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Using (2.4) and (2.5), we see that a,, = 1 or 2 and a;, =1 or 2. From
(2.6) and (2.7), we have a,; = 0. Since q;, is arbitrary, we see that there
are a total of twelve local permutation polynomials over Z,, given by

Fl@ys ) = ayg®y + ag12, + agys

where a,, = 1 or 2, a3, =1 or 2, and a;, = 0, 1, or 2,
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1. INTRODUCTION AND MAIN THEOREM

In [6], Hoggatt and Long ask what polynomials in I[x ] are divisors of
the Fibonacci polynomials, which are defined by the recursion

Folx) =0, Fi(x) =1, Fy(x) =xF,_ (@) +F _ (x) for n > 2.

In this paper, we answer this question in terms of cyclotomic polynomials.
We prove that each Fibonacci polynomial F, (x), for »n > 2, has one and only
one irreducible factor which is not a factor of any Fy (x) for any positive k
less than n. We call this irreducible factor the nth Fibonacci cyclotomic
polynomial and denote it F,{(x).

The method applied to F,'s to produce &F,'s applies naturally to the more
general polynomials %,(x, y, 2) which were introduced in [7] and are defined
just below. Accordingly, in Section 2, we shall apply the method at this more
general level rather than directly to the F,'s. The polynomials C,(x, y, )
so obtained from the £,(x, y, 8)s we call generalized cyclotomic polynomials.
Special cases of the (,'s are the ordinary cyclotomic polynomials C, {x, 1, 0),
the Fibonacci cyclotomic polynomials F, already mentioned, and a sequence

Lo(x) = Cplx, 0, 1)

which we call the Lucas cyclotomic polynomials. Section 3 is devoted to the
F's and Section 4 to the ¥,'s. In Sections 3,4, and 5, we determine all the
irreducible factors of the Fibonacci polynomials, the modified Lucas polyno-
mials defined in [7] as %,(x, 0, 1), and the Lucas polynomials.

In Section 6, we transform the generalized Fibonacci and Lucas polyno-
mials into sequences U, (x, z) and V, (¢, z) having the same divisibility prop-
erties as the F,'s and L, s, respectively. The ccefficients of these poly-
nomials are all binomial coefficients, in accord with the identity

28U, (x, 8) + V,(x, 2) = (x + 2)".
The polynomials %,(x, y, %) may be defined as follows:
L,(x, 38) - 0,(y, =)

L xs ¥y, B8) = Z =y for n > 0,
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where L, (x, 2) is the nth generalized Lucas polynomial, defined by the recur-
sion

Ly(x, 8) =2, Ly(x, 8) =x, L (x, 38) =«L,_,(x, ) + 2L, _,(x, ) for n > 2.

The two special cases of particular interest are the generalized Fibonacci
polynomials, namely

x + V2 + bz x - Vx? + 4z
(l) /Q/n 2 3 2 s 0 3

and the generalized modified Lucas polynomials, namely Rn(x, 0, 2). Other
special cases, to be treated briefly in Section 5, are the Chebyshev polyno-
mials of the first and second kinds.

Following the method of Hoggatt and Bicknell in [5], we now determine
the roots of the polynomials %,(x, y, ). The first theorem is basic to all
subsequent developments in this paper.

Theorem 1: For m > 2, the roots of ,(x, y, 2) are
(2) 2/z sinh (sinh™'y/2/z + 2kmi/n), where k =1, 2, ..., n - 1.

Proof: We have (x - y),(x, y, 28) = tz + t: - (tz + tZ), where

x + /x> + 4z z - /x? + 4z Q+‘/z2+4z _H_‘/312+43
t, =% t, =5 ——— t, = s T, = .
2 2 2 3 2 b 2
Let = 2/z sinh u, so that v&® + 4z = 2/ cosh u, and
t, = Vze* and t, = ~Vze .
Let y = 2/z sinh v, so that vy + 4z = 2/z cosh v, and
t, =v/ze” and t, =-/ze ".
Then

n n
ZZ[QT’LM + (_1)716—?’“4.] _ 22[67112 + (_l)ne—nv]
n
222 (sinh nu - sinh nw) for odd n,
n

222 (cosh nu - cosh nv) for even n.

(= Y nlx, y, 2)

Dividing by x - y = 2/2(sinh u - sinh v), we find

n-1 .
~7% sinh nu - sinh nv
sinh ¥ - sinh v

for odd =,

Q’n(x, ys Z) =
n-1
7 cosh nu - cosh nv

sinh u - sinh v

for even n.

Now suppose # is odd. Then &,(x, ¥, &) = 0 when
sinh nu = sinh nv and sinh u # sinh v;

i.e., when nu = nv + 2kni and k is not an integral multiple of n. Thus,
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L,(x, y, 8) = 0 when u =v + 2kni/n for k = 1, 2, ..., n - 1.

For even n we similarly reach the same result. Substitution for u and v now
completes the proof.

2. GENERALIZED CYCLOTOMIC POLYNOMIALS

Following the treatment of cyclotomic polynomials in Nagell [9, p. 158],
for n 2 2 let p;, p,5 ..., p, be the distinct prime factors of n; let

T, = s

and for 1 < k < r, let
I, = Hg”/l’i.pﬁ"'?
the product extending over all the k indices ¢; which satisfy the conditions

T

1 <2, <2, <eer <4y < p.
Lemma 2 : Let C,(x, y, 8) =1, and for n > 2, let

T,0, ...
(3) Cp(x, y, 8) = ﬁ‘l—ﬁa—‘—

The number of factors %4 in the numerator equals the number of factors %4 in
the denominator.

