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A Fibonacci-rowed matrix is defined to be a matrix in which each row
consists of consecutive Fibonacci numbers in increasing order.

Laderman [1] presented a noncommutative algorithm for multiplying two
3 x 3 matrices using 23 multiplications. It still needs 18 multiplications
if Laderman's algorithm is applied to the product of two 3 x 3 Fibonacci-
rowed matrices. In this short note, an algorithm is developed in which only
17 multiplications are needed. This algorithm is mainly based on Strassen's
result [2] and the fact that the third column of a Fibonacci-rowed matrix
is equal to the sum of the other two columns.

Let C = AB be the matrix of the multiplication of two 3 x 3 Fibonacci-
rowed matrices. Define
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There are only 17 multiplications involved in calculating . However,
18 multiplications are needed if Laderman's algorithm[1] is applied, namely

Mys Mys Mgy Mys Mgy Mgy Mgy Mgy Myys Myjs
Mygs Myys Mygs Mygs Mygs Mygs Mygs Myy
(see [1]). In fact, only 18 multiplications are needed if the usual process
of multiplication is applied.
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