SOME REMARKS ON THE BELL NUMBERS

LEONARD CARLITZ

Duke University, Durham, NC 27706

1. The Bell numbers A_n can be defined by means of the generating function,

(1.1)
$$e^{e^{x-1}} = \sum_{n=0}^{\infty} A_n \frac{x^n}{n!}.$$

This is equivalent to

$$A_{n+1} = \sum_{k=0}^{n} \binom{n}{k} A_k.$$

Another familiar representation is

(1.3)
$$A_n = \sum_{k=0}^{n} S(n,k),$$

where S(n,k) denotes a Stirling number of the second kind [3, Ch. 2]. The definition (1.1) suggests putting

(1.4)
$$e^{a(e^x-1)} = \sum_{n=0}^{\infty} A_n(a) \frac{x^n}{n!};$$

 $A_n(a)$ is called the single-variable Bell polynomial. It satisfies the relations

$$A_{n+1}(\alpha) = \alpha \sum_{k=0}^{n} {n \choose k} A_k(\alpha)$$

and

(1.6)
$$A_n(\alpha) = \sum_{k=0}^n \alpha^k S(n,k).$$

(We have used A_n and $A_n(\alpha)$ to denote the Bell numbers and polynomials rather than B_n and $B_n(\alpha)$ to avoid possible confusion with Bernoulli numbers and polynomials [2, Ch. 2].)

Cohm, Ever, Menger, and Hooper [1] have introduced a scheme to facilitate the computation of the A_n . See also [5] for a variant of the method. Consider the following array, which is taken from [1].

	n^{k}	0	1	2	3	4	5	6
	0	1	1	2	5	15	52	203
	1	2	3	7	20	67	255	1080
	2	5	10	27	87	322	1335	
:	3	15	37	114	409	1657		
	4	52	151	523	2066			
	5	203	674	2589				
	6	877	3263					

 $A_{n,k}$:

The $A_{n,k}$ are defined by means of the recurrence

$$(1.7) A_{n+1,k} = A_{n,k} + A_{n,k+1} (n \ge 0)$$

together with A_{00} = 1, A_{01} = 1. It follows that

$$A_{0,k} = A_k, A_{n,0} = A_{k+1}.$$

The definition of $A_n(\alpha)$ suggests that we define the polynomial $A_{n,k}(\alpha)$ by means of

$$(1.9) A_{n+1,k}(\alpha) = A_{n,k}(\alpha) + A_{n,k+1}(\alpha) (n \ge 0)$$

together with

$$A_{00}(a) = 1, A_{01}(a) = a.$$

We then have

$$A_{0,k}(0) = A_k(\alpha), \alpha A_{n,0}(\alpha) = A_{n+1}(\alpha).$$

For $\alpha = 1$, (1.10) evidently reduces to (1.8).

2. Put

(2.1)
$$F_n(z) = \sum_{k=0}^{\infty} A_{n,k} \frac{z}{k!}$$

and

(2.2)
$$F(x,z) = \sum_{n=0}^{\infty} F_n(z) \frac{x^n}{n!} = \sum_{n,k=0}^{\infty} A_{n,k} \frac{x^n z^k}{n! k!}.$$

It follows from (2.1) and the recurrence (1.7) that

(2.3)
$$F_{n+1}(z) = F_n(z) + F'_n(z).$$

It is convenient to write (2.3) in the operational form

$$(2.4) F_{n+1}(z) = (1 + D_z)F_n(z) \left(D_z = \frac{d}{dz}\right).$$

Iteration leads to

(2.5)
$$F_n(z) = (1 + D_z)^n F_0(z) \qquad (n \ge 0).$$

Since, by (1.1) and (1.8), $F_0(z) = e^{e^z-1}$, we get

(2.6)
$$F_0(z) = (1 + D_z)^n e^{e^{z}-1}.$$

Incidentally, (2.5) is equivalent to

$$(2.7) A_{n,k} = \sum_{j=0}^{n} {n \choose j} A_{j+k} = \sum_{j=0}^{n} {n \choose j} A_{k+n-j}.$$

