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1. The Bell numbers An can be defined by means of the generating function, 

n = 0 

This is equivalent to 

a.2) K+I - £,{i) A*-

Another familiar representation is 

n 
(1.3) An = J^S(n9k)9 

k = 0 

where S(n9k) denotes a Stirling number of the second kind [3, Ch. 2], 
The definition (1.1) suggests putting 

d.4) e
a ( e I-1 } -I>„(a)f]r; 

n = 0 

An(a) is called the single-variable Bell -polynomial. It satisfies the rela-
tions 

(1.5) An + 1(a) =at/(l)Ak(a) 

and 
n 

(1.6) An(a) = ]T akS(n,k). 
fc = 0 

(We have used An and An{a) to denote the Bell numbers and polynomials rather 
than Bn and Bn(a) to avoid possible confusion with Bernoulli numbers and 
polynomials [2, Gh. 2].) 

Cohn, Ever, Menger, and Hooper [1] have introduced a scheme to facili-
tate the computation of the An. See also [5] for a variant of the method. 
Consider the following array, which is taken from [1]. 

n >v 

0 
1 
2 
3 
4 
5 
6 

0 

1 
2 
5 
15 
52 
203 
877 

1 

1 
3 
10 
37 
151 
674 
3263 

2 

2 
7 
27 
114 
523 
2589 

3 

5 
20 
87 
409 
2066 

4 

15 
67 
322 
1657 

5 

52 
255 
1335 

6 

203 
1080 

66 
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The Anjk are defined by means of the recurrence 

C1'7) An + l,k = An,k + An,k + 1 (« > 0) 
together with AQQ = 1, AQ1 = 1. It follows that 

The definition of An(a) suggests that we define the polynomial An>k(a) 
by means of 

(1.9) An+i,k^ = An,k(a) + A n i k + 1(a) (n >_ 0) 
together with 

AQ0(a) = 1, AQ1(a) = a. 

We then have 

(1.10) A0tk(0) =Ak(a)9 aAHi0(a) = A n + 1(a) . 

For a = 1, (1.10) evidently reduces to (1.8). 

(2.D Fn(z) - X>n,?<§r 
and 

2. Put 

(2.2) F(xsS) = X ) F n ( s ) ^ = E An,k*g£. 
n = 0 n,k = 0 

It follows from (2.1) and the recurrence (1.7) that 

(2.3) Fn + 1(z) = Fn(z) + F'(z). 

It is convenient to write (2.3) in the operational form 

(2.4) ^, + ife) = d +0JF„(2) (D, = ^§). 

Iteration leads to 

(2.5) Fn(z) = (1 + D3)nFQ(z) (n>0). 

Since, by (1.1) and (1.8), FQ(z) = e ^ ' 1 , we get 

(2.6) FQ(z) = (1 + D3)neeZ~K 

Incidentally, (2.5) is equivalent to 

(2-7) Antk = E ( 2 ) ^ + * • E ^ ) ^ - * -

The inverse of (2.7) may be noted: 

(2.8) An + k = Y.(-l)n-ih\Aj,k. 
j = 0 \ ' 

Making use of (2.5), we are led to a definition of AHfk for negative n. 
Replacing n by -n, (2.5) becomes 

(1 + DsfF_n(z) = FQ(z). 
Thus, if we put 
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(2.9) 

we have 

(2.10) 

F_„(Z) = £>-n,*fr. 
k = n 

toy- + fc At (k = 0, 1, 2, . . . ) , 

It can be verified that (2.10) is satisfied by 

k-n k-n 

Indeed, it is enough to take 

*-.*+ w + 1 = X>nf+ • • >*-»-*+ k"f Viyf+ J - %„„,„ 
j - 0 

k-n + 1 

J - O 

so t h a t 

(2.12) ^-n,k + ^-n,£ + i = A.n + ltk 

and (2.10) follows by Induction on n. 
Note that by (2.9) 

(2.13) A.n,k =0 (0 <k < n). 

The following table of values of A-ny\ i s computed by means of (2.12) 
and (2.13). 

