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1. The Bell numbers 4, can be defined by means of the generating function,

1 _ NN, E
(1.1) e’ -2,4””!.
n=0
This is equivalent to
n
n
(1.2 s = (%) 4
Another familiar representation is
n
(1.3) 4, = ) 5@m,k),
k=0

where S (n,k) denotes a Stirling number of the second kind [3, Ch. 2].
The definition (1.1) suggests putting

had n
(1.4) gater-1) - E: An(a)%T;
n=0
A, (a) is called the single-variable Bell polynomial. 1t satisfies the rela-
tions
n
n
(1.5 4,.@ =a kz_:o(k>/1k<a)
and . B
(1.6) A,(@ =) d*s(,h).
k=0

(We have used 4, and 4,(a) to denote the Bell numbers and polynomials rather
than B, and B,(a) to avoid possible confusion with Bernoulli numbers and
polynomials [2, Ch. 2].)

Cohn, Ever, Menger, and Hooper [1] have introduced a scheme to facili-
tate the computation of the 4,. See also [5] for a variant of the method.
Consider the following array, which is taken from [1].

NG 0 1 2 3 4 5 6

0 1 1 2 5 15 52 203

1 2 3 7 20 67 255 1080

2 5. 10 27 87 322 1335
Ay 3 15 37 114 409 1657

4 52 151 523 2066

5 | 203 674 2589

6 | 877 3263
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The 4,,, are defined by means of the recurrence

(1.7) Apnvie = Anx +Ag ke (n> 0)
together with 4,, =1, 4,;, = 1. It follows that
(1.8) Ao =Axs Ao = Ay

The definition of A4,(a) suggests that we define the polynomial 4, ; (a)
by means of

(1.9) A, (@ =4, @ + 4, 1@ n > 0)
together with

Agola) =1, 45, (a) = a.
We then have
(1.10) Ao,k (0) =4y (a), ad, (@) = 4,,,(@).
For a = 1, (1.10) evidently reduces to (1.8).

2. Put
(2.1) Fo() = 3 Aniiy
k=0
and
= " S xnzk
(2.2) F(z,2) = 9 Fu@r = D Aoy
n=0 n,k=0

It follows from (2.1) and the recurrence (1.7) that
(2.3) F,oo1(®) =F,(2) +F] ().

It is convenient to write (2.3) in the operational form

@.4) P, @) = (+D)F, () (Dz = %).
Iteration leads to

(2.5) F,(2) = (1 + D,)'F,y (=) (n 2 0).
Since, by (1.1) and (1.8), F;(3) = eez_l, we get

(2.6) Fa(z) = (1 +D,)%e® "1,

Incidentally, (2.5) is equivalent to

n

(2.7) Ap, i = i(?)Ahk = Z(?)Akm-j‘

Jj=0 Jj=0

The inverse of (2.7) may be noted:

(2.8) Apsr =J§ (_1)n_j(2‘l)‘4j,k'

Making use of (2.5), we are led to a definition of An,k for negative n.
Replacing n by -n, (2.5) becomes

n
A +D,) F (&) = FO(Z).
Thus, if we put
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©

ak
(2.9) F,(z) = ZA_MH,
we have N k=n
(2.10) Z(?)A_n,j”( =4,  (k=0,1,2, ...).
i=0

It can be verified that (2.10) is satisfied by

k-n k-n
N ifg +n-1 _ -7
(2.11) Aopi = 2L (~1)‘7< i )Ak-n—j = Z(J )Ak—n-—j'
Jj=0 Jj=0
Indeed, it is enough to take
k-n . k-n+1 .
- _Nifd t -1 _Nifd -1
A—n,k A n ke Z( D ( J )Ak~n-j + Z (-1 J Ak_n_j+1
i=0 i=0
_ g Jg+n-1 Jg +n -2
k-n+1 . J +n 2
- g -
- Z -1 ( g >Ak-n—j+1’
i=0
so that ]
(2.12) A—n,k + A u,k+1 = A—n+lJ

and (2.10) follows by induction on #.
Note that by (2.9)

(2.13) Aoy x =0 0O <k<mn.

The following table of values of A_,,x is computed by means of (2.12)
and (2.13).