Proo4: First consider the number of %4's in the numerator: for 0<j< [r/2]

there are (P

. )] of the qu's in II, ., so that the number we seek is
2g 24

[r/2]
> (35)
; 23)°
(r-1)/2] FE I
.. r .
Similarly, we count Z . ) factors %4 in the denominator. That these
= 27+ 1
two sums are equal for any r > 1 follows from the identity

Z(-l)k@) =(-1"=o0.
k=0

Let us recall now some facts about cyclotomic polynomials (e.g., [9]):
In case %, = x" - 1, the quotient C, in (3) defines, for m > 2, the nth cy-
clotomic polynomial, which is irreducible over the ring of integers. (The
first cyclotomic polynomial is defined to be x - 1). Thus, for n > 1, the
roots of the nth cyclotomic polynomial are the primitive nth roots of unity:
e?kmt/" yhere (k, m) = 1. Writing ¢(n) for Euler's phi-function, the nth cy-
clotomic polynomial therefore has degree ¢(n).

Referring to (2), let us call the root

2/z sinh(sinh™y/2/z + 2kmi/n)
a primitive nth root of L,(x, y, 3) if (k, n) = L.

Theorem 2: TFor n > 2, the quotient C,(x, y, 3) in (3) is a polynomial with
integer coefficients, having degree ¢(n) in x. Moreover, forwn > 2, C,(x,
1, 0) is the nth cyclotomic polynomial.
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Proog: Suppose n > 2. By Lemma 2, if the quotient in (3) is formed with the
polynomials (x - 1)%,(x, 1, 0) in the products I, instead of &,(x, 1, 0),
then the result is C,(x, 1, 0). But

(x - 1)2,(x, 1, 0) = 2" - 1,

so that C,(x, 1, 0) is the nth cyclotomic polynomial, which has degree ¢(n)
in x.

It remalins to be proved that C,(x, ¥y, 8) is a polynomial for m>2; i.e.,
that the polynomial D = ILII, ... divides the polynomial NV = I[|TI, ... over the
ring of integers. Since this is the case for (x, 1, 0), each linear factor
x - r of D is a factor of N and must occur at least as many times in ¥ as in
D. But each such » is an nth root of unity, » = e?*"™/" for some k and #n. So
in the general case (x, y, &), each linear factor x - ZVE—sinh(sinh_ly/Z/E_+
2kmi/n) of D occurs at least as many times in N as in D. Thus, D divides N.
Since all the coefficients of ¥ and D have only integer coefficients, the
same must be true of the quotient C,(x, y, %), by the division algorithm for
polynomials in x over the ring I[y, 2] of bivariate polynomials with integer
coefficients.

Theorem 3: For n > 2,

C (x, y, 8) = [l I[x - 2/z sinh(sinh™'y/2vz + 2kni/n)].

(k,m)=1
0L ksn

Proof: This is an obvious comsequence of the one-to-one correspondence be-
tween roots of (,(x, y, 2) and roots of the nth cyclotomic polynomial

oz, 1, 00 = I (¢ - gZki/ny
(k,n)=1
0<kzn
Theonem 4: TFor n > 1,

Lz, y, 8) = %I Cylms Ys 2)
d|n

Proof: First, &, (x, y, 3) =C (x, y, 8) = 1. Now suppose n > 2. Then

Cilx, ys 3) = (& -7 oo (&= Pyiq))s

where the r;'s range through the roots 2/z sinh(sinh™Yy/2/z + 2kwi/n) of
f4(x, y, 8) for which (k, d) = 1. Each root of £,(x, y, 8) is a primitive
dth root of one and only one C;(x, y, 2) where d|n. Thus each linear factor
of %,(x, y, 2) occurs in one and only one Cy(x, ¥, 3).

Lemma 5: For n > 1, the polynomial C,(x, y, 0) is irreducible over the ring
of integers.
Proof: The statement is clearly true for n = 1. For n > 2, suppose

Cn(x9 Ys O)

dx, yiglx, y).
Then
C,(x, 1, 0)

1

dx, gz, 1).

Since the cyclotomic polynomial C,(x, 1, 0) is irreducible, one of the poly~-
nomials d(x, 1) and q(x, 1) must be the constant 1 polynomial. Without any
loss, we may suppose this one to be d(x, 1) and thus have
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dlz, y) =1+ (y - De(x, y)
for some polynomial e(x, y). Then
Cplx, y, 0) = glx, y) + (y - Delx, yglx, y).
Now g(x, y) includes the term x ?(*) | which cannot appear in
(y - De(x, gz, y).
Therefore, e(x, y) = 0, so that d(x, y) = 1.
Theorem 5: For n > 1, the polynomial C(,(x, y, 2) is irreducible over the
ring of integers.

Proof: Suppose

Cn(x, Y Z) d(.’L’, Y Z)q(x’ Ys Z).

Then
C,(x, y, 0) = d(x, y, 0)qx, y, 0).