The inverse of (2.7) may be noted:

(2.8)
$$A_{n+k} = \sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} A_{j,k}.$$

Making use of (2.5), we are led to a definition of $A_{n,k}$ for negative n. Replacing n by -n, (2.5) becomes

$$(1 + D_z)^n F_{-n}(z) = F_0(z).$$

Thus, if we put

(2.9)
$$F_{-n}(z) = \sum_{k=n}^{\infty} A_{-n,k} \frac{z^k}{k!},$$

we have

(2.10)
$$\sum_{j=0}^{n} {n \choose j} A_{-n, j+k} = A_k \qquad (k = 0, 1, 2, ...).$$

It can be verified that (2.10) is satisfied by

$$(2.11) A_{-n,k} = \sum_{j=0}^{k-n} (-1)^j {j + n - 1 \choose j} A_{k-n-j} = \sum_{j=0}^{k-n} {-n \choose j} A_{k-n-j}.$$

Indeed, it is enough to take

$$A_{-n,k} + A_{-n,k+1} = \sum_{j=0}^{k-n} (-1)^{j} {j + n - 1 \choose j} A_{k-n-j} + \sum_{j=0}^{k-n+1} (-1)^{j} {j + n - 1 \choose j} A_{k-n-j+1}$$

$$= \sum_{j} (-1)^{j} A_{j-n-j+1} \left\{ {j + n - 1 \choose j} - {j + n - 2 \choose j-1} \right\}$$

$$= \sum_{j=0}^{k-n+1} (-1)^{j} {j + n - 2 \choose j} A_{k-n-j+1},$$

so that

$$(2.12) A_{-n,k} + A_{-n,k+1} = A_{-n+1,k}$$

and (2.10) follows by induction on n.

Note that by (2.9)

$$(2.13) A_{-n,k} = 0 (0 \le k < n).$$

The following table of values of $A_{-n,k}$ is computed by means of (2.12) and (2.13).

Put

6	0	0	0	0	0	0	1	-5
5	0	0	0	0	0	1	-4	12
4	0	0	0	0	1	-3	8	-13
3	0	0	0	1	-2	5	- 5	54
2	0	0	1	-1	3	0	49	105
1	0	1	0	2	3	49	154	723
0	1	1	2	5	52	203	877	4140
n_k	0	1	2	3	4	5	6	7

Clearly,

$$(2.14) A_{-n,n} = 1 (n = 0, 1, 2, ...).$$

Put

$$G \equiv G(x,z) = \sum_{n=0}^{\infty} F(z)x = \sum_{k=0}^{\infty} \frac{z}{n!} \sum_{n=0}^{k} A_{-n,k} x^{n}.$$

Then, since by (2.12),

$$(1 + D_z)F_{-n}(z) = F_{-n-1}(z) \qquad (n > 0),$$

we have

$$(1 + D_z)G = xG + F_1(z);$$

that is,

$$D G + (-x)G = F_1(z) = (1 + e^z)e^{e^z-1}$$
.

This differential equation has the solution

(2.15)
$$e^{(1-x)z}G = \int_0^z e^{(1-x)} (1 + e^t)e^{e^{t-1}} dt + \phi(x),$$

where $\phi(x)$ is independent of z.