Put
6 0 0 0 0 0 0 1 -5
5 0 0 0 0 0 1 -4 12
4 0 0 0 0 1 -3 8 -13
3 0 0 0 1 -2 5 -5 54
2 0 0 1 -1 3 0 49 105
1 0 1 0 2 3 49 154 723
0 1 1 2 5 52 203 877 4140
7 % 0 1 2 3 4 5 6 7
Clearly,
(2.14) Ayy=1  (m=0,1,2, ...
Put

o k
G=6@a) =2 F @x =) 5 A, ,0n
n=0 ‘n=0

Then, since by (2.12),
(1 +D,)F,(® =F () (n > 0),
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we have
(1 +D,)G =xG + F (2);

that is, B}
DG+ (-2)¢ =F (&) = (1 +e%)e® L.

This differential equation has the solution

2
(2.15) I-®zg =/ e®7®) (1 +et)e® "t dt + ¢(x),
0

where ¢ (x) is independent of 3.
For z = 0, (2.15) reduces to

G(x,0) = ¢ (x).

By (2.15)
G(x,0) = Aoo =1
and, therefore ’
2
(2.16) G(x,2) = e<'1‘x>2/ LT (L 4 et)e® T dE + TP,
0

In the next place, by (2.2) and (2.5),

e z"(l + D,)"

F(x,2) = Z 7y () = e””(“D“)FO =).

— n!
Since
e P (z) = Fy@ +2),
we get
(2.17) F(x,z) = e F (x +2) = et L
It follows from (2.5) that
(2.18) e?F(x,z) =e"F(z,x),

which is equivalent to
n

(2.19) i(?’)An,j = Z(;)Ak,j-

=0 i=0

Using (2.7), it is easy to give a direct proof of (2.10).

3. The results of §2 are easily carried over to the polynomial 4, (a).

= k

(3.1) F, (z|a) =20Ak(a)i—!,
and k;
(3.2) F(x,z|a) = ;g%Eg(zla)%T.

It follows from (1.9) and (3.1) that
(3.3) F.,Gla = 0 +D)F, (zla),
so that
(3.4) F,(zla) = (1 +D,)"F,(z]a) = (1 +D,)"e™" "1,

Thus,

69
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n

(3.5) 4, @ = Z(;)Aj+k(a).
As in §2, we find that i=0

(3.6) Fz,zla) = e"F (& + z|a),

so that

(3.7) e?F(z,z|a) = e"F(z,z|a),

which is equivalent to
(K * (n
-8 2 (5)ans = 5 (3) a0
By (1.4),

> k

x =
E Ak(a)ﬂ = g2e"-1),
k=0

Thus (3.6) becomes
(3.9 F(x,z|a) = eTee™t -1)

Differentiation with respect to a yields

o0 n_k
2 Ay @TE = @ - S ds @ZE ,k,

ns k=0 n,k=0
and therefore

n k
(3.10) Ap@ =30 > (Z)(?) A, 5 (@
i=0 j=0

i+J<n+k

Similarly, differentiation with respect to 2z gives

© no k

x"z = x"zk
Z An,i+1 @y = ae®™ > An, 1 D7

n,k=0 n,k=0

so that

(3.11) Ao ers @) —a}_“,}j()( )4, @.

=0 §=0
Comparing (3.11) with (3.10), we get
(3.12) Apke1@ =ady @ + A5 (@)

Differentiation of (3.9) with respect to x leads again to (1.9).

L., It follows from (1.3) and (2.7) that

n n k+1

4. 1) Ao = Y (;?)Akﬂ- -3 (Z)ZS(k +1,9).

=0 =0
J .
5(n,4) —%Z( 1)7° t( ) ekt

it follows from (4.1) that

Since

Feb.
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k+n
(4.2) Ay o =2, S0k,
where J =0
(4.3) 5@ ,k,.d) =—}—,Z(-1)j‘t<i)tk(t + 1",
J: t=0

Clearly, S(0,k,j) = S(k,j).
In the next place, by (4.1) or (4.3), we have

©

k,,n Y
(4.4) 2, St kT = Sre - 1
k,m=0 e :

Differentiation with respect to x gives

had k,,n Y .
ZS(n,k + 1@)%‘31—' =e"tY¥ . G'—i_—l)_!(ex+y - 1)7-t
k,n=0
—-__..e_y.__._ x+Yy _ : _,__e_y,__ T+y _ J-1
=G - 1)!(2 1)7 + G- l)!(e ¥-1) s
so that
(4.5) S,k + 1,5) =S,k,g - 1) + jSn,k,j),

generalizing the familiar formula
S(k + lnj) =S(k9j - l) +jS(kaj)-

Differentiation of (4.4) with respect to x gives

- y . y .
S + 1,k,7) =S—(e=+¥ - 1)7 4 o%+¥ o« _© (e=ty - 1)7-1

Wt G - D!

and, therefore

(4.6) S + 1,k,j) =S8m,k,j) +Sm,k + 1,5).
This result can be expressed in the form
(4.7) A S (nsk,g) = Sm.k + 1,5),

where A, is the partial difference operator. We can also view (4.6) as the
analog of (1.7) for S(k,n,J).
Since S(0,k,j) = S(k,j), iteration of (4.6) yields

n

(4.8) S(n,k,g) = Z(’Z)s(k +1.9).