By Lemma 5, one of the polynomials d(x, y, 0) and q(x, y, 0) is the constant
1 polynomial. Consequently, as in the proof of Lemma 5, we have

d(z, y, 8) =1 + ze(x, y, 2)
for some polynomial e(x, y, 2). Then
Cpx, ¥y, 8) =qg(x, y, 38) + 3e(x, ¥y, 3)g(x, Yy, 3).
Now q(x, y, &) includes the term 2 %(n), which cannot appear in
ze(x, y, 23)qlx, y, 3).
Therefore, e(x, y, 2) = 0, so that d(x, y, 2) = 1.

TABLE 1

Generalized Cyclotomic Polynomials C, = Ch(x, Yy, z)

=
]
—

=x+y

N

xy + y? + 3z

w
]
8

=

+
= 2% + y® + 4z
+ 2% + 2%y® + xy® + Yyt + 5z (2? + xy + y?) + 537

w

o

Yoyt + 4z (x® +oy?) + 4z°
¢+ x%y® + y® + 3z(2x" + 2%y + ay® + 2y")

QQQQQQQQQ
I

x
x

=2x% - xy + y® + 3z
x
x

©

+ 92%(z® + wy + y?) + 3z°
Cio = (@ +y*)/(x +y) + 52> + y®)/(x + y) + 537
Cip = x* - x%y? + y* + 2z + y?) + z?

Abbreviating C,(x, y, 0) as ¢,, we note that

C,=c,+32,C, =c, +4z, C, =c, +33, Cy =c, + bze, + 4z?,
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_ 2 _ 2
. ClO =cy, t 52@6 + 5z°, Cl2 =c, t ZZ:CL+ + z2°,
an

= 2 3
Cg = cqg *338(cg + cy,) +93%°¢, + 33°.
One wonders if all the coefficients of powers of 3 are linear combinations of
c:'s.
2

3. THE CASE z = 0: FIBONACCI CYCLOTOMIC POLYNOMIALS

Here we will determine the irreducible factors of the generalized Fibo-
nacci polynomials. 1In Section 1, the (not generalized) irreducible factors
were named the Fibonacci cyclotomic polynomials and denoted F,(x). Here,
however, we shall deal with the natural generalization: the generalized Fi-
bonacci cyclotomic polynomials, denoted F,(x, y). Theorem 6 will show that

(% + Ve? + 4y x - V2P 4 by 0>
2 ’ 2 ’

Flx, y) =0y

forn > 1,

and Corollary 7 will show that the F,(x)'s can be expressed as linear combi-
nations of generalized (unmodified) Lucas polynomials.

Theorem 6: TFor n > 1, let F,(x, y) be the nth generalized Fibonacci polyno-

mial. Then
c (% + Ve + b4y x - YxP + by >
d 2 5 2 s L4

F,(x, y) = Il

d|n

Moreover, the polynomials Cy

(% + Ve + by x - V2% + 4y 6), as polynomials
2 ’ 2 ’

in x and y, are irreducible over the ring of integers.

/.2 _ 2
Proof: Write s = z:—i-——%——i"—éﬂ-and t = EL———E%—QE—EZ. By (1) and Theorem 4,

Fo(x, y) = L,(s, t, 0) = [ll C;(s, t, 0).
din

To see that the C;'s are irreducible as polynomials in x and y, suppose

Cq(s, t, 0) =p(x, yIqlx, y).

Then, since x = s + ¢t and y = -st, we have C;(s, t, 0) written as a product
of two polynomials each in s and ¢. By Lemma 5, one of these polynomials is
a constant polynomial, namely 1, since C; is monic. Thus, either plx, y) =1

or gq(x, y) = 1, as desired.

Theorem 7: For k > 1, let L,(x, y) be the kth generalized (unmodified) Lucas
polynomial. For n > 3, the nth generalized Fibonacci cyclotomic polynomial
is given by

¢ (n)/2 ¢(n) _

i
T, y) = D, 8y % Ly (xs Y)s
i=0

§

where 6¢(nﬂ2 = 1 and the numers §

0> Oq5 Cps evns 6Qgﬂ_l are integers.
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Proof: Suppose m > 3. With s and ¢ as in the proof of Theorem 6,

I (x, y) =C, (s, t, 0) =¢t*M(C (s/t, 1, 0),
where
C,(u, 1, 0) = utt) 4 a¢(n)_lu¢(”)'l + e tautl

is the nth cyclotomic polynomial. Thus, (,(s, £, 0) has the form

gtm 4 a¢(m)uls¢(”)-lt + osee 4+ alst¢(")_l + et

Since C, (s, t, 0) is symmetric in s and ¢, this polynomial is expressible as

$(n)
$(n)-2 ¢(n)-2 e 2
gb(n) 4 poln) 4 a¢(n)_lst<s g + £\ > + + a¢(n)(st)
z
Recalling st = -y and the Binet formula [, (x, y) = s* + t* [in particular,

Lo(x, y) = 2], we conclude that

5 -7 L _* T
Wxs y) = T F T Ay ¥

o) T Foqny -180 () -2

as desired.

Cornollarny 7: Only for the purpose of facilitating the statement of this cor-
rolary, suppose L;{(x, y) =1 (instead of 2). Then for n > 1, the nth Fibonacci
cyclotomic polynomial ¥, (x) is an integral linear combination of Lucas poly-
nomials L, (x).