For z = 0, (2.15) reduces to

$$G(x,0) = \phi(x)$$
. By (2.15)

$$G(x,0) = A_{0,0} = 1$$

and, therefore

(2.16)
$$G(x,z) = e^{(-1-x)z} \int_0^z e^{(1-x)t} (1+e^t) e^{e^t-1} dt + e^{-(1-x)z}.$$

In the next place, by (2.2) and (2.5),

$$F(x,z) = \sum_{n=0}^{\infty} \frac{x^n (1 + D_z)^n}{n!} F_0(z) = e^{x(1+D_z)} F_0(z).$$

Since

$$e^{xD_z}F_0(z) = F_0(x + z),$$

we get

(2.17)
$$F(x,z) = e^x F_0(x+z) = e^x e^{e^{x+z}-1}.$$

It follows from (2.5) that

(2.18)
$$e^{z}F(x,z) = e^{x}F(z,x),$$

which is equivalent to

(2.19)
$$\sum_{j=0}^{k} {k \choose j} A_{n,j} = \sum_{j=0}^{n} {n \choose j} A_{k,j}.$$

Using (2.7), it is easy to give a direct proof of (2.10).

3. The results of §2 are easily carried over to the polynomial $A_n(\alpha)$. Put

(3.1)
$$F_n(z \mid \alpha) = \sum_{k=0}^{\infty} A_k(\alpha) \frac{z^k}{k!},$$

and

(3.2)
$$F(x,z|\alpha) = \sum_{n=0}^{\infty} F_n(z|\alpha) \frac{x^n}{n!}.$$

It follows from (1.9) and (3.1) that

(3.3)
$$F_{n+1}(z|a) = (1 + D_z)F_n(z|a),$$

so that

(3.4)
$$F_n(z|\alpha) = (1 + D_z)^n F_0(z|\alpha) = (1 + D_z)^n e^{\alpha(e^z - 1)}.$$

Thus,

(3.5)
$$A_{n,k}(\alpha) = \sum_{j=0}^{n} {n \choose j} A_{j+k}(\alpha).$$

As in §2, we find that

(3.6)
$$F(x,z|a) = e^x F_0(x+z|a),$$

so that

$$(3.7) e^z F(x,z|\alpha) = e^x F(z,x|\alpha),$$

which is equivalent to

(3.8)
$$\sum_{j=0}^{n} {k \choose j} A_{n,j} = \sum_{j=0}^{n} {n \choose j} A_{j,k}.$$

By (1.4),

$$\sum_{k=0}^{\infty} A_k(\alpha) \frac{x^k}{k!} = e^{\alpha(e^x - 1)}.$$

Thus (3.6) becomes

(3.9)
$$F(x,z|a) = e^x e^{a(e^{x+z}-1)}.$$

Differentiation with respect to α yields

$$\sum_{n,k=0}^{\infty} A'_{n,k} (\alpha) \frac{x^n z^k}{n! k!} = (e^{x+z} - 1) \sum_{n,k=0}^{\infty} A_{n,k} (\alpha) \frac{x^n z^k}{n! k!}$$

and therefore

(3.10)
$$A'_{n,k}(\alpha) = \sum_{i=0}^{n} \sum_{\substack{j=0\\ i+i \le n+k}}^{k} \binom{n}{i} \binom{k}{j} A_{i,j}(\alpha).$$

Similarly, differentiation with respect to z gives

$$\sum_{n,\,k=0}^{\infty}A_{n,\,k+1}\left(\alpha\right)\frac{x^{n}z^{\,k}}{n!\,k!}=\alpha e^{x+y}\sum_{n,\,k=0}^{\infty}A_{n,\,k}\left(\alpha\right)\frac{x^{n}z^{k}}{n!\,k!},$$

so that

(3.11)
$$A_{n,k+1}(\alpha) = \alpha \sum_{i=0}^{n} \sum_{j=0}^{k} {n \choose i} {k \choose j} A_{i,j}(\alpha).$$

Comparing (3.11) with (3.10), we get

(3.12)
$$A_{n,k+1}(a) = aA_{n,k}(a) + A'_{n,k}(a).$$

Differentiation of (3.9) with respect to x leads again to (1.9).

