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5. continued 

^29^69 ^14i+9» ^168^69 ^ 8 2 8 0 * 

6. For the system of equations, 

(16) tx + ty — ~tus txty ~ tv , 

there exists also the solution: 

^505 + ^531 = ^73 3 > ^50 5^531 = ^189980' 

The author wishes to thank Professor Dr. Andrzej Schinzel for his valu-
able hints and remarks. 
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1. INTRODUCTION 

In an earlier paper [1] we considered solutions to a system of equations: 

x^xj + 1 = yld ; 1 <_ i < j £ n. 

In this note we look at the generalized problems: 

(1.1) x^Xj + a = y\. , a + 0. 

In Section 2 we apply the results of [1] to the solutions of (1.1). In 
Section 3 we consider the following problem: Find n x 2 matrices 

I ax a2 ... an\ 

\&1 ^2 • •• hn / 

so that a^b- ± ajb-c = ±1 for all 1 £ i < j £ n. In Section 4 we apply the 
results of Section 3 to get two-parameter families of solutions of (1.1), 
linear in a, for n = 4. 

*This author's research was supported in part by National Science Foun-
dation Grant No. MCS 77-01780. 
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2. SOLUTIONS 

Solutions of 

xix3 + a = y\ - i = 1, 2, 

where 
x3, yi3 e R = /c[a?l5 x2, /x~x~T~a] 

and fc is a field of characteristic^ 2; x , a: algebraically independent over 

We saw in [1] that for a = 1 the general solution could be represented 
by 

(2.1) Vrx7y23 + Sx~y13 = ±(/S~ ± /^~)(z/12 + ^ T ^ ) * ; n = 0, ±1, ±2, ... . 

where y12 = /x1x2 + a. We arrived at (2.1) by solving the Pellfs equation, 

which arises from the elimination of x3 between the two equations (1.1). For 
general a, equation (2.2) becomes 

(2.3) Xl#23 " Xlh'13 = a ^ l " X 2 ) B 

If a is a square in 2?, say a = b2
 9 then the solution of (2.3) is entirely 

analogous to (2.1). 

Tfieô em [2,4): If a = b2
 5 then the general solution of (2.3) in R is given 

by , 
27 + /xjx\ \n 
J12 1 / 1 / 1 N I x 2 1 2 ! 

/xiyi3 + ^22/13 = ±M>^i ± / ^ 2 ) l ^ I ; n = 05 ± 1 , ±2, . . . . 

VKOO^'o We just take the general solution (2.1) for the case a - 1 and rename 
Xi by x^/b and 2/.. by y .. /& to get the solution for a = 2?2. 

In case a is not a square in k9 we can use Theorem 2.4 to give the gen-
eral solution in the extended ring R* = k*[x19 Xl, 2/12] where k* = k(/a) . The 
solutions in i? are therefore given by the following. 

lk.dOK.QM (2.5) : If a is not a square in fc, then the general solution of (2.3) 
in R is given by 

ix~y23 + v/S~z/13 = ±{/x~l ± i /aQ(z/ 1 2 ± /a?1a?2)2n + 1 a " n ; n = 0, 1, 2 , . . . . 

For example, if k = 0 and a is an integer, then either a = ±1 or the 
only solution with integral coefficients is 

(2.6) x3 = x± + x2 + 2z/12, 2/i3 = ̂  + ylz. 

Following [1], we see that in case a = b2 we can find 

^i+9 }j ihf £- -^l — ^ L ^ i s ^ 2 ' ^ 3 ' J/l2 ' ^ 1 3 ' 2/ 2 3 J 

so t h a t £ ^ 4 + a = 2/? . Namely, 
a: • ,*„# . , 2 /3 .2^13^2 J r 2 w 3 ^ 1 2 ^ 1 3 ^ 2 3 

(2 .7 ) x, = ar1 + ^r0 + x0 + 2 + 2 
4 1 2 3 a a 

If a is not a square, then there is no xh element in R± so that x^xh + a are 
squares in R for i = 1, 2, 3. 
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The construction in [1] for an x5 e K = k(x19 x2, x3, y12, 2/i3» 2/23) s o 

that x^x5 + a = y\5\ i = 1*2,3, 4 can be extended in case a - b2 but not if 
a is not a square in k. 

