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1. STATEMENT OF THE PROBLEM

Recently, Buschman [1], Horadam [2], and Waddill [3] considered proper-
ties of the recurrence relation

Uy =vUy_q + 8Up_,

where r, s are nonnegative integers. Buschman and Horadam gave representa-
tions for U in powers of » and e = (r* + 48)12. In this paper we give them
in powers of r and s. We write the X, of Waddill as Gy. It is a generaliza-
tion of the Fibonacci sequence. We also consider a sequence {Mk} that is a
generalization of the Lucas sequence.

For the {Gy} and {¥,} sequences, we obtain two representations for their
general terms. From this, we move to a representation for the general term
of the basic sequence. A computer program has been written that gives this
term for specified values of the parameters.

In this paper we use some standard notation. We start by defining

2

e? = r? + 4s,
where ¢ could be irrational. We also need to define
o= (r+e)/2 and B =(r - e)/2.
In other words, o and B are solutions of the quadratic equation
2% - rx - s = 0.

We can easily show that o + B =r, o - B = e, and af = -s.

2. GENERALIZATIONS OF THE FIBONACCI AND LUCAS SEQUENCES

Using the o and B given in the first section, we can define two special
r,8 sequences. These are given by

k _ pk
Gk=°‘—e—6(e¢0), M, = ok + k.

It is easy to verify that
Gy =0,G, =1,G, =r, G, =r> +8, G, =1r° + 2rs;

My =2, M, =v, M, =r® + 28, M; = > + 3rs,

N

M, =r* + 4r’s + 2s 3

and that they satisfy the basic r,s recurrence relation; i.e.,
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G, = rG, + sG, M, = rM, + sM,
Gg =rG, + G, M, =rM, + sM,
G, = rG, + 8G, M, =rM; + sl,

In the next theorem, we prove that these two sequences are indeed »r, s
sequences.

Theonem 1: The sequences {Gj} and {¥;} are r, s sequences.

The proofs for both utilize mathematical induction. We have already in-
dicated the validity of the theorem for k = 2, 3, and 4. We assume the terms
satisfy the r,s relation for k =2, 3, ..., Z - 1. We form

RS s

i-1 _ gi-1
e

rG, . + sG, (o + B)2

-1 -2 e

B of - Bi + Oci_lB _ OcBi_l _ Oﬁi_lB + OLBi_l
e

Ol.i—Bi

= z

This is G; by definition, so this sequence is an r, s sequence.
For the second part, we once more assume that the terms satisfy the r, s
relation for Xk = 2, ..., 7 - 1. We form this time

PM;_, + sM;_, = (o + B) (ot~ + BTL) + (-aB) (ai-2 + B72)

1

of + B + ol 1B + apftt - of 1R - ap’”

ot + pt.

This is M by definition, so this too is an r,s sequence.

We obtain the Fibonacci and Lucas sequences from these two by letting
r» =5 = 1. This can be readily verified.

In the next two theorems we give a more explicit formulation for G, and
M, that can be easily programmed for a computer.

Theonem 2: For the sequence {G.},

-1
[ 2
I o
Gy = EE: ( J J)Pk'l'stJ, k> 03 G, = 0.
j=0
We shall prove this by induction. We first note that this formulation
for k = 1, 2, 3, 4 gives the same results as the previous one.

Gy = (8)1”30 =1

G, = (é r=r

Gy = (CZ))P2 + (1)3 =r® +s

G, = (S):ﬁ3 + (i)ze = r® + 2rs
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We assume that the result is valid for Kk =1, ..., 7 - 1. We now show
that rG; _; + sG;_, does give the expression for G,. Consider then

[iz;?]i—z—j- . Eia}i_:;_-. o

i-2 1":4:6( g >Y‘1_2_2‘78‘7+8‘;)( 3 '7)2’"”'3'2-7&7

E_gi‘Z—j i-1-24 .4 [12§|
SRR
J

j=0 Jg=0

s
N
+
[va)
N
]
W

It

(i - 3 - j)ri—3—2j8j+1_

We now introduce a standard change that we use in several proofs. We first
remove the first term of the first summation; then we shift the index of the

second summation by replacing J by § - 1. This gives the same exponents for
r and s in both summations. We then have

If 7 is even, the upper limits of both summations are equal, so we can
combine them into the single summation:

2 N
SR Y (G R I (e )}'
5

= pi-1 4 :E: (i - ; - j)ri‘l’zjsj.
=1

We see that the summand is r%-! for j = 0. We include that term in the sum-
mation and obtain the desired expression for G;.

