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1. STATEMENT OF THE PROBLEM 

Recently5 Buschman [1], Horadam [2], and Waddill [3] considered proper-
ties of the recurrence relation 

V*. m rUk-i + sUk_2 
where rs s are nonnegative integers. Buschman and Horadam gave representa-
tions for Uk in powers of r and e = (r2 + 4s)1 . In this paper we give them 
in powers of r and s. We write the Kn of Waddill as Gk, It is a generaliza-
tion of the Fibonacci sequence. We also consider a sequence {Mk} that is a 
generalization of the Lucas sequence. 

For the {Gk} and {Mk} sequences9 we obtain two representations for their 
general terms. From this9 we move to a representation for the general term 
of the basic sequence. A computer program has been written that gives this 
term for specified values of the parameters. 

In this paper we use some standard notation. We start by defining 

e
2 = p2 + 4ss 

where e could be irrational. We also need to define 

a = (P + e)/2 and 3 = (r - e)/2. 

In other words, a and 3 are solutions of the quadratic equation 

We can easily show that a + $ = r 5 a - $ = e 9 and a(3 = -s. 

2. GENERALIZATIONS OF THE FIBONACCI AND LUCAS SEQUENCES 

Using the a and 3 given in the first section9 we can define two special 
p5 s sequences. These are given by 

= ak - 3 (g + 0 ) M = ak + 3ke 

It is easy to verify that 

G0 = 0, (?x = 1, G2 = P 9 Gs = r2 + s9 Gk = rs + 2rs; 

M0 = 2S M1 = z>s M2 = r2 + 2ss M3 = r3 + 3rs, 

Mh = vh + 4r2s + 2s2; 

and that they satisfy the basic r9s recurrence relation; i.e.9 
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G2 = rG1 + sG0 M2 = rM1 + sMQ 

Gs = vG2 + sG1 M3 = rM2 + sM1 

Gh = rGs + sG2 Mh = rM3 + sM2 

In the next theorem, we prove that these two sequences are indeed r, s 
sequences. 

TkdQ/izm 1t The sequences {Gk} and {Mk} are r9 s sequences. 

The proofs for both utilize mathematical induction. We have already in-
dicated the validity of the theorem for k = 2, 3, and 4. We assume the terms 
satisfy the r,s relation for k = 2S 3, ...s i - 1. We form 

rG._, + sG,_9 = (a + 3)- — ^ + (~a$f 
e e 

This is Gi by definitions so this sequence is an r9 s sequence. 
For the second part9 we once more assume that the terms satisfy the r9 s 

relation for k = 2, . . . 9 i, - 1. We form this time 

rMi_1 + sMi_2 = (a + S ) ( a i _ 1 + B^"1) + ( - a g ) ( a ^ - 2 + 3 i _ 2 ) 

- a* + B̂  + a1-1^ + a^-1 - a i _ 1 B - atf"1 

= a* + B i . 

This is Af by definitions so this too is an r, s sequence. 
We obtain the Fibonacci and Lucas sequences from these two by letting 

r = s = 1. This can be readily verified. 
In the next two theorems we give a more explicit formulation for Gk and 

Mk that can be easily programmed for a computer. 

Tkzotum 2 : For t h e sequence {Gk}, 

** ~ E " • " V ' 1 ' 2 ^ ' fc > 0; C0 « 0. 
j - o x J ' 

We shall prove this by induction. We first note that this formulation 
for k - 13 29 3, 4 gives the same results as the previous one. 

G, = (X)r°s°  = 1 

= (j) r = v 
ff3 = ( o ) - 2 + 0 S = r 2 + S 
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now show 

2 j s j 

s*+1. 

We now introduce a standard change that we use in several proofs. We first 
remove the first term of the first summation; then we shift the index of the 
second summation by replacing j by J - 1* This gives the same exponents for 
v and s in both summations. We then have 

'1-2j'sJ'+ ]C t " . 1 JVi-i"2«7'sj'. 
If £ is even, the upper limits of both summations are equal9 so we can 

combine them into the single summation: 

J - 1 \ 

-*-1 + E 

V - 2 -
J 

^ - 1 
J 

J\pi-1 

r,i-\- 2j oj 

" 2 ^ \ 

We see that the summand is r'1'1 for j - 0. We include that term in the sum-
mation and obtain the desired expression for Gi . 