4. It follows from (1.3) and (2.7) that

(4.1)
$$A_{n,k} = \sum_{i=0}^{n} \binom{n}{i} A_{k+i} = \sum_{i=0}^{n} \binom{n}{i} \sum_{j=0}^{k+i} S(k+i,j).$$
 Since
$$S(n,j) = \frac{1}{j!} \sum_{i=0}^{j} (-1)^{j-t} \binom{j}{t} t^{k+i},$$

it follows from (4.1) that

(4.2)
$$A_{n,k} = \sum_{j=0}^{k+n} S(n,k,j),$$

where

(4.3)
$$S(n,k,j) = \frac{1}{j!} \sum_{t=0}^{j} (-1)^{j-t} {j \choose t} t^k (t+1)^n.$$

Clearly, S(0,k,j) = S(k,j).

In the next place, by (4.1) or (4.3), we have

(4.4)
$$\sum_{k,n=0}^{\infty} S(n,k,j) \frac{x^k y^n}{k! n!} = \frac{e^y}{j!} (e^{x+y} - 1) .$$

Differentiation with respect to x gives

$$\sum_{k,n=0}^{\infty} S(n,k+1,j) \frac{x^k y^n}{k!n!} = e^{x+y} \cdot \frac{e^y}{(j-1)!} (e^{x+y}-1)^{j-1}$$

$$= \frac{e^y}{(j-1)!} (e^{x+y}-1)^{j} + \frac{e^y}{(j-1)!} (e^{x+y}-1)^{j-1},$$

so that

(4.5)
$$S(n,k+1,j) = S(n,k,j-1) + jS(n,k,j),$$

generalizing the familiar formula

$$S(k + 1,j) = S(k,j - 1) + jS(k,j).$$

Differentiation of (4.4) with respect to x gives

$$\sum_{k=0}^{\infty} S(n+1,k,j) = \frac{e^{y}}{j!} (e^{x+y} - 1)^{j} + e^{x+y} \cdot \frac{e^{y}}{(j-1)!} (e^{x+y} - 1)^{j-1}$$

and, therefore

$$(4.6) S(n+1,k,j) = S(n,k,j) + S(n,k+1,j).$$

This result can be expressed in the form

(4.7)
$$\Delta_n S(n,k,j) = S(n,k+1,j),$$

where Δ_n is the partial difference operator. We can also view (4.6) as the analog of (1.7) for S(k,n,j).

Since S(0,k,j) = S(k,j), iteration of (4.6) yields

(4.8)
$$S(n,k,j) = \sum_{i=0}^{n} {n \choose i} S(k+i,j).$$

We recall that

$$x^{k} = \sum_{j=0}^{k} S(k,j)x(x-1) \dots (x-j+1).$$

Hence, it follows from (4.8) that

(4.9)
$$(x+1)^n x^k = \sum_{j=0}^{n+k} S(n,k,j) x(x-1) \dots (x-j+1).$$

Replacing x by -x, (4.9) becomes

$$(4.10) (x-1)^n x^k = \sum_{j=0}^{n+k} (-1)^{n+k-j} S(n,k,j) x(x+1) \dots (x+j-1).$$

5. To get a combinatorial interpretation of $A_{n,k}$, we recall [4] that A_k is equal to the number of partitions of a set of cardinality n. It is helpful to sketch the proof of this result.

Let \overline{A}_k denote the number of partitions of the set $S_k = \{1, 2, ..., k\}$, k = 1, 2, 3, ..., and put $\overline{A}_0 = 1$. Then \overline{A}_{k+1} satisfies

$$\overline{A}_{k+1} = \sum_{j=0}^{\infty} {k \choose j} \overline{A}_j,$$

since the right member enumerates the number of partitions of the set S_{k+1} , as the element k+1 is in a block with 0, 1, 2,..., k additional elements. Hence, by (1.2),

$$\overline{A}_k = A_k$$
 (k = 0, 1, 2, ...).

For $A_{n,k}$ we have the following combinatorial interpretation.

<u>Theorem 1</u>: Put $S = \{1, 2, ..., n\}$, $T = \{n + 1, n + 2, ..., n + k\}$. Then, $\overline{A_{n,k}}$ is equal to the number of partitions of all sets $R \cup T$ as R runs through the subsets (the null set included) of S.