3. ON REAL n x 2 MATRICES SATISFYING a^. ± a ^ = ±1 

If we first consider the case where all the 2 x 2 determinants are ±1, 
then it is clear that we must have n _< 3, since for n = 4 the 6 determinants 
A^• satisfy the identity 

^12^34 + ^3 1^2 4 + ^23^14 = °  

which makes it impossible that all A^ are odd integers. Of course, there 
are many solutions for n = 3, for example 

0 ° ')• 
\o 1 1/ There is no restriction on the size of the matrix if we require only 

that the permanents of the 2 x 2 submatrices are ±1. In fact, given any a, b 
so that lab = ±1, then the matrix 

a1 = a2 + .. • + an = a; b1 = • • • = bn = b 

obviously has all permanents ±1. 
If we call a matrix admissible when it satisfies a^bj ± a^bi = ±1 for 

all 1 j£ i < j _<. n, then admissibility is preserved under the following oper-
ations. 

(i) Change of sign of any element. 
(ii) Interchange of the two rows and permutations of columns. 
(iii) Multiplication of one row by any nonzero constant and 

division of the other row by the same constant. 

We therefore normalize to consider only matrices with nonnegative entries 
and without repeated columns. We call such matrices permissible. 

L&nma (3,1) : A permissible matrix with an entry 0 has no more than three 
columns. 

VKOOJ' We normalize the matrix so that a± = 1, b± = 0. Then 

b2 = ••- = bn = I* 

Thus, if we order the columns by a2 i a3 £ ••• <_ an, we get a3- ± a^ = 1 for 
2 <_ i < j <_ n. If n > 3, this leaves only the possibilities 

a3 = 1 - a2, ah = 1 + a2. 

But then, ah + a3 = 2 and ah - a3 = 2a2 = 1 leads to a2 = a3 = 1/2. Thus, 
n <_ 3. 

We then assume that all entries are positive, and normalize to the form 

(I a2 ... an\ 
Kb b2 . . . bn) with 1 _£ a2 £ • • • _£. ay 

Then b^ = 1 + bai or |1 - ba^ | . 

C<X6e 1. b2 = 1 4- ba2. From the equations 

a2 11 ± ba^ I ± (1 + ba2)a^ = ±1s 

we get three possibilitiest 
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a 2 ( l + ba^) - ai(l + ba2) = - 1 , ai = a2 + 1 

a 2 + 1 
a 2 ( l - fca^) - a ^ ( l + 2?a2) = - 1 , a^ = Y + ^ 

a 2 + 1 
a2(bai - 1) + a ^ ( l + 2?a2) = 1, a^ = ~ — . 

Thus, n _< 49 and for n = 4 we have 

a2 + 1 I - b + ba2 
b> = ^3 i + 2£>a2

s 3 1 4- 2ba2
 s 

a 4 = a 2 + 1, 2?4 = 1 + 2? + 2?a2. 

The e q u a t i o n a3b^ ± CL^b3 = ±1 becomes 

(a2 + 1 ) [ ( 1 + b + 2?a2) ± '(1 - 2? + 2?a2)] = 1 + 22?a2, 
and hence , 

2 (a 2 + 1 ) (1 + ba2) = 1 + 22?a29 

which i s i m p o s s i b l e 3 or 

2£(a 2 + 1) = 1 + 2Z?a2s b = 1/2. 
But then a3 = 1, 2?3 = 1/2 which is not permissible* Thus ?i £ 3 in this case. 

