SPECIAL RECURRENCE RELATIONS ASSOCIATED WITH THE SEQUENCE $\left\{w_{n}(a, b ; p, q)\right\}^{*}$

A. G. SHANNON

New South Wales Institute of Technology, Sydney, Australia and
A. F. HORADAM

University of New England, Armidale, Australia; University of Reading, England

1. INTRODUCTION

There are three parts to this paper, the link being $\left\{\omega_{n}\right\}$, defined below in (1.1). In the first, a lacunary recurrence relation is developed for $\left\{w_{n}\right\}$ in (2.3) from a multisection of a related series. Then a functional recurrence relation for $\left\{w_{n}\right\}$ is investigated in (3.2). Finally, a q-series recurrence relation for $\left\{w_{n}\right\}$ is included in (4.5).

The generalized sequence of numbers $\left\{w_{n}\right\}$ is defined by

$$
\begin{equation*}
w_{n}=p w_{n-2}-q w_{n-2}(n \geq 2), w_{0}=a, w_{1}=b \tag{1.1}
\end{equation*}
$$

where p, q are arbitrary integers. Various properties of $\left\{\omega_{n}\right\}$ have been developed by Horadam in a series of papers [4, 5, 6, 7, and 8].

We shall have occasion to use the "fundamental numbers," $U_{n}(p, q)$, and the "primordial numbers," $V_{n}(p, q)$, of Lucas [10]. These are defined by

$$
\begin{align*}
U_{n}(p, q) & \equiv w_{n}(0,1 ; p, q), \tag{1.2}\\
V_{n}(p, q) & \equiv w_{n}(2, p ; p, q) .
\end{align*}
$$

For notational convenience, we shall use

$$
\begin{align*}
& U_{n}(p, q) \equiv U_{n} \equiv u_{n-1}=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta), \tag{1.4}\\
& V_{n}(p, q) \equiv V_{n} \equiv v_{n-1}=\alpha^{n}+\beta^{n}, \tag{1.5}
\end{align*}
$$

where α, β are the roots of $x^{2}-p x+q=0$.

2. LACUNARY RECURRENCE RELATION

We define the series $w(x)$ by

$$
\begin{equation*}
w(x)=w_{1}(x)=\sum_{n=0}^{\infty} w_{n} x^{n}, \tag{2.1}
\end{equation*}
$$

the properties of which have been examined by Horadam [4].
If r is a primitive m th root of unity, then the k th m-section of $w(x)$ can be defined by

$$
\begin{equation*}
w_{k}(x ; m)=m^{-1} \sum_{j=1}^{m} w\left(r^{j} x\right) r^{m-k_{j}} \tag{2.2}
\end{equation*}
$$

It follows that

$$
w_{k}(x ; m)=\frac{1}{m}\left(r^{m-k} w(r x)+r^{m-2 k} w\left(r^{2} x\right)+\cdots+r^{m-m k} w\left(r^{m} x\right)\right)
$$

[^0]\[

$$
\begin{align*}
& =\frac{1}{m}\left(r^{m-k}\left(w_{0}+w_{1} r x+w_{2} r^{2} x^{2}+\cdots\right)+r^{m-2 k}\left(w_{0}+w_{1} r^{2} x+w_{2} r^{4} x^{2}+\cdots\right)\right. \\
& \left.\quad+\cdots+r^{m-m k}\left(w_{0}+w_{1} r^{m} x+w_{2} r^{2 m} x^{2}+\cdots\right)\right) \\
& =\frac{1}{m}\left(w_{0} \sum_{j=1}^{m} r^{m-j k}+w_{1} x \sum_{j=1}^{m} r^{m-j k+j}+\cdots+w_{k} x^{k} \sum_{j=1}^{m} r^{m-j k+j k}+\cdots\right) \\
& =\frac{1}{m}\left(w_{0} \frac{r^{m k}-1}{r^{k}-1}+w_{1} x \frac{r^{m(k-1)}-1}{r^{k-1}-1}+\cdots+w_{k} x^{k} m r^{m}+\cdots\right) \\
& =w_{k} x^{k}+w_{k+2 m} x^{k+2 m}+\cdots \\
& =\sum_{j=0}^{\infty} w_{k+j m^{2}} x^{k+j m} \tag{i}\\
& =\sum_{j=0}^{\infty}\left(A(\alpha x)^{k+j m}+B(\beta x)^{k+j m}\right) \\
& =A \alpha^{k} x^{k}\left(1-\alpha^{m} x^{m}\right)^{-1}+B \beta^{k} x^{k}\left(1-\beta^{m} x^{m}\right)^{-1} \\
& =x^{k}\left(w_{k}-q^{m} w_{k-m^{2}} x^{m}\right)\left(1-V_{m} x^{m}+q^{m} x^{2 m}\right)^{-1} . \tag{ii}
\end{align*}
$$
\]