=0
We recall that

xk =) Sk, -1) ... -4 +1).

k
Ji=0
Hence, it follows from (4.8) that

n+k

(4.9) (x + "2k = ZS(n,k,j)ac(a: 1) e (-G +1).
=0

Replacing x by -x, (4.9) becomes
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n+k
(4.10) (- D'ak =Y D" sk He@ + D) L @+ g - D).
j=0
5. To get a combinatorial interpretation of 4, 6;, we recall [4] that 4, is
equal to the number of partitions of a set of cardinality n. It is helpful
to sketch the proof of this result.
Let Ay denote the number of partitions of the set S; = {1, 2, ..., k},

k=1, 2, 3, ..., and put Z; = 1. Then Z?+1 satisfies

(5.1) L, = Z(?)Zj,

i=o

since the right member enumerates the number of partitions of the set Sp,,,
as the element k¥ + 1 is in a block with 0, 1, 2,..., k additional elements.
Hence, by (1.2),

Ay = Ay (k =0, 1, 2, ...).
For A,  we have the following combinatorial interpretation.

Theorem 1: Put S = {1, 2, ..., n}, T={n+1,n+2, ..., n + k}. Then,
A,,% 1s equal to the number of partitions of all sets R U T as R runs through
the subsets (the null set included) of S.

The proof is similar to the proof of (5.1), but makes use of (2.7),
that is

n

(5.2) Apx = Z(?)Aj+k.

j=0

It suffices to observe that the right-hand side of (5.2) enumerates the par-
titions of all sets obtained as union of T and the various subsets of S.
For n = 0, it is clear that (5.2) gives 4A;; for k = 0, we get Apyq-
The Stirling number S(k,j) is equal to the number of partitions of the
set 1, 2, ..., kK into j nonempty sets. The result for S(n,k,J) that cor-
responds to Theorem 1 is the following.

Theornem 2: Put S ={1, 2, ..., nt, T={m+1,n+2, ..., n+ k}. Then,
S(n,k,J) is equal to the number of partitions into J blocks of all sets
RUT as R runs through the subsets (the null set included) of S.

The proof is similar to the proof of Theorem 1, but makes use of (4.8),
that is,
n

(5.3) Skod) = Y, (Z)s(k +1,9).

=0
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SOME LACUNARY RECURRENCE RELATIONS
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1. INTRODUCTION

Kirkpatrick [4] has discussed aspects of linear recurrence relations
which skip terms in a Fibonacci context. Such recurrence relations are
called "lacunary" because there are gaps in them where they skip terms. In
the same issue of this journal, Berzsenyi [1] posed a problem, a solution of
which is also a lacunary recurrence relation. These are two instances of a
not infrequent occurrence.

We consider here some lacunary recurrence relations associated with
sequences {wér)}, the elements of which satisfy the linear homogeneous re-—
currence relation of order r:

v = Z( DIYE 0O, n s,

with suitable initial conditions, where the F,; are arbitrary integers. The
sequence, {U(T)} with initial conditions glven by
0 n < 0,
2.(®) _

n r n
2: Qi 0<n<r
Jj=1

is called the "primordial" sequence, because when r = 2, it becomes the pri-
mordial sequence of Lucas [6]. The O are the roots, assumed distinct, of

the auxiliary equation
r

a? = ) (-1 1B xr i,

J=1

We need an arithmetical function §(m,s) defined by

1 4if m]s,
S(m,s) =
0 if mfs.

. . . m .
We also need s(r,m,j), the symmetric functions of the dn;, 7 =1, 2,..., 7,
taken J at a time, as in Macmahon [5]:

N m m m
s(r,m,j) = &%%lur% . ar%,

in which the sum is over a distinct cycle of a:i taken j at a time and where
we set s(r,m,0) = 1.



