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WEIGHTED STIRLING NUMBERS OF THE FIRST AND SECOND KIND—I
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Duke University, Durham, N.C. 27706

1. INTRODUCTION

The Stirling numbers of the first and second kind can be defined by

(1.1) n
@y Zx@+1) -+ @+n-1) = 5 (n, Kxk
and k=0
(1.2) x" = E: S, Kz - 1) -+ (x -k + 1),
k=0
respectively.

It is well known that S, (n, k) is the number of permutations of
Z, =11, 2, ..., n}
with k cycles and that S(n, k) is the number of partitions of the set Z, into

k blocks [1, Ch. 5], [2, Ch. 4]. These combinatorial interpretations suggest

the following extensions.
Let n, k be positive integers, n > k, and let k;, k,, ..., kK be non-
negative integers such that

ky + ky, + oo + ky

k
(1.3)
no=Kky + 2k, + o+ + nkn.
We define S(n, k, \), Ei(n, k, A\), where )X is a parameter, in the following
way.
(1.4) S(n, ky A) = X (kA + k0% + ooe + kA,
where the inner summation is over all partitions of Z, into X; blocks of car-

dinality 1, k, blocks of cardinality 2, ..., kn blocks of cardinality #; the
outer summation is over all k,, k,, ..., k, satisfying (1.3).
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— ) )
(1.5) Sl(n, k, >\) =22{k1(>\)1 + k21_|2 + e 4 kn m},

where the inner summation is over all permutations of Z, with k; cycles of
length 1, k, cycles of length 2, ..., k, cycles of length n; the outer sum—
mation is over all k;, k,, ..., k, satisfying (1.3).

We now put

S, k, A) =%§ n, ks A)

(1.6) 1—
Sy (n, ky A) =gsl (n, ky, N).
It is evident from (1.4) and (1.5) that
(1.7) S(n, k, 1) =8n, k), S;(n, k, 1) =5,(n, k).

Indeed we shall show that if A is an integer, then S(n, k, A) and S; (n, k, A)
are also integers. More precisely, we show that, for arbitrary A,

n-k+1

_ . A

(1.8) S0 ko ) = 3L (0,80 §+ K - n(%).
Fe
n-k+1

(1.9) 5,0, ks A) = Zl (?)(x)jsl(n -G, k- 1).
£

We obtain recurrences and generating functions for both S(n, k, A) and
S, (n, ks, A). Simpler results hold for the functions

R(n, k, \) =Sn, k+ 1, \) + S, k)
(1.10)

R (n, ky A) Ei(n, K+ 1, M) +5,(n, k).

For example, we have the recurrences

R(n+ 1, k, \) =R, k- 1, \) + (k+\)E(@m, k, A)
(1.11) {

R (n+ 1, k, M)

[

R]_(ns k - lg )\) + (7’L+>\)Rl(7’l, ks >\)

and the orthogonality relations

(1.12) S R, G, M)+ CLITR GG, ke D)
J=0

n , 1 =k
=3, DR (n, §, MR, ks M) =
Jj=0 0 (n # k).

For A=0 and A=1, (1.11) and (1.12) reduce to familiar formulas for S(n, k)
and S, (n, k).

The definitions (1.4) and (1.5) furnish combinatorial interpretations of
S, k, \) and S,(n, k, A\) when X\ is arbitrary. For A a nonnegative integer,
the recurrences (1.11) suggest combinatorial interpretations for R(n, k, A)
and R, (n, k, A\) that generalize the interpretation of S(n, k) and S5,(n, k)
described above. For the statement of the generalized interpretations, see
Section 7 below.
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2. THE FUNCTION S(n, k, A)

Let n, k be positive integers, 7 > k; and kl, k .» K, mnonnegative

P 03
such that
K=k +k, + - +k,
(2.1)
n=rky + 2k, + -+ + nk,.
Put
(2.2) Sy Kyy Kyy evns Kpz A) = Do(RoA + kAT + o0+ K\,
where the summation is over all partitions of Z2, = 1, 2, ..., n dinto kl

blocks of cardinality 1, k, blocks of cardinality 2, ..., k, blocks of cardi-
nality n. Then we have (compare [2, p. 75]):