Hence, by cancelling the common factor x^{k} and replacing x^{m} by x, we get from the lines (i) and (ii)

$$
\left(1-V_{m} x+q^{m} x^{2}\right) \sum_{j=0}^{\infty} w_{k+j m} x^{j}=w_{k}-q^{m} w_{k-m} x .
$$

We then equate the coefficients of x^{j} to get the lacunary recurrence relation for $\left\{\omega_{n}\right\}$:

$$
\begin{equation*}
w_{k+m j}-V_{m} w_{k+m(j-1)}+q^{m} w_{k+m(j-2)}=\left(w_{k}-V_{m} w_{k-m}+q^{m} w_{k-2 m}\right) \delta_{j 0}, \tag{2.3}
\end{equation*}
$$

where $\delta_{n m}$ is the Kronecker delta:

$$
\delta_{n m}=1 \quad(n=m), \quad \delta_{n m}=0 \quad(n \neq m)
$$

When j is zero, we get the trivial case $w_{k}=w_{k}$. When j is unity, we get

$$
w_{k+m}-V_{m} w_{k}+q^{m} w_{k-m}=0,
$$

which is equation (3.16) of Horadam [5]. It is of interest to rewrite (2.3) as

$$
\begin{equation*}
w_{n m}=V_{n} w_{n(m-1)}+q^{n} w_{n(m-2)} \quad(m \geq 2, n \geq 1) \tag{2.4}
\end{equation*}
$$

Thus

$$
w_{2 n}=V_{n} w_{n}+a q^{n},
$$

and

$$
w_{3 n}=V_{n} w_{2 n}+q^{n} w_{n}
$$

The recurrence relations (2.3) and (2.4) are called lacunary because there are gaps in them. For instance, there are missing numbers between $w_{n(m-1)}$ and $w_{n m}$ in (2.4); when $m=2$ and $n=3$, (2.4) becomes

$$
w_{6}=V_{3} w_{3}+\alpha q^{3},
$$

and the missing numbers are w_{4} and w_{5}. A general solution of (2.4), in terms of w_{n}, is

$$
\begin{equation*}
w_{m n}=U_{m}\left(V_{n},-q\right) w_{n}+a U_{m-1}\left(V_{n},-q\right) q^{n} \tag{2.5}
\end{equation*}
$$

The proof follows by induction on m. For $m=2$ from (1.1) and (1.2),

$$
U_{2}\left(V_{n},-q\right)=V_{n} \quad \text { and } \quad U_{1}\left(V_{n},-q\right)=1
$$

If we assume (2.5) is true for $m=3,4, \ldots, r-1$, then from (2.4)

$$
\begin{aligned}
& w_{r n}= V_{n} w_{n(r-1)}+q^{n} w_{n(r-2)} \\
&= V_{n} U_{r-1}\left(V_{n},-q\right) w_{n}+a V_{n} U_{r-2}\left(V_{n},-q\right) q^{n} \\
&+q^{n} U_{r-2}\left(V_{n},-q\right) w_{n}+a q^{n} U_{r-3}\left(V_{n},-q\right) q^{n} \\
&=\left(V_{n} U_{r-1}\left(V_{n},-q\right)\right. \\
&\left.+q^{n} U_{r-2}\left(V_{n},-q\right)\right) w_{n} \\
&+a\left(V_{n} U_{r-2}\left(V_{n},-q\right)+q^{n} U_{r-3}\left(V_{n},-q\right)\right) q^{n} \\
&= U_{r}\left(V_{n},-q\right) w_{n}+a U_{r-1}\left(V_{n},-q\right) q^{n} .
\end{aligned}
$$