Put 

6 
5 
4 
3 
2 
1 

o 

\/'k 

0 
0 
0 
0 
0 
0 
1 

0 

0 
0 
0 
0 
0 
1 
1 

1 

0 
• 0 

0 
0 
1 
0 
2 

2 

0 
0 
0 
1 

-1 
2 
5 

3 

0 
0 
1 

-2 
3 
3 

52 

4 

0 
1 

-3 
5 
0 
49 
203 

5 

1 
-4 
8 

-5 
49 
154 
877 

6 

-5 
12 

-13 
54 
105 
723 
4140 

7 

A-n,n= 1 (n = 0, 1, 2, . . . ) , 

Clearly, 

(2.14) 

Put 
k 

n = 0 & = 0 * n = 0 

Then, since by (2.12), 

(1 + Dz)F.n (a) = F_ (3) (n > 0) , 
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we have 
(1 + DS)G = xG + F1(z); 

that is 5 
D G + (-x)G = F1(z) = (1 + e 2 ) ^ 2 " 1 , 

This differential equation has the solution 

(2.15) ea'x)zG = / e(1~x) (1 + e^e**'1 dt + * (a;) , 
Jo 

where (j) (x) is independent of s. 
For s = 0 , (2.15) reduces to 

G(x90) = <|)(a;). 
By (2.15) 

G(x90) = A = 1 
ands therefore 

(2.16) G(x,z) = g ^ 1 " * ) 2 f e^~x)t (1 + e * ) ^ ' " 1 ^ + e-(1"x)2. 
Jo 

In the next place, by (2.2) and (2.5), 

- xn(l + Dz)n 

F^x^ = Z ~ n\ F*(Z) = eX(1 + D2)Fo^' 
n = 0 

Since 
exD*FQ(z) = FQ(x + 2 ) , 

we get 

(2.17) F O c s ) = e * F 0 ( a ; + 3 ) = e^e6**2 " 1 . 

It follows from (2.5) that 

(2.18) e3Ffe9s) = exF(z,x) , 

which is equivalent to 

Using (2.7), it is easy to give a direct proof of (2.10). 

3. The results of §2 are easily carried over to the polynomial^ 

z± 

(3.2) F(x,z\a) = Y^Fn^\a^' 
rz-0 

It follows from (1.9) and (3.1) that 

(3 .3) F
n+i^\a) = ( 1 + ^z)Fn{z\a), 

so that 

(3 .4) Fn(z\a) = (1 +Dz)nF0(z\a) = (1 + Dz)nea(e* ' x> 

Thus, 

(3.1) Fnfe|a) = 2>k(a)f£. 
fc-0 

and 
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(3.5) Anyk{a) = J2^AJ+k(a). 
As in §2, we find that °~ 

(3.6) F(x9z\a) = exFQ(x + z\a), 

so that 

(3 .7 ) ezF(x9z\a) = exF{z9x\d) 9 

which i s e q u i v a l e n t t o 

m^-toy. j,k 

By (1.4), 

fc = o 
Thus (3.6) becomes 

(3.9) F(x9z\a) = e'e"****'-1). 

Differentiation with respect to a yields 

E 4U ( « ) ^ = <e* + " - 1) £ 4»,* (a)gf̂  
n,k = 0 n,k = 0 

and therefore 

(3-io> <*<«> = E E ( ? ) ( J K ,•(*>• 
i = o j = 0 X ' w ' 
£ + J < n + k 

Similarly, differentiation with respect to z gives 

E X^ Z "t—̂  X^Z 

An,k + i(a)^r%r = <*ex + y 2^ A*>^a)^Tk\> 
n,k = 0 ' n,k = 0 so that 

n k 
— — i isi \ i is \ 

z). 
i = 0 j • 0 

(3.1D 4»,* + i(a> ^ E l f f l ^ i W 
Comparing (3 .11) w i t h ( 3 . 1 0 ) , we ge t 

(3 .12) 4 , H I W = o ^ n > f e ( a ) + i 4 ^ f f c ( a ) . 
Differentiation of (3.9) with respect to x leads again to (1.9). 

k. It follows from (1.3) and (2.7) that 

k+ i 

(4.D An.*-t{l)A* + <-£(l)liS<k + i-fi 
i = o ^ / -z: = o N / j = o 

Since 

it follows from (4.1) that 
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Zc + n 

W-2) An<k = g S(n,k,j), 
where 

(A.3) s(n,k,3) = j r ic -D" 7 ' " *(j)*fc (* + Dn. 

Clearly, S(0,k,j) = S(k,j). 
In the next p lace , by (4.1) or (4 .3 ) , we have 

w.A) E ^'^ffe^SV^-1) • 

(e* + y _ 1 ) M 

Dif ferent ia t ion with 

k,n = 0 
+ I . J : 

respect to x 

> * + # . 

e^ 

g ives 

0/ 

.-.. (: 

ey 

- D! 