k
>4 S5 Ky & gl
- n; 1 25 eess T T
L n! W kitk,! ..
ki, k
© y ly 2
x" 2 n! 1 Y2
= — (kA + K A%+ -29)
D D A I
y, Mo yzkzxz y,x yzxz
S\ T o) ey o o
For y, =y, = +++ =Yy, the extreme right member becomes
y(e*® - 1) exp {y(e® - 1)}.
Hence, we get the generating function
Kl _"E_ri k = Az _ x _
(2.3) ;S(n, ke M) yk = y(e 1) exp{y(e® - 1}.
Recall that
n
(2.4) ZS(?’L, k)%'—yk =exply(e® - 1)}.
n,k :
Thus, the right-hand side of (2.3) is equal to
A" x"
Yy, 2 S Ky
m=1 n,k
and therefore,
n-k+1 -
vl m
(2.5) S, k, \) = m};l (P)Wse = m, &k - 1.

Note that, for A =1, (2.3) reduces to

]

_ n
2. 50 ks DIy

yle =-1) exp{y(® - 1)} = yig—expiiy(ex -1}
n,k Yy

2o kS, K Tyt by (2.4).
n,k
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Thus, we again get
S(n, k, 1) = kS(n, k).
By (1.2),

n_ % oo A
X J;)S(m, J)J!(J.).

Thus, (2.5) becomes

n- 1

3 (25 - m k- D35 ()

m= J

n-k+1 n
= Z jl(;)Z(Z)‘S(m’ DS -m, k - 1).

i=1 m=j

+

S, k, \)

=

The inner sum is equal to

<j+7?"1>5(n,j+k-1),

J
so that
n-k+1 .
5, ks M) = Y. j!(éf)(J +§.' 1>S(n, i+ k-1
(2.6) J=t
n-k+1 A
- S, i+ k-1D(").
;1 (), 5(n, § + ()
Hence,

n-k+1

@.7) SOk N) =50 kN = 3 e+ 1), 86 d+ k- D(4).
i=1

Thus, for A an integer, S(n, k, A) is an integer. For example, we have
S(n, k, 1) = S(n, k)
Sn, k, 2) 25(n, k) + (k. + 1)S(n, k + 1)
S, k, 3) 35(m, k) + 3(k + 1)S(n, k + 2).

It follows readily from (2.7) that

4 m
;(-1)*(t)sm, Ky A - t)

(2.8)
n-k+1 \ - m
- Z (k + 1);_,5(n, j +k - 1)<j _ m), (m>1).
J=m

This result holds for all A. However, if A is a positive integer, then

A
(2.9) 3 (—1)*(;\;>3(n, ko A= t) = (k+1), ,50, A +k-1),

t=0
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and
= A+ L
>, (—1)t< : )S(n, ki A - t)
(2.10) £=0
n-k+1 .
J-A-1 .
= 2 Tk + 1), 50, G+ k- 1),
j=A+1
3. THE FUNCTION R(n, k, A)
It is convenient to define
(3.1) R(ny, k, A) =8, k+ 1, \) +Sn, k).
Thus, (2.5) implies
n-k
3.2) R(n, k, \) = (n)AmS(n -m, k),
( 2
while (2.7) gives
n-k 3
(3.3) R(n, k, A) = 9 (k+ 1);8(, § + k) <J>
i=0
Multiplying (3.2) by k!(%) and summing over k, we get
n n 7 n-m
2k!<%>1?(n, ks ) = ) <m>x’"25(n —m, By - 1) e (- k1)
k=0 m=0 k=0
" [n
_ m_n-m
-2 ()

Hence,

(3.4)

n

> k!<%>R(n, Kk, A) = (y + )"

k=0

It follows from (3.4) that

(3.5)

©

n n
Z ‘ZTZ kl(%)mn, k, \) = s+,
‘k=0

n=0

To obtain a recurrence for R(n, k, \), take

Since

nk.y}? , k, A) - AR(n, k, \))
2; '(k)( n+1 n

@+ 0" -y + D"

yly + 0",

k!(%)y = (k + 1)!(]< Y 1> + k.k!(%),

it is clear that (3.4) gives

Rn+ 1, kK, \) - \R(n, k, \) = kR(n, k, \) + R(n, k - 1, A),

151
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that is
(3.6) Rn+1, k, \) = (A + k)R(n, k, A\) + R(n, k = 1, A).
An equivalent result is
(3.7 Stn+1,k+1,2) =Q+kSH, k+1, A) +35n, k, \) + S, k).
To get an explicit formula for R(n, k, ) we recall that
k
S(n, &) =%J§(-1)k-j(§)j".

