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1. INTRODUCTION

In a previous paper [l1], we considered r, s sequences {U;} and obtained
explicit formulations for the general term in powers of » and 8. We noted 2
special sequences {Gk} and {My}. These are sequences that specialize to the
Fibonacci and Lucas sequences where r = g = 1.

In this paper, we propose to consider the relationship between r,s re-
currence relations and geometric sequences. We give a necessary and suffi-
cient condition on r and s for the recurrence relation to be geometric. We
conclude the section by showing how to write any geometric sequence as an 7,
S8 recurrence relation.

In the final section, we briefly consider a special Fibonacci sequence.
We give an explicit formulation for its general term. We are then able to
note when it is a geometric sequence.
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2. GEOMETRIC », s SEQUENCES

In the previous paper [1] we considered the special r,s relations {G;}
and {M,} which were characterized by the initial values Gy, =0, Gy =1, My =
2, and M, = r. We further specialize r and s so that the characteristic equa-
tion of the sequence has a multiple root A. We then have r = 2)\ and s = -)\2.
It can be readily verified that the expression for the general terms are

G, = kA1 and M, = 2.

Note that the My sequence is geometric with ratio of A and first term
of My = 2. But the other sequence is not geometric. We shall develop the
general conditions for which these two results are special cases.

Before going to the main theorem, we will make a few observations. Con-

sider the general term of the r,s sequence {Uj}:
U, =rU,_y +8U,_,; U,, U, arbitrary.

If s = 0, this would be a geometric sequence starting with U,;. Further, if
the initial values were such that U, = rU;, the sequence would be geometric
with U, as the first term.

If r = 0, we have two geometric sequences with ratio s. One of these is
the even indexed U, with U, as initial value. The other geometric sequence
is the odd indexed U, with U, as starting value.

We shall call these two cases the trivial cases. In other words, an r,
s relation for which rs = 0 is trivially geometric.

There is a whole class of r, s sequences that are geometric only in this
trivial case. These are the sequences, for which U; = 0, for in this case

U, =rU, + 8U, =rU,,

U, =2U, + 8U; = (»* + s)U;.

Now this is geometric only if r?>+ s=r?. But this can only happen for s = 0.

Included in this class is the {G;} sequence.
We shall assume in the rest of this section that Uy, r, and s are all
nonzero. We are ready to state and prove our theorem.

Theornem 2.1: The r,s sequence {U;} is geometric if and only if

+ U
r 5 € - ﬁi’ where e = #/r? + 4s.
0
For convenience, we shall denote the ratio as m so that r + e = 2m or
r =2m - e. We find that
e? - p? g2 - (2m - e)?

s = 3 = % =m(e - m).

We also need the result that

rm+ s = 2m® - me + me - m*> = m>.

From the expression for U, and the assumption that U; = mlU,, we have

U, = vU, + 8U, = r(mUy) + sUy = (zm + 8)Uy = m*Uy = mU,.
Assume that U, =mlU,_, for k = 2, ..., 7 - 1. TFor
U =vU,_, +8U;_, =r@mU;_,) +s8U;_, = (xm + s)U;_, = szi-z =mU;_ 1.

Hence, the sequence is geometric with U; as first term and ratio of m.
Conversely, assume {U;} is geometric with ratio m so that U, =mU,_, for
all k. Since
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Up =rUy_y ¥ 8U,_, = (xm + 8)Up _,,
and, by assumption,
U

= mU = m@mUy_,) = m*Uy_,,

k k-1
it follows that rm + ¢ = m®>. This means that m is a solution of the equation
. ; r e r + e
z? - rx - 8 = 0. The roots of this equation are 5> SO M = 5. Fur-

U
ther, U, = mU, so ﬁl = m. But these are the given equivalent conditions.

In the proof, it was not necessary that r and s be integers. The results
are then valid for a more general recurrence relation. In the corollary that
follows, we note how any geometric sequence can be expressed as an r,s rela—
tion.

Coroflary 2.1: The geometric sequence Uy = at® can be represented as the r,
s sequence with Uy = a, U, =at, r = 2t - X, s = tA - £ for any A.
By the choice of Uy and U,, we have U, = tU,. Also,

e? = 1% + 4s = 4E? — LEX 4+ A% 4 4EA - 4E2 = A2,

so that
r+e 2t - A+ A _
2 2 -

t.
Hence, by the theorem, this r, s sequence is geometric.

3. A SPECIAL TRIBONACCI SEQUENCE

There is a special Tribonacci sequence that is geometric under some con—
ditions. It can be verified that the sequence

r, =»T,  +8l,_, - rsl,_4; Ty, T;, I, arbitrary

has for a solution
k
2k-25 . 4 k+1m .
Torsn = 24 r 78(T, - sTy) + s Tys
Jj=0

k
=N p2k+1-25.4 _ k+1
Tores = 2 r s (T2 STO) + s T,
F=0

The roots of the characteristic equation of the sequence are r, #/s. In case
T, - eTy =0, we see that the even-indexed terms form a geometric sequence
with ratio s and initial value T;,. Note that the condition imposed has T, =
sT;. - The odd-indexed terms also form a geometric sequence with ratio s and
initial value T;.

We have another important special case to be noted. If T, =T, =0, we
do not need to differentiate between even- and odd-indexed terms. We have for
solution

ial

= m-2-2444
T, =) r 9T,
=0

if I', =1, we have represented the restricted partitions of m - 2 as a sum of
(m-2-27) 1's and (j) 2's.
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1. STATEMENT OF THE PROBLEM

Recently, Buschman [1], Horadam [2], and Waddill [3] considered proper-
ties of the recurrence relation

Uy =vUy_q + 8Up_,

where r, s are nonnegative integers. Buschman and Horadam gave representa-
tions for U in powers of » and e = (r* + 48)12. In this paper we give them
in powers of r and s. We write the X, of Waddill as Gy. It is a generaliza-
tion of the Fibonacci sequence. We also consider a sequence {Mk} that is a
generalization of the Lucas sequence.

For the {Gy} and {¥,} sequences, we obtain two representations for their
general terms. From this, we move to a representation for the general term
of the basic sequence. A computer program has been written that gives this
term for specified values of the parameters.

In this paper we use some standard notation. We start by defining

2

e? = r? + 4s,
where ¢ could be irrational. We also need to define
o= (r+e)/2 and B =(r - e)/2.
In other words, o and B are solutions of the quadratic equation
2% - rx - s = 0.

We can easily show that o + B =r, o - B = e, and af = -s.

2. GENERALIZATIONS OF THE FIBONACCI AND LUCAS SEQUENCES

Using the o and B given in the first section, we can define two special
r,8 sequences. These are given by

k _ pk
Gk=°‘—e—6(e¢0), M, = ok + k.

It is easy to verify that
Gy =0,G, =1,G, =r, G, =r> +8, G, =1r° + 2rs;

My =2, M, =v, M, =r® + 28, M; = > + 3rs,

N

M, =r* + 4r’s + 2s 3

and that they satisfy the basic r,s recurrence relation; i.e.,