If £ is odd, then the upper limit on the second summation is one larger 
than that on the first. We break^ff the last term on the second summation 
and combine the two summands. This gives 

M 
r i - l + 

M 
•^-^OsQ + S(^-D/2 

20 Q3 + SV-D/2 . 

We see that the summand gives r1'1 for £ = 0 and s^ 1)/2 for i = — -z— . We 

combine these terms into the summation and we have the expression for Gi. 
Hence, in any case, we do obtain the desired formula for G^ , so it must 

be valid for all terms of the sequence. 
In passings we might note that for the Fibonacci sequence we have 

aft-:-., 
,?.f-}-')- k > 0; Fn 0. 
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In the next theorem for the {Mk}, we need the following property of bi-
nomial coefficients: 

- 1 - A J / i - 1 - j \ j - 1 / i - j \ j / 

This can be readily verified using factorials. 

Th&OKm 3: For the sequence {A^}9 

[« 
«* E - " — f ;• J ) ' k - ^ . * > 0; «0 - 2. 

The proof is by induction, so we first note that it is valid for k = 19 
2, 3. 

2 
J 
1 

M3 =} J 0 ,( , J )p3-2JSJ = -±( ̂  j P3 + ̂ .( * ) p 2 = P3 + 3p2, 

We assume that the formula is valid for k = 2, 3, .,.,, i - 1 and show it 
is valid for M . The proof is similar to that of Theorem 2 except that we 
have an extra term for the case i is even. 

We start with the basic 

M • , /• , A 

M 

Once more we break off the first term in the first summation and shift the 
second summation index to give 

M [t] 
ri + y . * - i .ft - i - JV-2,-S,- + y , * - 2 .ft -. i - APi-2j8i. 

f?iv - l - A ^ ) fa-i, - i - a\ a - i } 
If % is odd5 the two summations have the same upper limit; thus, we can 

combine them using the property of binomial coefficients given before the 
theorem. This gives, for the summation, 

v% + 
j = Ikr^VY-*"'-
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Finally 9 note that the summand is v1 for j = 0» We combine into a single sum 
that is the formula for Mi. 

In case i, is even9 the second summation has an extra term of Is*1*^ * If 
we separate it from the summation, we can combine the two summations to get 

m . , A 
/rl ^ - 0 \ J / 

The summand is r*- for J = 0 and 2s for j = i/29 so we can combine these 
and obtain the expression for M± . Hence9 in either case, the formula is 
valid for all integers k* 

This theorem gives, for the general term of the Lucas sequences 

[fl 
^ = E ^ r f y),K>o-,La-2. 

3. THE FORMULATION FOR Uk 

In this sections we first prove a basic result for {Uk}« It is compar-
able to the result in Waddillfs paper for Kn = Gn« 

Th.flOh.Qjn 4« The general term of {Uk} can be expressed as 

Uk = Ut + j = G i y * + i + Gj-isUf 
Once more the proof is by induction* For j = 29 we have 

which is true for all t . Assume that the expression is true for j = 29 ,.., 
£ - 1. Then9 since Ut+i is an r 9 s sequence9 

Ut + i = i-Z/t + i-i + sUt + i . 2 = r ^ . ^ + i + Gi_28Ut) + e(Gi._2Ut + 1 + ̂ .3s^) 

= ( r ^ + s ^ . z ^ + i + (i»̂ _2 + 6^.3)s^ = 6^* + 1 + ̂ . x ^ . 