If 7 is odd, then the upper limit on the second summation is one larger

than that on the first. We break _off the last term on the second summation
and combine the two summands. This gives

: E%é]i—Z—j t -2 =N\ ,
S R BETeD S
£

=ity <i "L j)ri‘l-zisj + g@-n/z,
J

. , ;- . -1
We see that the summand gives r®-! for ¢ = 0 and s®~V/2 for ¢ = [ 3 J. We
combine these terms into the summation and we have the expression for G;.
Hence, in any case, we do obtain the desired formula for Gi’ so it must
be valid for all terms of the sequence.

In passing, we might note that for the Fibonacci sequence we have
73
k-1-3j
Fk=Z\ p ),k>O;F0=O.

j=0
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In the next theorem for the {M;}, we need the following property of bi-
nomial coefficients:

i—l(i—l-j -2 f(i-1-4 i(i—j)
N S E— . +";_—""_T - = I3 L]
-1~y J 7 -1=- Jg -1 T - g J

This can be readily verified using factorials.

Theorem 3: For the sequence {M.},
2
4]

k_ (k-
N R E I R
j=0

The proof is by induction, so we first note that it is valid for k£ =1,

2, 3.
1L (1 =G u-25.5 2 L(1) 1.0 o .
.( J )r 89 =q\gj s r;

- J 2~27ad = E
g >r s 5

"j 3-2jJ'=_3_
- )uaades -3

M
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e
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(=]

We assume that the formula is valid for ¥ =2, 3,...,7 - 1 and show it
is valid for ¥ . The proof 1is similar to that of Theorem 2 except that we
have an extra term for the case 7 is even.

We start with the basic

;- 1
B

7 -1 =1 =g\ ;_0: =
M, 4 + 8M,_, = f_~——‘—“7< . )rl‘ZJsJ
[ -2 J;”P_I_J J
)
[ 2] -2 (i -2~
- - - 12227 od+1
+ 2: A J( J -1 ) s .

Jj=0

Once more we break off the first term in the first summation and shift the
second summation index to give

p) E%%] =1 (i -1=9\ ;055 [ ] T =2 i -1 -G\ ;25 s
Al e e

If © is odd, the two summations have the same upper limit; thus, we can
combine them using the property of binomial coefficients given before the
theorem. This gives, for the summation,
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Finally, note that the summand is r? for j = 0. We combine into a single sum
that is the formula for M;.

In case 7 is even, the second summation has an extra term of 2s%/2. 1If
we separate it from the summation, we can combine the two summations to get

2 . , .

rt + Z -—2—‘<7/ - J)I’i"zjsj + ZSi/z.
v IN g
The summand is r% for j = 0 and 28*? for j = /2, so we can combine these
and obtain the expression for M;. Hence, in either case, the formula is
valid for all integers k.

This theorem gives, for the general term of the Lucas sequence,

LI
Lk:JZ%k—j< 7)o -

3. THE FORMULATION FOR U

In this section, we first prove a basic result for {Uk}. It is compar-—
able to the result in Waddill's paper for K, = G,.

Theorem 4: The general term of {U;} can be expressed as
Uk = Ut+j = GjUt+1 + Gj_lsUt.
Once more the proof is by induction. For j = 2, we have

Uppg = GoUpyy + Gi8U, = vUgyq + 8Uzs
which is true for all ¢. Assume that the expression is true for J§ = 2, ...,
7 - 1. Then, since U,,; is an r, s sequence,

Upps = PUtsi-1 ¥ 8Upgoz = 2(GiqUpyq + Gy_p8U) + 8(Gi_pUpyy + Gy _380;)

(G, _+8G; _DUpyq + (G, _, +8G;_3)sUy = GUpyr + Gy (U

Hence, the result is true for § = 7 and so is true for all integers.
We can now give a formulation for U, in terms of its initial values U,
and U;. This is given in the next theorem.

Theorem 5: The general term of the r,s sequence {Uz} is given by

- d :
J k - g

C1l2i
rk Igd.