Thus, by (3.2),
n-k k

o 0 = () (5

ms= i =0

For n — k <m < n, the inner sum vanishes, so that

1 ~~/n : k-4(k
- m - =d sn-m
R ko ) = g ()7 25D (%)
1 k E\%~ (7
- L _1yk-d —
= 2o COE(5) X ()
Jj=0 m=0
Thus,
k
-1 _1yk-4d k N} _Lk n
(3.8) R(n, ks A) _k!j;)( 1) J(j)(x +n = Ao
It follows from (3.8) that
- an 1 2
(3.9) ;R(n, ke MET = Freti(er - 1
in agreement with previous results. Also, since
_ai(k
ok ko (-1)F J()
LS a3 Cyk-i (K a2 LSy 7 NG/
P J_};g( D (j)“ + ) k!jZ:()l SO+ e
T A -0 -G+Dz) ... -+ KRz
we have
w i Ak
(3.10) ;R(”’ o NE" = T (T - 0 F Da) ... (L= O+ &)

We also note that (3.9) implies the 'addition theorem'":

n

. -1
(3.11)  R(n, § + Kk, A + 1) = (J * k) > (F)Ren, 4, DRG = m, kW

J m=0 m



1980] WEIGHTED STIRLING NUMBERS OF THE FIRST AND SECOND KIND—TI 153

By the recurrence (3.6) together with R(0, O, A) = 1, or by means of
(3.8), we have

(3.12) R(n, 0, A) = X', R, n, \) = 1.

Moreover, if we put
zt =Y Rn, ky Dz - M@ =-A=-1) «++ (x-2A-k+1),
k=0

then _ B
Rn+ 1, k, \) = (A + K)E(n, ks, \) + R(n, kK = 1, \),

so that E(n, k, \) = R(n, k, \). Thus, we have
n

(3.13) yn = §: Rn, k, Dy - NNy -r-1) ««« (y=-Ar-k+1),
k=0

or, replacing y by -y,

(3.14) y" = ) (D" FRG, ks M) @+ Ay
k=0

This, of course, is equivalent to (3.4).
It is clear from (3.8) or (3.13) that

(3.15) R(n, k, 0) =35, k).
For A = 1, since S(n, k, 1) = kS(n, k), then by (3.1)
R(n, k, 1) = (k + 1)S(n, k + 1) + Sn, k),

so that
(3.16) R(n, k, 1)

The function

Sm+ 1, k+1).

(3.17) B(n, \)

]

n
> R, ks A)
k=0
evidently reduces, for A = 0, to the Bell number [1, p. 210]
n
B(n) = 8(n, k).
k=0

A few formulas may be noted. It follows from (3.2) that

n

(3.18) B(n, ) = ) <Z>xm3(n -m).
m=0
Also, by (3.9), we have
(3.19) > B, VE = e exple® - 1),
n=0 )

which, indeed, is implied by (3.18).
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Differentiation of (3.19) gives
s n
:Z: B(n + 1, A)ET = Xe?® exp(e? - 1) + eéMDzexp(es - 1).
n=0 )

Hence,
(3.20) B(n + 1, \)

AB(n, A) + B(n, A + 1)

]

B(n, \) + Zn: <;§)B(m, A
m=0

Iteration of the first half of (3.20) gives
(3.21) B(n +m, \) = Z =0 B(n, A+ 4),
j0d”

as can be proved by induction on m. Incidentally, by (3.8), (3.21)
written in the form

m
(3.22) B(n +m, \) =2 R(m, §, \)B(n, A + ).
j=0

[April

can be

To anticipate the first result in Section 6, the inverse of (3.22) is

(3.23) B(n, A +m) = 3 ("R (n, 5, DB + 7, \),
i=o0

where R, (m, j, A\) is defined by (5.1).

*

Returning to (3.9), note that

leeOﬁl)z(ez - 1)k

Y R(n, k, A+ 1E
n.
n=k

]

which implies
(3.24) R(n, k, A+ 1) =(k+ 1DE(n, k+ 1, \) + R(n, k, A).

More generally, since

'"3=((z—1>+1)”'=m ") e* - 1,
e e ;g% <J ) e
we get

m

(3.25) Revs ko A +m) =)0 () G+ 1RO, K+ 35 0).