Hence9 the result is true for J = £ and so is true for all integers. 
We can now give a formulation for Uk in terms of its initial values UQ 

and Ula This is given in the next theorem., 

TkwK.m 5*' The general term of the rss sequence {Uk} is given by 

[f] /fc _ . ^ - 2 J ) , 1 + ^ V - i _ 2 ^ 
^=Z( 

i = o * •> 

In Theorem 49 we take £ = 0, so j = ks and we have 

Uk = £7^1 + Gk_lSU0* 

Substituting the result of Theorem 2 for Gk, ̂ _ P 

[¥] [¥] 
y* 
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Once more we break off the first term of the first summation and shift the 
index of the second summation to give 

M„. , , [I] 
, f c - x + E (k~y 5y- i - y^ i+E f,- _ ij> k~2JsJ'Un 

Again, we consider the two cases where k is odd or even. For k odd, the two 
upper indices are equal, so we can combine the two summations to obtain 

ra -*•'». + E {"')'')". + (* j i: ')•«.]'»-'• 
It can be verified that the summand can be written so that we have 

(k _ .v(Zc - 2j)U1 + jrU0 

* - 3 
,k-l-2jsj 

[I] 
se; 0 

(k - 2j)U± + jrU0 

For k even, we break off the last term in the second summation and have 

**-•»,•£ ( l T t . + Ci- i1 r y , .k-l-2JSJ + gk/2^ 

M L"T"J / 7 A (fc - 2j)tf + j r t f 

' k - ^ + E ( V ) jiT7 V — , v + 
sk / 2 t /„ . 

we n o t e t h a t t h e summand g ives rk'1U1 fo r j = 0 and s /2U0 fo r j = fe/2. Thus 
we can w r i t e , fo r t h e g e n e r a l k, 

J = 0 

(A: - 2 j ) i / 1 + j W 0 

fe - Q 
'»k-1'2383 'SJ . 

It can be verified that by letting U1 = M± - r and UQ = MQ = 2 , we ob-
tain the expression for Mk given in Theorem 3* 

We can obtain an expression for {Uk} in terms of {Mk}. This is shown in 
the next theorem. 

ThQ.on.om 6» The {Uk} is given by 

MlMj +eM0M..1 

M\ + sM\ 
Jt + 3 

M\ + sM2
Q 

We can obtain this result from Theorem 4 by determining G> and G.x in 
terms of {Mj,}. For this, we start with 
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MJ-i = ^ - A + %_2eM0 = vG._x + 2sGj_2e 

Since Gj = rGj_± + sGj_2* i t follows that 2sGj_2 = 2&j - 2r£J-_1. We sub-
s t i tu te this into the expression for M._19 and also write the expression for 
Mi to give the two equations: 

The solutions for Gi and Gi_1 

and 

G, 

vM. + 2sM._± M±M. +sM0MJ.„1 

G. = _ = 
r2 + 4s M\ + sM2 

2Md - rMJ_1 2(rMj._1 + sM^2) - rM._1 M1MJ._1 + sMQM 
0 J -2 

J - 1 ~ — ~ 

r2 + 4s r2 + 4s Af* + sM;J 
I o 

Substituting the results in the expression for Uk of Theorem 4 gives the 
required expression for this theorem. 

The formulation for Uk given in Theorem 5 has been programmed by Robert 
C. Fitzgerald. He is a senior in Computer Science. We can generate the Uk 
for specified values of r, s9 UL and U0 , 

Special cases of this result for e = 0 and other particular values of r 
and s will be considered in a future paper, 
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THORO'S CONJECTURE AND ALLIED DIVISIBILITY PROPERTY 
OF LUCAS NUMBERS 

SAHIB SINGH 
Clarion State College, Clarion, PA 16214 

In [3], Thoro made a conjecture that for any prime p = 3 (mod 4), the 
congruence F2n+1 E 0 (mod p) is not solvable where F2n + 1 is an arbitrary Fi-
bonacci number of odd index. The conjecture has already been proved. In 
what follows5 we give a different proof of this and discuss another problem 
that arose during this investigation. 

VK.OO{I If possible,, let the above congruence be true: since F2n + 1 = F„ + Fn + 1 
(see [1]9 p. 56)s we get 

(1) Fn + Fn+1 E 0 (mod p) 

Under this hypothesis9 it follows that p divides neither F„ nor F „. This 
L '<• n + x 