Proo4: The proposition is easily verified for n = 0, 1, 2. For = > 3, put
y = 1 in Theorem 7.

To illustrate Corollary 7, we write out, in Table 2, several Fibonacci
cyclotomic polynomials ¥, =9, (x, 1) in terms of the Lucas polynomials L, =
Lp{x, 1). Recall that the F,'s are the irreducible divisors of the Fibonacci
polynomials, in accord with the identity

Fn = H gd'
dln

TABLE 2

Fibonacci Cyclotomic Polynomials

degree 0: T, =1

degree 1: &, =x =L,

degree 2: F, = x? + 1 = L, -1
F, =z +2=1I,
T, =x> +3 =1L, +1

degree 4: F, =z + 32® + 1 = L,-1L, +1
Fg =" + b’ + 2 =1,
Fig =" + 52 +5=L,+L, +1
F, =z +4x® +1 =1, -1

o
N
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TABLE 2 (continued)

i

degree 6: ¥, = x°® + 5x* + 60> +1 =L, - L, +L, -1
Fy =x® + 6" + 9> +1 =1, -1
Fpy, =a® + Tx* + lha® + 7 =L+ L, +L, +1
Fg = x° + 62" + 92> + 4 = Lg + 1
degree 8: ¥, = x® + 9z° + 26z + 242> + 1 =L, + L, - L, - 1
Fe = x® + 82° + 20z + l6x® + 2 = L,
Fo = + 82°% + 19x% + 122> +1 =L, -1, +1
Fy, = x° + 82° + 20z + l6x® + 1 =L, -
Foog =x° + 72° + lba* + 8> + 1 =Ly - L, +L, - 1
degree >8: Fy, =L,y - Lg + Ly - L, +L, -1
F32 = Lis
F33 = Lyg + Lyg = Loy = Lyy +Lg +Lg - L, -1
F36 = L1y, = 1
Fyo = Lig - Lg + 1
Fyp =Ly, —Lyp +Lg = Ly, + 1
Fys = Lyy +Lyg —Lg - 1
Fug = L1 - 1
Fso =Ly + Ly + 1
Fros = Lug = Iye + Lyy + Lyg = Lgg + 205y = Ly + Lyy + Ly,
=Lyt Lyg = Lyg +Lyg = Lyy —Lg =Ly -1

Note in particular the coefficient of L,, in the polynomial T ;5.
Two reminders (e.g., [9]) about the cyclotomic polynomials C,(u, 1, 0) =
®, (u) which are helpful in computing F,'s are the following:
D (uP) /0, (u) 5
o, (wP).

(i) If p is a prime and p}/n, then ©,, (u)

(ii) If p is a prime and p] n, then ®,p (1)

As an example, we compute F,; as follows:

w3+t + 1

<I>qs(u) = le(us) @3(u15)/®3(u3) =

wt +ut+1
= 2% — 21 4 15 12 4 9 3y
so that
Fys@s y) =C (s, T, 0)

= 824 _ 321t3 + slStS _ s12t12 + SQtlS _ SstZl + t24

= 82" 4 2%~ (s£)% (s} + £18) + (s1)7(s® + t°) - (st)P?



116 CYCLOTOMIC POLYNOMIALS [April

fl

L,, + y3L18 - ygLG - y** (Theorem 7),

L,

Fys (@ 1) 2y

+ Ly - Lo -1 (Corollary 7).

Since for highly composite values of n the cyclotomic polynomials tend
to be complicated ([1], [3], (4], [111, [12]), the same is true for the cor-
responding Fibonacci cyclotomic polynomials.

In Theorem 12 of [6], Hoggatt and Long find an upper bound for the num-
ber N(m) of polynomials of degree 2m that divide some Fibonacci polynomial.
If we restrict N(m) to irreducible polynomials, then WN(m) is the number of
solutions »n to the equation ¢(n) = 2m. For example, N(720) = 72. That is,
there are 72 distinct Fibonacci cyclotomic polynomials F, having degree 1440.
See [10].

Still restricting N(m) to irreducible polynomials, we ask if N(m) = 0
for any m. The answer is yes. C. L. Klee proved in [8] that ¢(n) = 2m has
no solution n if m has no divisor d > 1 for which 2d+ 1 is a prime. For ex-—
ample, no I, has degree 1l4.

L. THE CASE y = 0: LUCAS CYCLOTOMIC POLYNOMIALS

Our main objective in this section is to determine the irreducible fac-
tors of the generalized modified Lucas polynomials %,(x, 0, 3). First, how-
ever, we wish to justify the names Lucas cyclotomic polynomials and general-
ized Lucas cyclotomic polynomials for the sequences

c, (@, 0, 1) and C,(x, 0, 3),

since these sequences are determined by (3) from the generalized modified
Lucas sequence %,(x, 0, z) and not the generalized Lucas sequence [,(x, 2).
The justification is this: that, by Theorem 1, the quotient (3) defines
polynomials analogous to cyclotomic polynomials in the former case, but does
not generally define polynomials at all if the L,'s are substituted for the
2,'s. (Nevertheless, the irreducible factors of the L,'s will be easily de-
termined otherwise in Section 5.)