3. FUNCTIONAL RECURRENCE RELATION

Following Carlitz [1], we define

$$
\begin{equation*}
w_{n}^{*}(x)=w_{n}^{*}(x, \lambda)=\sum_{k=0}^{\infty} w_{n+k}\binom{x}{k} \lambda^{k} . \tag{3.1}
\end{equation*}
$$

Then,

$$
w_{n}^{*}(0)=w_{n}, \text { and }
$$

$$
\begin{align*}
\omega_{n+1}^{*}(x) & =\sum_{k=0}^{\infty} w_{n+k+1}\binom{x}{k} \lambda^{k} \tag{3.2}\\
& =\sum_{k=0}^{\infty}\left(p w_{n+k}-q w_{n+k+1}\right)\binom{x}{k} \lambda^{k} \\
& =p w_{n}^{*}(x)-q w_{n-1}^{*}(x),
\end{align*}
$$

which is a second-order functional recurrence relation. Moreover, we can show that the power series in (3.1) converges for a sufficiently small λ as follows:

$$
\begin{aligned}
w_{n}^{*}(x+1)-w_{n}^{*}(x) & =\sum_{k=0}^{\infty} w_{n+k}\left\{\binom{x+1}{k}-\binom{x}{k}\right\} \lambda^{k} \\
& =\lambda \sum_{k=1}^{\infty} w_{n+k}\binom{x}{k-1} \lambda^{k-1} \\
& =\lambda \sum_{k=0}^{\infty} w_{n+k+1}\binom{x}{k} \lambda^{k} \\
& =\lambda w_{n+1}^{*}(x) .
\end{aligned}
$$

If we use $w_{n}=A \alpha^{n}+B \beta^{n}$, where

$$
A=\frac{b-\alpha \beta}{\alpha-\beta} \quad \text { and } \quad B=\frac{\alpha \alpha-b}{\alpha-\beta},
$$

then we get that

$$
\begin{aligned}
\omega_{n}^{*}(x) & =\sum_{k=0}^{\infty}\left\{A \alpha^{n}\binom{x}{k}(\alpha \lambda)^{k}+B \beta^{n}\binom{x}{k}(\beta \lambda)^{k}\right\} \\
& =A \alpha^{n}(1+\lambda \alpha)^{x}+B \beta^{n}(1+\lambda \beta)^{x}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
w_{n}^{*}(x+y) & =A \alpha^{n}(1+\lambda \alpha)^{x+y}+B \beta^{n}(1+\lambda \beta)^{x+y} \\
& =\sum_{k=0}^{\infty}\left\{A \alpha^{n+k}(1+\lambda \alpha)^{x}+B \beta(1+\lambda \beta)^{x}\right\}\binom{y}{k} \lambda^{k} \\
& =\sum_{k=0}^{\infty} w_{n+k}^{*}(x)\binom{y}{k} \lambda^{k} .
\end{aligned}
$$

Similarly, we have for $E=p a b-q \alpha^{2}-b^{2}$, and $E_{\omega}=1+p \lambda+q \lambda^{2}$:

$$
\begin{aligned}
& w_{n-1}^{*}(x) w_{n+1}^{*}(x)-w_{n}^{* 2}(x) \\
= & \left\{A \alpha^{n-1}(1+\lambda \alpha)^{x}+B \beta^{n-1}(1+\lambda \beta)^{x}\right\}\left\{A \alpha^{n+1}(1+\lambda \alpha)^{x}+B \beta^{n+1}(1+\lambda \beta)^{x}\right\} \\
& -\left\{A \alpha^{n}(1+\lambda \alpha)^{x}+B \beta^{n}(1+\lambda \beta)^{x}\right\} \\
= & E d^{-2}\left(\alpha^{n-1} \beta^{n+1}-2 \alpha^{n} \beta^{n}+\alpha^{n+1} \beta^{n-1}\right)((1+\lambda \alpha)(1+\lambda \beta))^{x} \\
= & q^{n-1} E d^{-2}\left(\beta^{2}-2 \alpha \beta+\alpha^{2}\right) E_{w}^{x} \\
= & q^{n-1} E E_{w}^{x},
\end{aligned}
$$

which is a generalization of equation (4.3) of Horadam [5]:

$$
w_{n-1} w_{n+1}-w_{n}^{2}=q^{n-1} E .
$$

The same type of approach yields

$$
\alpha w_{m+n}^{*}(x+y)+(b-p q) w_{m+n-1}^{*}(x+y)=w_{m}^{*}(x) w_{n}^{*}(y)-q w_{m-1}^{*}(x) w_{n-1}^{*}(y)
$$

as a generalization of Horadam's equation (4.1) [5]:

$$
\alpha w_{m+n}+(b-p q) w_{m+n-1}=w_{m} w_{n}-q w_{m-1} w_{n-1}
$$

4. q-SERIES RECURRENCE RELATION
q-series are defined by
(4.1) $\quad(q)_{n}=(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right),\left(q_{0}\right)=1$.

Arising out of these are the so-called q-binomial coefficients:

$$
\left[\begin{array}{l}
n \tag{4.2}\\
k
\end{array}\right]_{q}=(q)_{n} /(q)_{k}(q)_{n-k}
$$

When q is unity, these reduce to the ordinary binomial coefficients. It also follows from (4.1) and (4.2) that

$$
\begin{align*}
{\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\beta / \alpha} } & =\frac{\left(1-(\beta / \alpha)^{n}\right) \cdots\left(1-(\beta / \alpha)^{n-k+1}\right)}{(1-\beta / \alpha)\left(1-(\beta / \alpha)^{2}\right) \cdots\left(1-(\beta / \alpha)^{k}\right)} \\
& =\alpha^{k(n-k) \frac{u_{n-1} u_{n-2} \cdots u_{n-k}}{u_{0} u_{1} \cdots u_{k-1}}} \\
& =U_{n} c_{n k} \alpha^{k(n-k)}, \\
C_{n k} & =\frac{u_{n-2} u_{n-3} \cdots u_{n-k}}{u_{0} u_{1} \cdots u_{k-1}} . \tag{4.3}
\end{align*}
$$

Horadam [5] has shown that

Thus

$$
w_{n+x}=w_{n} u_{r}-q w_{r-1} u_{n-1} .
$$

$$
w_{n+r}=\frac{w_{r} \alpha^{k(k-n-1)}}{C_{n-1, k}}\left[\begin{array}{c}
n+1 \\
k
\end{array}\right]_{\beta / \alpha}-\frac{q w_{r-1} \alpha^{k(k-n)}}{C_{n k}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\beta / \alpha}
$$

which yields

$$
C_{n-1, k} C_{n k} w_{n-r}=\alpha^{k(k-n-1)} C_{n k}\left[\begin{array}{c}
n+1 \tag{4.5}\\
k
\end{array}\right]_{\beta / \alpha} w_{r}-q \alpha^{k(k-n)} C_{n-1, k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\beta / \alpha} w_{r-1}
$$

5. CONCLUSION

The q-series analogue of the binomial coefficient was studied by Gauss, and later developed by Cayley. Carlitz has used the q-series in numerous papers. Fairly clearly, other results for ω_{n} could be obtained with it just as other properties of the functional recurrence relation for w_{n} could be readily produced.