Ccu>& 1. b2 = 1 - 2?a2. We get the possibilities: 

a2 ± 1 

(3.1) 

a2(l + fca^) - (1 - Z?a2)a^ = ±1, ai - l ^ 
a2 - 1 

a2(l - &ai) + (1 - Z?a2)a^ = 1, ai = - ^ — — 

a2(l - Z?â ) - (1 - ba2)cLi = -1, a^ = a2 + 1 

a2(ba,i - 1) + (1 - ba2)a^ = 19 a^ = a2 + 1 

a2 ± 1 
a2{bai - 1) - (1 - ba2)at = ±1, a{ = - ^ — — 

So the possible coices of a^s i=3 s 43 . .., depend on the magnitude of ba2 

(i) For ba2 < 1/2, we get the possibilities. 

a 2 - 1 1 - b - ba2 

aA 1 - 2ba2
3 % 1 - 22?a2

 5 

a2 + 1 I + b - ba2 
(3 .2 ) a . » — — r — 2^ = * 1 - 2ba2

 % 1 - 22?a2
 5 

a i = a 2 + l s 2^ = 1 - 2? - 2?a2. 

( i i ) For 1/2 = ba2, we get only one p o s s i b i l i t y 

a^ = a 2 + 1, bi = 1 - 2? - 2?a2. 
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(iii) For 1/2 < ba < 1, we get the possibilities: 

a2 - 1 |1 - b - ba2 \ 
a = _ ^ £ 

22?a2 - V % 2ba2 - 1 

a2 + I 1 + b - ba2 

( 3 , 2 )' a i = 2ba2 - T ^ = 2ba2 - 1 

a^ = a2 + 1, 2?̂  = |l - b - ba2\. 

The first and third lines in (3.2) lead to 

(1 - b - ba2)[(a2 + 1) ± (a2 - 1)] = 1 - 2ba2; 

that is, either 

2 a 2 ( l - b - ba2) = 1 - 22?a2 or 2 a 2 ( l - ba2) = 1, 

which i s i m p o s s i b l e , s i n c e a 2 > 1 and 1 - 2?a2 > 1/2; or 

2(1 - b - ba2) = 1 - 2£a2 or b = 1/2, 

which violates the condition ba2 < 1/2. 
The second and third lines in (3.2) lead to 

(a 2 + 1 ) [1 + b - ba2 ± (1 - 2? - 2>a2)] = 1 - 2ba2; 

t h a t i s , e i t h e r 
a 2 + 1 x 

2 ( a 2 + 1 ) (1 - ba2) = 1 - 22>a2 or a, = x _ ^ - 2 ( 1 . ^ < L 
c o n t r a r y to h y p o t h e s i s , or 

(3 .3 ) 22?(a2 + 1) = 1 - 22?a2 

1 
2(2a2 + 1) 

which yields the 4 x 2 matrix 

/o A\ / 1 a a + 1 2a + 1 

l 1 3a + 2 3a + 1 3 
\4a + 2 4a + 2 4a + 2 2 / 

where the parameter, a, is chosen _> 1. 
The first and second lines of (3.2) lead to 

(a2 + 1 ) (1 - 2? - 2>a2) ± (a2 - 1) (1 + 2? - 2?a2) = ± ( i - 2 £ a 2 ) 2 

which gives 

(22? + l)(22?a2 - 2a2 + 1) = 0 or 2(1 - 2ba2) = (1 - 22?a2)2. 

The first violates 22?a2 < 1, and the second violates 22?a2 > 0. Thus, (3.4) 
is the only matrix with n > 3 for Case 2(i). 

The second and third lines of (3.2)r lead to 

(a2 + i)[ 1 + b - ba2 ± (1 - b - ba2)] = 2ba2 - 1. 

Thus, either ? 

2(a2 + 1)(1 - baz) = 2ba2 - 1, b = * + g ) , 
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2b(a2 + 1) = 2ba2 - 1, 

which is impossible. 
The first case leads to the matrix 

1 a a + I a + 2 
(3e4, ) s 2a + 3 1 a + 3 3 

2a{a + 2) 2a(a + 2) 2a(a + 2) 2a 

This is the same as the matrix (3.4) in case 0 < a <_ 1, after we renormalize 
by replacing a by 1/a, multiplying the first row by a and the second row by 
1/a and interchanging the first two columns. 