Jj=0

-%Te*z(ez - 1)k+? +-£Te*z(ez - 1k,
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We may also write (3.24) in the form

(3.26) MR, k, A) = (k + DR(n, kK + 1, )),
where A, is the finite difference operator. Iteration of (3.26) gives
(3.27) MR, ky A) = (k + 1),R(n, k +m, ).

L. THE FUNCTION 5, (n, k, A)

Corresponding to (2.2), we define
o, o,
(4.1) S, (n5 kys Kys wees kps A) = ky (W), + kz_TT_ toeeot anE_:_TYT’

where the inner summation is over all permutations of Z,,

no=ky + 2k, + o + nky,,
with k, cycles of length 1, k, cycles of length 2, ..., k, cycles of length
7n. Then (compare [2, p. 68]), we have

o yklykz
o Y, e
Z F Z ‘Sl(”; kl’kZ""’kn;)\)kl!kzl R

CI o) ) yrkiyk
= x 2. " n! 172
"2: ! 2: kl(X)l + kz 1! + + k"(n - 1)!{1k12k2 nk;)kl!kzl

Eizi W, 2 My 3 1 2.1 3
= 11 Y.L + 71 Y, & + 3 Y, + cee exp{ylx'f'iyzx +§y3x + ...}.

For y, =y, = - Y» the extreme right member becomes
y((1 -2 - 1A - oY,

Hence, we get

(4.2) Zk 5,(m & MEYE = y(Q - T - DA -7,
where ’
(4.3) 5,y ky A) =2281(n5 Ky Kos wens Ky3A)s

and the summation on the right is over all nonnegative kl, kz,..., k, satis-
fying n = k; + 2k, + -+ + nk,.
Since (see [2, p. 71]),

(4.4) ;{Sl(n, S
it follows from (4.2) that
Zgl (n, k+1, A)i—?yk =Z 51 (n, m)%—?((k + " - y")
n, k . .k H
m=-1

St BB ()Xo m.

k=0 n,k 7 m=k+1

‘,L.Vl
= S, (n, my—
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Therefore,

n-k .
(4.5) Sy, k+ 1,0 =9 (3 ; k)xjsl(n, i+ k.
J=1

In the next place, it also follows from (4.2) that

(- -1a -7

p— x?’l
S5, k+ 1, NEYE
ik ni

]

2 Wy 51 (s Ky
m=1 ‘n,k :

Equating coefficients, we get

n-k
50 k1,00 = 3 (1) 05,01 - my B
m=1
ok (A,
=2, =10 s (n-m+ DS (n-m, k).
m=1 :

Thus,
]___
(4.7) Sﬁn,k+l,k)=?ﬁ@,k+l,%)

n-k ()\)m

=21 (= 1) o (- m+ DS (- m, K.

It follows at once from (4.7) that, for A integral, S,(n, k+ 1, 1) is also
integral.
It is evident from (4.1) and (4.3) that

(4.8) 5,(n, k, 1) =nS (n, k).
Thus, for example, (4.5) and (4.6) yield

n-k ;. + %
(4.9) > ('7 ) )Sl(n, i+ k) =nS (n, k+ 1),
J=1
and
n-k
(4.10) Y nm-1) «o- r-m+ 1S (n -m, k) =nS;(n, k+ 1),
m=1

respectively.

5. THE FUNCTION R, (n, k, A)
We define the function Rl(n, k, A) by means of
(5.1) R (ny ks A) =58,(n, kK + 1, \) +5,(n, k).
Then, by (4.5),

n-k . i
(5.2) Ry ko A) = 3 (J ; k)vsl(n, i+,

i=0
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and by (4.6),

n-k
(5.3) Ry ke ) = 3 (1) 0p8, 00 - my B
m=0
n=-k ()\)m
= = nm - 1) =+~ (n-m+ »s,n-m, k).
mm=Q

It is also evident from (4.2) and (4.4) that

(5.4) Z’:le, ke DEE = (@ -y

Differentiation of (5.4) with respect to x gives

ZRI(VL + 1, k, )\)%yk =+ - x)—A—y-l,
n,k :

so that
n n
(L - @)Y Ryt 1, ke Dgyk = L+ ) DR, O, ks Nk
n,k n,k
Equating coefficients, we get
Ry(n+ 1, ky A) = 7R, (n, ky A) = AR (n, Ky A) + R (n, k=1, 1),

that is,

(5.5) Ri(n+1, k, A) = (A+n)R,(n, kK, \) +R,(n, k = 1, A).
It follows at once from (5.5) and R, (0, 0, A) = 1 that
(5.6) R, (n, 0, ) = (\),, R,(n, nA) = 1.