•,x+y e (ex+v - 1) 
(J - D ! v ' (J " 1) 

so tha t 

(4.5) S(n,£ + l , j ) = S(n9k9j - 1) + jS(n9k9j)9 

general izing the familiar formula 

s(k + i,j) =s(fc,j - l) +js(k,j). 
Differentiation of (4.4) with respect to x gives 

k,n = 0 J' W i ; * 

and3 therefore 

(4.6) Sin + l,fc,j) =S(n,k9j) +S(n9k + 1 J ) . 
This r e su l t can be expressed in the form 

(4.7) knS(ri9k9j) =S(n9k + l , j ) , 

where An is the partial difference operator. We can also view (4.6) 
analog of (1.7) for S(k9n9j)a 

Since 5(09k9j) =S(k9j)9 iteration of (4.6) yields 

(4.8) S(n9k9j) = ^h)s(k + i9j). 

We r e c a l l that 
k 

xk = ^S(k9j)x(x " ^ • " • (^ - J + D -

Hence, i t follows from (4.8) tha t 

n + k 
(4.9) Gc + l ) n ^ k = ^S(n9k9j)x(x - 1) . . . fe - j + 1). 

j=o 

Replacing x by -# , (4.9) becomes 
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n + k 
(4.10) (x - l)nxk = J^ (-l)n + k-jS(rt,k,j)x(x + 1) ... (a? + j - 1). 

j-o 
5. To get a combinatorial interpretation of AHtk9 we recall [4] that Ak is 
equal to the number of partitions of a set of cardinality n. It is helpful 
to sketch the proof of this result. 

Let Ak denote the number-of partitions of the set Sk = {l, 2, . .., k}, 
k = 1> 2, 3, ..., and put ̂  = 1. Then Ak + 1 satisfies 

(3-D ^ + 1 = £ ( J ) v 
since the-right member enumerates the number of partitions of the set Sk+1, 
as the element H 1 is in a block with 0, 1, 2, . .., k additional elements. 
Hence, by (1.2) , 

Ak = Ak (k = 0 , 1, 2, . . . ) . 

For An k we have the following combinatorial interpretation. 

Tk2.0K.Qjm 1: Put 5 = {1, 2, . .. 5 n}, Ẑ7 = {n + 1, n + 2, . . . , n + k}. Then, 
4n>^ is equal to the number of partitions of all sets R U T as R runs through 
the subsets (the null set included) of S. 

The proof is similar to the proof of (5.1), but makes use of (2.7), 
that is 

(5.2) A. ,?.(;)"*' n'k ~ fto\J) d + k' 
It suffices to observe that the right-hand side of (5.2) enumerates the par-
titions of all sets obtained as union of T and the various subsets of S. 

For n = 0, it is clear that (5.2) gives Ak; for k = 0, we get An+1. 
The Stirling number S(k,j) is equal to the number of partitions of the 

set 1, 2, ..., k into j nonempty sets. The result for S(n,k,j) that cor-
responds to Theorem 1 is the following. 

ThtQKom 2: Put S = {1, 2, ..., n}, T = {n + 1, n + 2, ..., n + k}. Then, 
S(n9k,j) is equal to the number of partitions into j blocks of all sets 
R U T as R runs through the subsets (the null set included) of S, 

The proof is similar to the proof of Theorem 1, but makes use of (4.8), 
that is, 

(5.3) S(n,k9j) = V (^)sik + i9j). 
i = 0 N ' 
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1. INTRODUCTION 

Kirkpatrick [4] has discussed aspects of linear recurrence relations 
which skip terms in a Fibonacci context. Such recurrence relations are 
called "lacunary" because there are gaps in them where they skip terms. In 
the same issue of this journal, Berzsenyi [1] posed a problem, a solution of 
which is also a lacunary recurrence relation. These are two instances of a 
not infrequent occurrence. 

We consider here some lacunary recurrence relations associated with 
sequences {w^} , the elements of which satisfy the linear homogeneous re-
currence relation of order v\ 

w^ i^-iy'Xf^-V ">r, 
w i t h s u i t a b l e i n i t i a l c o n d i t i o n s 5 where t h e Ppj a r e a r b i t r a r y i n t e g e r s . The 
sequence 9 {v^}9 w i t h i n i t i a l c o n d i t i o n s given by 

0 n < 0 , 
vnr) = I r 

E â - 0 <>n < v 
J =1 

is called the "primordial" sequence, because when v - 2, it becomes the pri-
mordial sequence of Lucas [6]. The arj- are the roots, assumed distinct, of 
the auxiliary equation 

v 

J-1 

We need an arithmetical function 6(m9s) defined by 

( 1 if m\s, 
S(jn9s) = < 

(O if m\s. 

We also need s(r9m9j)9 the symmetric functions of the ari, i = 1, 2, ..., p, 
taken J at a time, as in Macmahon [5]: 

s(r9m9j) = E a ^ a ^ ... a^. , 

in which the sum is over a distinct cycle of a ^ taken j at a time and where 
we set s(r9m90) = 1. 