The process of multisection of series is quite an old one, and the interested reader is referred to Riordan [11]. Lehmer [9] discusses lacunary recurrence relations.
$C_{n k}$ was introduced by Hoggatt [3], who used the symbol C. Curiously enough, Gould [2] also used the symbol ' C ' in his generalization of Bernoulli and Euler numbers. Gould's $C=b / a$ (α, b the roots of $x^{2}-x-1=0$) is related to Hoggatt's $C \equiv C_{n k}$ when $p=-q=1$ by

$$
\begin{equation*}
C=b \lim _{k \rightarrow \infty}\left(C_{k+1, k+1} / C_{k k}\right) . \tag{5.1}
\end{equation*}
$$

REFERENCES

1. L. Carlitz. "Some Generalized Fibonacci Identities." The Fibonacci Quarterly 8 (1970):249-254.
2. H. W. Gould. "Generating Functions for Products of Powers of Fibonacci Numbers." The Fibonacci Quarterly 1, No. 2 (1963):1-16.
3. V. E. Hoggatt, Jr. "Fibonacci Numbers and Generalized Binomial Coefficients." The Fibonacci Quarterly 5 (1967):383-400.
4. A. F. Horadam. "Generating Functions for Powers of a Certain Generalized Sequence of Numbers." Duke Math. J. 32 (1965):437-446.
5. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." The Fibonacci Quarterly 3 (1965):161-176,
6. A. F. Horadam. "Special Properties of the Sequence $w_{n}(a, b ; p, q)$." The Fibonacci Quarterly 5 (1967):424-434.
7. A. F. Horadam. "Generalization of Two Theorems of K. Subba Rao." BuZZetin of the Calcultta Mathematical Society 58 (1968):23-29.
8. A. F. Horadam. "Tschebyscheff and Other Functions Associated with the Sequence $\left\{\omega_{n}(\alpha, \bar{b} ; p, q)\right\} . "$ The Fibonacci Quarterly 7 (1969):14-22.
9. D. H. Lehmer. "Lacunary Recurrence Formulas for the Numbers of Bernoulli and Euler." Annals of Mathematics 36 (1935):637-649.
10. E. Lucas. Théorie des Nombres. Paris: Gauthier Villars, 1891.
11. J. Riordan. Combinatorial Identities. New York: Wiley, 1968.
\#\#\#**

ON SOME EXTENSIONS OF THE WANG-CARLITZ IDENTITY

M. E. COHEN and H. SUN
California State University, Fresno, CA 93740

ABSTRACT
Two theorems are presented which generalize a recent Wang [6]-Carlitz [1] result. In addition, we also obtain its Abel analogue. The method of proof is dependent upon some of our recent work [2].

I
Wang [6] proved the expansion

$$
\begin{equation*}
\sum_{k=1}^{r+1}\binom{r+1}{k} \sum_{\substack{i_{1}+\cdots+i_{k}=n \\ i_{j}>0}} \prod_{m=1}^{k}\left(i_{m}+1\right)=\binom{n+2 r+1}{2 r+1} . \tag{1.1}
\end{equation*}
$$

Recently, Carlitz [1] extended (1.1) to

$$
\begin{equation*}
\sum_{k=0}^{r+1}\binom{r+1}{k} \sum_{\substack{i_{1}+\cdots+i_{i}=n \\ i_{j}>0}} \prod_{m=1}^{k}\binom{i_{m}+a}{i_{m}}=\binom{n+a r+r+a}{n} \tag{1.2}
\end{equation*}
$$

Theorems 1 and 2 in this paper treat a number of different generalizations of (1.2). In particular, a special case of Theorem 1 gives the new expression:

$$
\begin{align*}
& \sum_{k=0}^{n+1}\binom{r+1}{k} \sum_{\substack{i_{1}+\cdots+i_{k}=n \\
i_{j}>0}} \prod_{m=1}^{k} \frac{(a+1)}{\left(\alpha+1+t i_{m}\right)}\left(a+t i_{m}+i_{m}\right) \tag{1.3}\\
= & \frac{(a+1)(r+1)}{(a+1)(r+1)+t n}(a r+r+a+t n+n) .
\end{align*}
$$

Letting $t=0$ in (1.3) yields (1.2).

[^0]: *Submitted ca 1972.