Also, taking y = 1 in (5.4), we get
n
(5.7) DR (s ks X)) = (A + 1),
k=0
More generally, we have
n
(5.8) ZRl(n, ks yk = (A + y)p.
k=0

Clearly, (5.5) is implied by (5.8).
It is clear from (5.4) that

(5-9) Rl(n, ks 0) =Sl(7’l, k)°
For A = 1, we have, by (4.8) and (5.1),
(5.10) R (ny, k, 1) =5, (n+1, k+1).

These formulas may be compared with (3.15) and (3.16).
In view of (5.10), (5.2) and (5.3) reduce to
n-k Pk
(5.11) S5,(n+ 1, k+1) =9, (J . >Sl(n, J+ K,

j=o N
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and

n-k
(5.12) S,(n+ 1, k+1) =) nn-1) ==+ (n-m+ 1)S, (n - m, k).
m=0

It is not difficult to give direct proofs of (5.11) and (5.12).
Returning to (5.4), note that

-3 R, ko A+ 1)%1yk = (1 - z) v,
n, k :
This gives

(5.13) Ry(n, ks, \) =R, (n, k, A+ 1) —nR;(n -1, k, A + 1),

and generally,
m . m
(5.14) Ryi(n, k, \) = Z(—I)J(j>n(n—l) s (= G+ DB (-7, ky A4m).
i =0
The inverse of (5.14) is

(5.15) Ri(n, ko A +m) =) (?) (m); Ry (= 3y Ky A

j=0

We may write (5.13) in the form

(5.16) MR, (n, ky, A) =nR,(n -1, k, A + 1).
Iteration gives
(5.17) Aqu(n, ks M) =n(n-1) «--« m-m+ DR (n-m, k, A +m).

6. ORTHOGONALITY RELATIONS
Comparing (5.8) with (3.14), we have immediately the orthogonality re-
lations

(6.1) 3D RRMm, ks MR Ky G, A)

k=0
=D By, ks A ¢ (CDFTIRGK, 4, A) = Sa,y,
k=0

the Kronecker delta.
It is of some interest to give a proof of (6.1) making use of (3.2) and
(5.2). We have

7

(-1 *R(n, ky, MR, (k, §, N
k=0

n n-k k-g,.
YRy (s - m, k)}:J(J : 75>xtsl<7<, K+ )
k=0 m=0 t=0

[}

L]

n n-jg . n-m
> 2(-1)'"(2)(3 : t)x’"”Z(-l)"‘”‘kS(n—m, k)5, (ky G+1t).
k=0

m=01%t=0
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The inner sum is equal to 1 if » = m = j + ¢, and vanishes otherwise. Thus,

we have
SR B ) -
m=0 m=Q
so that
(6.2) 2 D" FRM, ke MR (K Ga N) = 8, ;s

k=0

As for the second half of (6.1), we have

2B (s Ky A ¢ (DFTIR(K, G, M)
k=0

SR R
= Z( i ‘)A*sl(n, t+ k) - (-1F7I Z(m>>\’"5(k - my §)

k=0 1t=0 m=0
=Zn: i(;)xt_ksl(”’ T L JZ( )Ak—ms(m’ #

k=0 t=k m=J

t-gyt-m t-k K
=Z 3 1P AETS, (n, B)SCn, J)Z( nr(2) (%)
=0 m=g

Z Z(_l)t'jxt_msl(n, t)S(m, J)S8+¢,m

t=0m=4

Z( 195, (n, ©)S(E, §) =

=J
This, together with (6.2), completes the proof of (6.1).

The proof of (6.2) above suggests a more general result. As in the above
proof, we have

3 1R, ks VR, (K Ga 1) = Z Z( D7 (2)(7 % e, s
k=0

L (3
)
() Loz o

<—1>"'J‘( )Z( 1" ( Tpe=d-mum,

"
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and therefore,

(6.3) 3 UM ERG, ke DR K, 70 = (7)o
k=0

For u = A, (6.3) reduces to (6.2).
In the next place

DR (ks W) ¢ (-DFTIRK, G, )
k=0

n

n k
-3 2 (p)e s o <—1)"'f"”;(§)x"""scm, )

k=0 t=k

n n .
= _zt-dft . ) [t - m ) B
_Z‘é mZ:j( 1) J<m)sl(n, £)8(m, J)I;n( 1t <k - m>“t -

n + Iy ’
= Z Z(-l)t-a(m>sl(n, £)S@m, FYO - Wt ",

t=0 m=g

Let U(n, J) denote this sum. Then,

20T, i (3) =2 > 0¥ ()50 0 - T s, i (3)
t 0 j=o0 J

i=0 =0 m=

n t
=5 -1 (;) 5. (ny ) (A = WM

t=0 m=0

n

D DS, (n, B+ A -

t=0

D" (x+ A - WE+ArA-u=-1) <« (z+A-pu-n+1).