The proof is similar to the proof of (5.1), but makes use of (2.7), that is

(5.2)
$$A_{n,k} = \sum_{j=0}^{n} {n \choose j} A_{j+k}.$$

It suffices to observe that the right-hand side of (5.2) enumerates the partitions of all sets obtained as union of T and the various subsets of S.

For n=0, it is clear that (5.2) gives A_k ; for k=0, we get A_{n+1} . The Stirling number S(k,j) is equal to the number of partitions of the set 1, 2, ..., k into j nonempty sets. The result for S(n,k,j) that corresponds to Theorem 1 is the following.

Theorem 2: Put $S = \{1, 2, ..., n\}$, $T = \{n+1, n+2, ..., n+k\}$. Then, $\overline{S(n,k,j)}$ is equal to the number of partitions into j blocks of all sets $R \cup T$ as R runs through the subsets (the null set included) of S.

The proof is similar to the proof of Theorem 1, but makes use of (4.8), that is,

(5.3)
$$S(n,k,j) = \sum_{i=0}^{n} {n \choose i} S(k+i,j).$$

REFERENCES

- M. Cohn, S. Even, K. Menger, & P. K. Hooper. "On the Number of Partitions of a Set of n Distinct Objects." American Math. Monthly 69 (1962): 782-785.
- N.E. Nörlund. Vorlesungen über Differenzenrechnung. Berlin: Springer, 1924.
- 3. J. Riordan. An Introduction to Combinatorial Analysis. New York: John Wiley & Sons, Inc., 1958.
- 4. G.-C. Rota. "The Number of Partitions of a Set." American Math. Monthly 71 (1964):498-504.

 J. Shallit. "A Triangle for the Bell Numbers." The Fibonacci Quarterly, to appear.

SOME LACUNARY RECURRENCE RELATIONS

A. G. SHANNON

The New South Wales Institute of Technology, Sydney, Australia

and

Oxford University, Linacre College, England

1. INTRODUCTION

Kirkpatrick [4] has discussed aspects of linear recurrence relations which skip terms in a Fibonacci context. Such recurrence relations are called "lacunary" because there are gaps in them where they skip terms. In the same issue of this journal, Berzsenyi [1] posed a problem, a solution of which is also a lacunary recurrence relation. These are two instances of a not infrequent occurrence.

We consider here some lacumary recurrence relations associated with sequences $\{w_n^{(r)}\}$, the elements of which satisfy the linear homogeneous recurrence relation of order r:

$$w_n^{(r)} = \sum_{j=1}^r (-1)^{j+1} P_{rj} w_{n-j}^{(r)}, n > r,$$

with suitable initial conditions, where the P_{rj} are arbitrary integers. The sequence, $\{v_n^{\,(r)}\}$, with initial conditions given by

$$v_n^{(r)} = \begin{cases} 0 & n < 0, \\ \sum_{j=1}^r \alpha_{rj}^n & 0 \le n < r \end{cases}$$

is called the "primordial" sequence, because when r = 2, it becomes the primordial sequence of Lucas [6]. The α_{rj} are the roots, assumed distinct, of the auxiliary equation

$$x^{r} = \sum_{j=1}^{r} (-1)^{j+1} P_{rj} x^{r-j}.$$

We need an arithmetical function $\delta(m,s)$ defined by

$$\delta(m,s) = \begin{cases} 1 & \text{if } m \mid s, \\ 0 & \text{if } m \nmid s. \end{cases}$$

We also need s(r,m,j), the symmetric functions of the α_{ri}^m , $i=1, 2, \ldots, r$, taken j at a time, as in Macmahon [5]:

$$s(r,m,j) = \sum \alpha_{ri_1}^m \alpha_{ri_2}^m \dots \alpha_{ri_j}^m,$$

in which the sum is over a distinct cycle of α_{ri}^m taken j at a time and where we set s(r,m,0) = 1.