In Section 1, the (not generalized) Lucas analogue of the Fibonacci cy-
clotomic polynomials were named Lucas cyclotomic polynomials and denoted by
d,(x). Here however, we shall deal with the natural generalization, the gen-
eralized Lucas cyclotomic polynomials, denoted ¥,(x, z) and defined by

92”(90, z) = Cy(x, 0, 2).

By Theorem 3 and the identity sinh Zu = % sin u, the roots of ¢,(x, 3)
are
2¢V/z sin 2kn/n, (k, n) =1, L <k <n- L.

The roots of F,(x, 2) are 27/z cos kn/n for 1 < k <»n - 1, as proved in
[5] and [6], and consequently, the roots of F,(x, 3) are

2iVz cos kn/n, (k, n) =1, 1 <k <n - 1.

In order to reconcile roots of the ¥, ,(x, 2)'s with those of the F,(x, 2)'s
let
Q, =1k : (k, n)

for k € ¢,, we have

1 and 1 <k<n-1}

U

cos(n - 4k)m/2n.

sin 2km/n
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As k ranges through the set @,, it is natural to expect the numbers n - 4k to
range through residue sets modulo various divisors or multiples of n. Such
expectations are fulfilled in the next theorem.

Theonem §: Except for L (x, 2) =1 and 4, (x, 3) = 2% + 4z, the nth general-
ized Lucas cyclotomic polynomial ¢ ,(x, 2) can be expressed in terms of the
generalized Fibonacci cyclotomic polynomials as follows:

,, (€, 2) for odd n, n # 1,

Fp(x, 8) for n

2g, g odd,
(x, 38) =

Fi(x, 8) for m = 4g, q odd, q # 1,

‘J;tq(x, z) forn = 2t+lq, q odd, t > 2.

Case 1. Suppose 7 is odd and n # 1. Then

|n - 4k|m
(v - 4K _ COS"—Z—n— for 4k < 3m,
cos o T
cos Gn = 4k for 4k > 3nm.
2n
Let
A= {|n-4k| : keq, and 4k < 3n},
B = {57 - 4k : k € @, and 4k > 3n},
and
Q@ =AUB.

It suffices to show that §=&,, and that each element of &, appears only once
in forming the set §. This will be shown in four steps:

(i) A N B is empty;

(ii) @ consists of ¢(2n) elements;
(iii) If j € g, then 1 < J < 2n - 1;

(iv) If j e ¢, then (j, 2n) = 1.

To verify (i), suppose n - 4k, = 5n - 4k, where 4k, < 37 and 4k, > 3n.
Then k, - kl = n, contrary to the inequalities

1<k, <m-1 and 1 <k, <n-1.

If |n - 4ky| = 4k, - n = 5n - 4k,, then 2(k, + k,) = 3n, contrary to our as-
sumption that » is odd. :

For (ii), we know from (i) that distinct k's in ¢, provide distinct ele-
ments in §. Furthermore, every element Xk in &, does yield an element of 4 or
B, since 4k = 3n is impossible for odd n. Thus, ¢ consists of the same number
of elements as §,, which is ¢(n). Since n is odd, we have ¢(n) = o(2n).

To verify (iii), first suppose 4k < 3n. If n - 4k > 0, then 1 <n - 4k
since n is an odd positive integer and, clearly, n - 4k < 2n-1;1if n - 4k<0,
then, similarly, 1 < 4k - n, and 4k - n < 2n - 1 since 4k < 3n. Now suppose
4k > 3n. Then 5n - 4k < 2n - 1, and also 1 < 51" - 4k, since k < n.
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For (iv), if dl(n-4k)|and d]Zn, then d must be odd since n- 4k is odd.
Consequently, dln. But then d|4k, so that d]k. Since (k, n) =1, we conclude
that (n- 4k, 2n) = 1. The same clearly holds for 4k-# and 5n- 4k.

Case 2. Suppose n = 2q, q odd. Then

lg - 2k|m
cos ——— for 2k < 3q,

n
cos (n - 4Ky _

2n
cos iéQLi%jygll for 2k > 3q.

Here, the numbers ]q - Zk] and 5 - 2k, as stipulated, range through the set
@, as k ranges through the set §,. The proof is so similar to that in Case 1
that we omit it here.

Case 3. Suppose n = 4g, g odd, g # 1. Let
A=1{ke@q,: k<gl,B={kegq,:q<k<2l,
c=1{keq,:2g<k<3q},D=A{keq,: 3q <Kk}
Each k in @, in odd, so that (¢ - k)/2 is an integer, and
(g - k)/2|n
cos B —
cos (71 _2n4k)ﬂ -
cos [(5 -;lk)/Z]'lT fOI‘kSCUD.

for k € 4 U B,

We first claim that as k ranges through the set AUC, the numbers |(g-k)/2|
and (5q - k)/2, as stipulated, range through the set Qg+ This claim is veri-
fied as in the four steps in Case 1. Starting with

A% = {|(@ - K)/2| : ke A} and C* = {(5¢ - k)/2 : k € C},

only step (ii) calls for anything new: To see that A*J C* comsists of ¢(q)
elements [granted from step (i) that distinct k's lead to distinct elements
in AU BUC UD], we note that the number of k's in @, is

b(4g) = 6(4)d(g) = 29(q)

and precisely half of these lie in A* U ¢* since, as is easily checked, the
sets 4, B, C, D are in one-to-one correspondence with one another:

A~+B : k2 -k,
A~C: k2 +k,
C+D: k~>6q - k.