Replacing x by -x, this becomes

n

(6.4) 2 UG D@, = @ -+,
Since =0
@+, = 2 () @,
j=o\d
it follows from (6.4) that
. n
vees 3 = (5) - Wy

Therefore, we have

n-g

(6.5) > R, ko W)+ (<DFTIRK, 4, M) = (;) M-, .
k=0
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This result may be compared with (6.3). If we define matrices
M= [(-1)*"" R, k, NI (ny k=0, 1, 2, <..),
and
M]_ = [Rl(ﬂ, k’ U)] (7’1, k = 0, 1, 2, ...),

then (6.3) and (6.5) become

o = (70 -],
(6.5) MM = [(Z) (u - A)n_k],
respectively.

7. COMBINATORIAL INTERPRETATION OF R(n, k, A) AND R,(n, k, A)

Let A be a nonnegative integer and let B,, B,, ..., B, denote A open
boxes. Let P(n, k, \) denote the number of partitioms of Z, = {1, 2,...,n}
into k blocks with the understanding that an arbitrary number of the elements
of Zn may be placed in any number (possibly none) of the boxes. For brevity,
we shall call these "A-partitions." Clearly,

(7.1) P(n, k, 0) =8, k).

To evaluate P(n, 0, A), we place x, elements of 7, in B,, x, in B

x, in By. Thus,

1 PEIRERE]

P(n,0,2) = 9. n!

x e, ! Lo ox, !
T Fmgt e, 172 A

Hence,

(7.2) P(n, 0, X) = A".
Also, clearly,

(7.3) PO, kK, A\) = 8p,% -

To get a recurrence for P(n,k, \), we consider the effect of adding the
element n+ 1 to a A-partition of Z, into k blocks. The added element may be
placed in any of the blocks or any of the boxes without changing the value of
k. On the other hand, if it constitutes an additional block, then of course
the number of blocks becomes k+ 1. Thus, we have

(7.4) Pn+ 1, k, \) = (A + k)P(n, k, \) + P(n, k = 1, A).

Since
P(0, ky A) = R0, k, A) = 84 1>

comparison of (7.4) with (3.6) gives
(7.5) P(n, k, \) = R(n, k, \).

Hence, R(n, k, \) is equal to the number of I-partitions of Z, into
k blocks.

Turning next to R (n, k, A), again let B,, B,, ..., By denote X open
boxes. Let P (n, k, A) denote the number of permutations of Z, with k cycles
with the understanding that an arbitrary number of the elements of Z, may be
placed in any number (possibly none) of the boxes and then permuted in all
possible ways in each box. For brevity, we call these "A-permutations."
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Clearly,
(7.6) P, (n, k, 0) = 8,(n, k).
To evaluate P(n, 0, A), note that P(1, 0, A) = A and
P(n+ 1, 0, \) = (A + n)P(n, 0, A),

since the element » + 1 may occupy any one of the n + )\ positions. Thus,

(7.7) P, 0, A) = (e
Also clearly,
(7.8) Pl(os k’ >\) = 6O,k'

A recurrence for P, (n, k, A\) is obtained using the method of proof of
(7.4); however, there are now A+ # possible positions for the element n + 1.
Thus, we get

(7.9) Po(n+1, k, A) = (A +n)P,(n, ky, A) + P,(n, k - 1, A).
Comparison of (7.9) with (5.5) gives

(7.10) P (n, ky, X) =R (n, k, N).

g;z;zé R,(n, k, \) is equal to the number of \-permutations of Z, with k

We remark that (7.5) can-also be proved using (3.2) and that (7.10) can
be proved using (5.3).
Finally, we note that the generalized Bell number defined by (3.17),

B(n, \) =) R(n, k, A),

k=0

18 equal to the total number of A-partitions of Z,.
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