5] K - 5\ % - 200, + gr,
55

Jj=0

In Theorem 4, we take ¢t = 0, so j = k, and we have
Up = GUy + Gy _18Ug-
Substituting the result of Theorem 2 for G,, G;_;»
[ k-2
£ k)

U = Z (k - 1. - j)r,k—l—stle + Z

<k - % - J)rk‘z‘zjsj(on).
i=0 dJ J

j=0
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Once more we break off the first term of the first summation and shift the
index of the second summation to give

&= . (3]
rk-ly 4 Z (k - ; - J)Tk~l—2ijUl +
i=1

e

ANt

Again, we consider the two cases where kX is odd or even. For k odd, the two
upper indices are equal, so we can combine the two summations to obtain

4]

K
2 . .

rk-1y, +Z (k - ; - J)Ul + (k ; E I J)rUO]rk'l‘zJ'sj.
i1

It can be verified that the summand can be written so that we have
k

3]

_ k-1 o

U, = r*ty, +§_{

H

i=0

pk-1-2j57

(k _ J) (k - Zj)Ul + jl"UO
J k-4

Z’k_l_zjsj

k . .
2 (k _ j\ (k - 25)U, '+ Jgru,
=\ J ) k=

For k even, we break off the last term in the second summation and have

54 .

- k-1-4 k-1-=-4g C1o24 4 k
Pk 1U1+Z< . >U1+< i i/ pk-1 2J8J+s/2U0

i1 J !
B4 (k - 2)U. + jrU
2 . - 24 Jr :
= rk-ly + (k s J) = Opk-1-2jg5 4 gkl2y
4 J k-4 0
J=1
we note that the summand gives rk“lUl for 4 = 0 and sk/zUo for j = k/2. Thus
we can write, for the general k,
5] Nk = 2))U. + jrU
k- 4\ - 0 k-1-24.;
U, = . / %= 7 r Jgd .
—\ J
It can be verified that by letting U, =¥, =» and U, = M, =2, we ob-

tain the expression for X; given in Theorem 3.
We can obtain an expression for {U,} in terms of {¥;}. This is shown in
the next theorem.
Theorem 6: The {Uy} is given by
MM, + sMM. MM, |+ sMM,

Uy = Uy, = U, + )
J 2 2 t+g 2 2 t
M1+3M0 Ml+sM0

We can obtain this result from Theorem 4 by determining G; and Gj_l in
terms of {M;}. TFor this, we start with
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Mj_y = G_\My + G _, 8y = rG

,8M, o1 + 28G;

Jj-2°

Since G; = rG;_,+ sG;_z, it follows that 2sG;_, = 2G; - 2rG;_;. We sub-
stitute this into the expression for Mj_l, and also write the expression for
M; to give the two equatiomns:

= 2G; - rG;_ 13

M; = rG; + 28G;_;.

J-1

The solutions for G; and G,_; are

. ri; + ZSMJ._1 Mle + sMyM;
7 2 B 2 2
r“+ 4s My + sM;
and
B 2M; - rM;_ 2(1"1\4‘7._l +sMJ-_2) —er_l MlMJ._l+31\401‘4(7._2
G?'l - 2 B 2 - 2 2
r° + 4s r° + 4s M+ sM0

Substituting the results in the expression for U; of Theorem 4 gives the
required expression for this theorem.

The formulation for U; given in Theorem 5 has been programmed by Robert
C. Fitzgerald. He is a senior in Computer Science. We can generate the U
for specified values of », s, U; and U,.

Special cases of this result for ¢ = 0 and other particular values of r
and s will be considered in a future paper.
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H A

THORO'S CONJECTURE AND ALLIED DIVISIBILITY PROPERTY
OF LUCAS NUMBERS

SAHIB SINGH
Clarion State College, Clarion, PA 16214

In [3], Thoro made a conjecture that for any prime p = 3 (mod 4), the
congruence F,,,; = 0 (mod p) is not solvable where F,,,, is an arbitrary Fi-
bonacci number of odd index. The conjecture has already been proved. In
what follows, we give a different proof of this and discuss another problem
that arose during this investigation.

=F2+F?

Proog: If possible, let the above congruence be true: since F 1

(see [1], p. 56), we get
(1) F? + FZ,1 =0 (mod p)

2n+1

Under this hypothesis, it follows that p divides neither F, nor Fn+1. This