Thus, the roots of ¢,(x, 2) found for k ¢ 4 UC are the roots of Sﬁ(x, z2).
That the same is true for kK ¢ B UD will now be proved. Since

B={29 -k : kedA},

- -k
cos Sﬁ—ifﬁklﬂ i k e B} = {cos lﬁg————zlzlj : ke A}.
n q

Since D = {6g - k : k ¢ C}, we have

we have
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{cos n - 4K)m _247()“ t ke D} = {cos LGq - k) /21w t ke C}.
n q

Thus the roots of ¢,(x, z) for k € B UD are the roots of Fqlx, 2). We con-
clude that ¢, (x, 2) = F(x, ).

Case 4. Suppose n = 2t+lq, g odd, ¢ > 2. Define sets 4, B, C, D as in
Case 3, and have the following one-to-one correspondences:

A>B: k2% -k,
A~C: k2% +k,
C>D: k=3« 2% - k.

Now
12 -k
2tq

co for k € A U B,

(n - 4k)m _
cos 5, - s
os (5 = 2"""g = K)T

th

for k € C U D.

Cc

We claim that as k ranges through the set 4 U (', the numbers |2%7'g - k| and
(5- Zt’lq - k), as stipulated, range through the set @,t4- The four steps in
Case 3 easily verify this claim. We omit the verification, except to note
that for step (ii) we have ¢ (2%%'q) =2¢(2%), so that ¢(2%q) roots are found
for k € A U C.

As in Case 3, we have

{cos.m_-_em:keBUD}={COSL@-_4m,k5AUC}.
2n 2n

Therefore, ¢,(x, 2) =‘J§t , and Theorem 8 is proved.
Theorem 8 and Theorem 4 enable us to factor the polynomials &,(x, 0, 2)
completely in terms of irreducible factors. For example,

/Q;Go(x, 0, Z) n Cd(x’ 0’ Z)

d|eo
IT ¢, 2
d|eo

ddLdLLLL £ L L L L

15273555767 10512515520530%60
2
@(z® + 42) (F3FF T, Fr T3 "

Recalling that F,, = F,9,5F%F F Ty, that alg (x, 0, 2) = Ly, - 22°°, and
that 22 + 4z is the discriminant D(x, 2) of t% - xt - 2, we Trewrite L,, as
follows:

I

]

Lgo(x, 3) = D(x, z)F%O(x, z) + 2230,

Putting x = 2 = 1, we find an identity L60==5F§0 + 2 involving the thirtieth
Fibonacci number and the sixtieth Lucas number. These considerations lead to
the following theorems and corollary.
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Theonem 9a: Suppose m = 2%q, g odd, ¢ > 2. Then
(4) L, (x, 2) = (* + 43)F (x, z) + 23"

P/L()Oé-' Rom = %fl%gz(e‘eq cee gzﬂlgqungq vee E&Pzt-é-lq

w(@® + 4BFT e TG GG T e Ty

x(x® + 4z)F2[x?,
and (4) follows immediately.

Theorem 9b: If m is odd, then
— 2
(5) Ly, (xy 8) = 23" = Li(z, 3).

Proof: The proof of this known identity is so similar to that of Theorem 9a
that we omit it here.

Conollany 9: For k > 0, let F, and L, be the kth Fibonacci and Lucas num-
bers. If m = th, g odd, £ > 2, then

L, = 5F; + 2.
2m
If m is odd, then
_ r2
Ly, =Li+2

Proof: Put © =z =1 in (4) and (5).

5. THE IRREDUCIBLE FACTORS OF THE LUCAS POLYNOMIALS

Hoggatt and Bicknell prove in [5] that for n > 1 the roots of the nth
Lucas polynomial 7,(x, 1) are

Qk + D

M :k=0,l,...,7’l—l.

27 cos
The methods of Section 4 could be used to compare these roots with those of
the Fibonacci cyclotomic polynomials. However, we choose a different way,
which depends on the well-known identity F, = L,7, .

Theorem 10: For m > 1, write »n = th, where ¢ > 0 and g is odd. The nth
generalized Lucas polynomial I,(x, 2) is a product of (irreducible) Fibonacci
cyclotomic polynomials:

L,(x, 2) = [l TFpeery (@, 2).
Proof: dla
2n d|2n
L =—==" =[] 9
" Fy I1 g, dlan. a

aln
Now

1

{d : d|2n and dfn} = {2 *'d : d|n and d is odd},

so that the conditions d|2n, dJn are replaceable by the condition 2°%'d|2n,
i.e., d|q.



1980] CYCLOTOMIC POLYNOMIALS 121

Example: L F1FF s Fs T FoT10F12F15F2 0% F5 0T 0T 0T 120
60 g'l_c‘;’Z(J:3g:L+C‘;C5(3‘(5 E;'rl Ogl Zgl SC‘}‘Z OgS OgG 0

= 9%9;49;09120.

Corollary 10: TFor even m > 2, L,(x, z) is irreducible if and only if »n = 2%
for some k > 1.

Proc4: Suppose n = 2% for some k > 1. Then by Theorem 10, we have L, =%,,,
which is irreducible by Theorem 6. If n is even but not a power of 2, then
by Theorem 10, ¥,, is a proper divisor of I,(z, 2).

