17 
-8 
-1 

In general, whenever the final remainder (i.e., br) of Step 1 in each 
iteration becomes 0, we obtain a vector which is one of the n - 1 generating 
vectors, and the size of problem (i.e., the number of variables) is reduced 
by 1. 

Theorem 3 shows that this elimination of one variable at a time guaran-
tees the generating characteristic. After the problem is reduced, the same 
arguments (i.e., Theorem 1-Theorem 3) will be applied to the reduced problem, 
sequentially. Eventually, a 2-variable problem will be solved which yields 
the (n - l)st or last generating vector, and the process terminates. 

From Lemmas 2 and 3, the last nonzero remainder in the algorithm gives 
the greatest common divisor of a19 a29 ..., an. In the example, detailed in 
Table 1, the last nonzero remainder is 1 and is the gcd of 8913, 5677, and 
4378. To see this, note that 

gcd (8913, 5677, 4378) = gcd (10, 5, 3) 

by Lemma 2 which, in turn, is equal to gcd (5, 3) by Lemma 3, Repeating the 
same argument gives 

gcd (5, 3) = gcd (3, 2) = gcd (2, 1) = gcd (1) = 1, 

or 

gcd (8913, 5677, 4378) = 1. 
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Finally, Table 1 displays a solution for the equation with the right-
hand side equal to 1 = gcd (8913, 5677, 4378). The general solution for the 
equation with the right-hand side a0 can then~be expressed as: 

"•(~i)+,:>Cl)+**(-!)• 
where kl and kz are integers. 

REMARKS 

1. An examination of the algorithm indicates that the divisions in Step 1 
can be made computationally more efficient by using the least absolute remain-
der rather than the positive remainder. Specifically, we find %i (i = 2, ..., 
N) such that \r^\ is minimized (0 <. \ri \ <_ b>') in Step 1, rather than using 
vi , where 0 <_ ri <_ b^. This change allows the proofs of the theorems to go 
through essentially unchanged. 

2. The preceding discussion can be used to show that the Blankinship Also-
rithm [1] for finding the gcd of n integers will also find the general solu-
tion of a linear diophantine equation. Specifically, the algorithm presented 
here can be regarded as a modified Blankinship Algorithm where the modifica-
tion is in selecting the operators (according to Blankinship!s terminology). 
The Blankinship Algorithm, on the other hand, can be regarded as a special 
case of our method where i2 =^3 = ••• = &n_i = 0 in Step 2 of the algorithm 
presented here. 

REFERENCES 

1. W. A. Blankinship. "A New Version of the Euclidean Algorithm." Ameri-
can Math. Monthly 70, No. 7 (1963):742-745. 

2. R. Weinstock. "Greatest Common Divisor of Several Integers and an Asso-
ciated Linear Diophantine Equation." American Math. Monthly 67, No. 7 
(1960):664-667. 

3. J. Bond. "Calculating the General Solution of a Linear Diophantine Equa-
tion." American Math. Monthly 74, No. 8 (1967):955-957. 

4. W. Chase. "The Indirect Threat Algorithm." Technical Memorandum, Naval 
Electronics Laboratory Center, San Diego, California, November 1975. 

5. S. Morito & H. M. Salkin. "A Comparison of Two Heuristic Algorithms for 
a Radio Frequency Intermodulation Problem." Technical Memorandum, Case 
Western Reserve University, Department of Operations Research, Cleveland, 
Ohio, October 1977. 

6. T. Saaty. Optimization in Integers and Related Extremal Problems. New 
York: McGraw-Hill, 1970. 

7. H. M. Salkin. Integer Programming. Reading, Mass.: Addison-Wesley, 
1975. 