The first and third lines of (3.2) lead to 

|l - b - ba2\[(a2 + 1) ± (a2 - 1)] = 2ba2 - 1, 

both of which lead to 

|1 - b - ba2 | , 
a- " 2ba2 - 1 ^ I < l 5 

contrary to hypothesis. 
To consider the first and third lines we first note that the conditions 

1 - b - ba2 < 0, that is, 
b > 1/(1 + a2) 

and 
ai = (a2 - l)/(2ba2 - 1) >_ a2 >_ 1 

and i n c o m p a t i b l e . Thuss we ge t 

(a 2 + 1 ) (1 - 2? - Z?a2) ± (a2 - 1 ) (1 + b - ba2) = (2ba2 - l ) 2 , 

which leads either to 

2a2(l - ba2) - 2b = (2£a2 - l) 2 , 
and hence, 1 

2(1 - b - ba2) <_ {2ba2 - l)2 , ai <_ j ; 

or to ab2 = -y. Both cases are excluded. 

Thus (3.4) is the only normalized 4 x 2 matrix in Case 2. 

Cctt>£ 3. b2 = £a2 - 1. In this case, bi = bai - 1 for all i and the pos-
sibilities reduce to: 

a2(bai - 1) - ai{ba2 - 1) = 1, a^ = a2 + 1, 

<3-5) a2 + 1 
aAbai - 1) + ai(ba2 - 1) = 1, a^ = 

and 

The two lines of (3.5) lead to 

(a2 + l)[(fca2 + Z? - 1) ± (-fca2 + b + 1)] = 2£a2 - 1. 
The resulting equations are 2b(a£ + 1) = 22?a£ - 1, which is impossible, 

2a2 + 1 
& = 

2a2 



176 ON EULER'S SOLUTION TO A PROBLEM OF DIOPHANTUS—II April 1980 

which makes 
a2 + 1 

a3 = 2ba2 - 1 = a2' 
To sum up. 

Th^OKOm (3.6)»' There are no 5 x 2 permissible real matrices, and there is a 
one-parameter family of normalized permissible 4 x 2 matrices, given by (3.4). 

We have limited the discussion to real matrices in order to reduce the 
number of cases. However, the family of permissible matrices (3.4) is valid 
for all fields of characteristic ^ 2 or 3, as long as we exclude the values 
a = 0, -1/3, -1/2, -2/3, and -1. 

4. PARAMETRIC SOLUTIONS OF (1.1) WITH THE USE OF ADMISSIBLE MATRICES 

( a1 ... ay 
] then for any a, the 

b± .. 

xi = a\a - b\; i = 1, 2, .. 

satisfy (1.1) with yi. = a^a^a ± b^bj, 

VK.00^ For 1 _< £ < j _< n, we have 

(4.2) x.x. + a = (a2-a - b2-)(aja - b2-) + a 

= aja^a2 + (1 - a\b) - a)b\)a2 + b\b). 

Now, s i n c e ci^b- ± cc-b^ = ± 1 , we have 
1 " ^ " < ^ l = ±2aiadhihj' 

S u b s t i t u t i n g in ( 4 . 2 ) , we ge t 

xixJ- + a = a^aja2 ± la^a^b^b^a + Z??&? = (a^a^a ± b^bj)2. 
In view of (3.4), we get a two-parameter family of 4 x 2 admissible ma-

trices, 

s st s(t + 1) s(2t + 1)N 

1 3 + 2 3 + 1 3 
2s(2t + 1) 2s(2t + 1) 2s(2t + 1) Is 

which yield a corresponding three-parameter solution, 

xi = xi{s9 t9 a), yid = yid(s, t, a), 

of (1.1), which is linear in a. In general, x3 and xh are algebraic, but not 
rational, functions of x± and x2> 
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