In [2], Bergum and Hoggatt prove Corollary 10 using Eisenstein's Crite-
rion.

We conclude this section by noting that the divisibility properties that
are already established for the polynomials #,, L,, and &L, in terms of the
irreducible polynomials F, now carry over to divisibility properties of
Chebyshev polynomials of the first and second kinds.

It is well known that the nth Chebyshev polynomial of the first kind is

T, (@) = 31,2, 1), n =0, 1,

Accordingly, the factorization of T, (x) in terms of factors which are irre-
ducible over the ring of integers is given by Theorem 10.
Let us define modified Chebyshev polynomials of the first kind by

%Z}(x) for odd n,

”tn (-73) =
é—[Tn(x) - (-1)%] for even n > 0.

Then we have £, (x) = %-KW(Zx, 0, -1), so that the divisibility properties of

the £,'s are the same as those of the 4,'s. In particular, the irreducible
factors are given by Theorem 8. Moreover, many of the results proved in [7]
[e.g., concerning greatest common divisors, (Lms £4) = L(m,n)] carry over to
similar results for the modified Chebyshev polynomials.

It is well known that the nth Chebyshev polynomial of the second kind is

U, (@) = E@+1(2x, -1), m=0,1, ... .
Accordingly, the factorization of U,(x) in terms of irreducible factors is
given by Theorem 6.

Finally, note that the roots of the Chebyshev and modified Chebyshev
polynomials, and also the roots of their irreducible factors, are easily ob-
tained from Theorem 1 and Theorem 3.

6. TRANSFORMED FIBONACC! AND LUCAS POLYNOMIALS
For any integers (or indeterminants) a, b, ¢, where a # 0 # ¢, let

U, (x, 2) = F,(ax, bx® + ez,

vV, (x, 2)

-%Ln(ax, bx? + cz2),
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and W,(x, 8) = &p(ax, 0, bx®> + cz?).
Then the quotients (3) are clearly polynomials for each of the sequences
U,(x, 2) and W,(x, 3),

since this is true for the sequences F, and {,. Similarly, the divisibility
properties of the KJS follow from those of the L,'s, as given in [2] and Sec-
tion 5.

One of the most attractive special cases is (a, b, ¢) = (2, -1, 1). We
tabulate the first few U, s and V,'s in this case. Then we tabulate the first
few W,'s and the first few tramsformed Fibonacci cyclotomic polynomials; i.e.,
the quotients (3) formed from the U,'s. These, we shall show, are irreduci-
ble except for a constant multiple; hence, they are the irreducible factors
not only of the U,'s, but also of the V,'s and the W,'s. After the tables,
we shall return to arbitrary a, b, ¢ satisfying a®> + 4b = 0 and find roots,
Binet forms, etc.

TABLE 3

Transformed Generalized Fibonacci Polynomials U, = F, (2x, z? - x?)
and Transformed Generalized Lucas Polynomials V, = éLn(Zx, z? - x2)

n U, Vn

1 1 x

2 2x xz? + z°

3 3x% + z° 23 + 3xz?

4 4x® + bxa? x* + 6x?z® + 2"

5  5z* + 10x%z% + z* x° + 1023z% + Sxz*

6 6x° + 20x32% + 6xz" x® + 15x"2% + 15x%2" + z°

7 7z® + 35z%z% + 21x%z" + 2° z” + 20x°2% + 35x%2" + 7xz®

One immediately detects Pascal's triangle lurking within Table 3. We
shall soon ascertain that 23U, + V, = (x + 2)" for n 2 1.

TABLE 4 TABLE 5
Transformed Generalized Modified Transformed Generalized Fibonacci
Lucas Polynomials Cyclotomic Polynomials
W, = %n(2x, 0, z> - x?) Up = Fp(2x, 22 - x2)
W, =1 Q, =1
W, = 2x U, = 2x
Wy = o + 327 U, = 3x* + a°
W, = 8xz’ U, = 2z° + 23°
N 4 2,2 Y N Y 2,2 Y
We = 2" + 10x°2° + 5z Us = 5z + 10x72° + =
W = 20° + 122°2% + 18zz" U, = x® + 337
W, = x® + 21x*2® + 352%2" + 72° Uy = 22" + 1203 + 23%
Wg = 32x°z% + 64x3z" + 32x5° Uy y = x* + 10z%z% + 53"

= % + l4x?z? + 2"
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Lemma 11: Suppose n is an odd positive integer > 3. Then

n-1 n- n-1
7 2 7

cos? A _ 2177, [ cos? Gk + Dm _ n2* ", and [] sin? 2K _
k=1 n k=0 n k=1 n

Suppose n is an even positive integer > 4. Then

n-2 n-2
2 k 2

T - .2 2km -
Il cos? =— =#n2*"" and J] sin® &= = n227",
k=1 n k=1 n

Suppose n is an even positive integer > 2. Then

n

2 (Zk + l)TT - Zl_n.

-2
2

cos
e 2n

k

Proog: For odd n > 3, we have

et km
kn 27 cos ol F,(0) =1,
=1
so that n-1
-1 2 2 kT
2" [] cos® — = 1.
k=1 n

For even n > 4, let G, (x) = %Fn (). Then G,(0) =n/2, and

n-1
l’l(x—% cos %—T->=9c I (x—Zi cos %>=xGn(m),

k=1 1<k<n-1
so that k#ni2
I 27 cos km _ G,(0) =n/2,
1<kgn-1 n
and k#n/2

n-1

2
on-2 I cos? kT n/2.
k=1 n

123

n2t ",

Proofs of the other four formulas follow from similar considerations of I,(0)

and 2,(0, 0, 1).

Theonem 11: Suppose a®* + 4b = 0. Then, for n > 3, the roots of the polyno-
mials U, (x, 2), V,(x, 2), and W,(x, 3) are given by the following factoriza-

tions.

n-1

2
(czz - bx?tan? ﬁ) for odd n > 3,

7
k=1
Uy (x, 8) =

n-2
2

7 :

nax cz? - bx?tan? EE for even n > 4.

2 ko1 n -
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n-3
2
ll—az—x- I l:czz— bx?tan® —(—2%1—)”—] for odd n > 3,
k=0
Vn (.CC, g) = n-2
2
I [0212 - bx*tan® L&z—}l)ﬂil for even n > 2.
k=0
n-1
2
n [1 [c,zz— bx?cot? —zﬁﬂJ for odd n > 3,
k=1
Wn(x’ Z) =
n-2
n?ax 2 o .o 2km
4 I |c3" - bx"cot = for even n > 4.
k=1
n-1
Proog: U, (x, ) = F, (ax, bx* + cz?) = [] (ax - 2¢/bx® + cz? cos %)
k=1

If nis odd and > 3, then the n - 1 roots of U, (x, 2) occur in conjugate
pairs, so that

n-1

Il [azxz + 4(bx® + cz%)cos? %T—T-:l

U, (x, )

2
=11 (—4bx2s1n2 %T—r- + 4ez?cos? 7—:})

by Lemma 11.

If n is even and > 4, then the n - 2 roots of U,(x, 2) remaining after
the root 0 is excluded occur in conjugate pairs, and we find as above that

n-2

2
U,(x, 8) = n—zﬁ (czz - bx?tan? M)
k=1 1

With the help of Lemma 11, the remaining four factorizations are proved in
the same way.

Lemma 12: Suppose a?> + 4b = 0. TFor n > 3, the transformed generalized Fi-
bonacci cyclotomic polynomial U, (x, 3) = F,(ax, bxz? + cz?) is given by
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I <cz2 - bx?tan? 7;-”) for odd n > 3,

U, (x, B8) =
2 2, 2 km
—_— I ez” - bx“tan P for even n > 4.
1<k<(n-2)/2
(k,m) =1
Proog: This is an obvious consequence of Theorem 11 and the fact that the
roots of F,(x, 3) are

Zi/z_cosi—:%—, (k,n) =1, 1 <k<n-1.

Theosem 12: Suppose a, b, ¢ are integers and a® + 4b=0. Except for an in-
teger multiple, for #n > 1, the polynomial Q, (x, 2) is irreducible over the
ring of integers.

Proof: The proposition is clearly true for m = 1 and n = 2. Suppose, for
n > 3, that U,(x, 8) =p(x, 3)q(x, ). By Lemma 12 and the irreducibility
(since -b > 0) of the factors

km
cz? - bx’tan? o

over the real number field, p(x, 2) has the form P(x, 2%) and g(x, 2) has the
form @(x, z2). Thus, putting » = ax and § = bx? + c¢z?, we find

2 2 2 2
_ ofr as - br r a‘s - br
gn(rs 3) —P<Cl’ azc >Q<Cl, azc )-

Since F,(r, s) is irreducible, one of the polynomials P and § must be constant.
But then p(x, 2) or g(x, 3) is constant, as desired,

Theornem 13: Suppose (a, b, ¢) =(2,-1, 1). The Binet formulas for the poly-
nomials U,, V,, and W, are as follows:

(x + 2)" - (x - a)"

Un(x9 Z) = Zz
@+ 3" + (x - )"

Vn(x5 Z) = 2

1

Evn (z, 2) for odd n,
Wn(ac, Z) = 2 2 /2

13 - no_ - n
(x + )" + (& ZZ):c 2(z x”) for even 7.
r + /P2 + 4s v - /P + hs

Proof: Let t, = , Ty = , tg=Vs, t, = -/s. Putting

2 2

p=2x and s=2%-x%, the desired formulas follow immediately from the Binet
formulas " .
ty b

T, - &,

F (v, s)

L (r, 8) =t + !
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ty o+ ty - th -t

0 = .
bn (25 0, 8) ty ¥, —ty -ty
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1. INTRODUCTION

In a previous paper [l1], we considered r, s sequences {U;} and obtained
explicit formulations for the general term in powers of » and 8. We noted 2
special sequences {Gk} and {My}. These are sequences that specialize to the
Fibonacci and Lucas sequences where r = g = 1.

In this paper, we propose to consider the relationship between r,s re-
currence relations and geometric sequences. We give a necessary and suffi-
cient condition on r and s for the recurrence relation to be geometric. We
conclude the section by showing how to write any geometric sequence as an 7,
S8 recurrence relation.

In the final section, we briefly consider a special Fibonacci sequence.
We give an explicit formulation for its general term. We are then able to
note when it is a geometric sequence.



