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Using (2.4) and (2.5)9 we see that a01 = 1 or 2 and a10 = 1 or 2. From 
(2.6) and (2.7), we have a11 = 0. Since a00 is arbitrary, we see that there 
are a total of twelve local permutation polynomials over Z3, given by 

where a10 = 1 or 2, a01 = 1 or 2, and aQQ = 09 1, or 2. 
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U INTRODUCTION AND MAIN THEOREM 

In [6] s Hoggatt and Long ask what polynomials in I[x ] are divisors of 
the Fibonacci polynomials9 which are defined by the recursion 

FQ(x) = 0, F±(x) = 1, Fn(x) = xFnm±(x) + Fn^{x) for n >_ 2e 
In this paper, we answer this question in terms of cyclotomic polynomials. 
We prove that each Fibonacci polynomial Fn (x) , for n _> 2., has one and only 
one irreducible factor which is not a factor of any Fk (x) for any positive k 
less than n. We call this irreducible factor the nth Fibonacci cyclotomic 
polynomial and denote it ^fn(x) . 

The method applied to Fn* s to produce 9V s applies naturally to the more 
general polynomials Zn(xs y9 z) which were introduced in [7] and are defined 
just below. Accordingly,, in Section 2S we shall apply the method at this more 
general level rather than directly to the Fn

fs. The polynomials Cn(x9 y3 z) 
so obtained from the ln(x9 y9 s)fs we call generalized cyclotomic -polynomials, 
Special cases of the C^s are the ordinary cyclotomic polynomials Cn(x9 1, 0), 
the Fibonacci cyclotomic polynomials 9^ already mentioned, and a sequence 

&£„(*) = Cn(x9 0, 1) 

which we call the Lucas cyclotomic polynomials. Section 3 is devoted to the 
^n

fs and Section 4 to the S£Mfs. In Sections 39 49 and 59 we determine all the 
irreducible factors of the Fibonacci polynomials9 the modified Lucas polyno-
mials defined in [7] as ln(x9 0, 1)9 and the Lucas polynomials. 

In Section 69 we transform the generalized Fibonacci and Lucas polyno-
mials into sequences Un(x9 z) and Vn (xs z) having the same divisibility prop-
erties as the Fn*s and Ln*s9 respectively. The coefficients of these poly-
nomials are all binomial coefficients, in accord with the Identity 

zlln(x5 z) + Vn(x9 z) = (x + z)n . 

The polynomials &n(x5 y9 z) may be defined as follows^ 

Ln(x9 z) - Ln(ys z) 
in(x9 y9z)= — — for n >_ 0S 
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where Ln(xs z) is the nth generalized Lucas polynomial, defined by the recur-
sion 

LQ(x9 z) = 2S L±(xs z) = x, Ln(x5 z) = xLn_1(x9 z) + zLn_2(x9 z) for n >_ 2. 

The two special cases of particular interest are the generalized Fibonacci 
polynomials, namely 

(1) L (X + VX2 + kZ X - YX2 + kz \ 

2 s 2 9 °/s 
and the generalized modified Lucas polynomialss namely Zn(x9 09 z). Other 
special cases, to be treated briefly in Section 5S are. the Chebyshev polyno-
mials of the first and second kinds. 

Following the method of Hoggatt and Bicknell in [5], we now determine 
the roots of the polynomials in(xs y, z) . The first theorem is basic to all 
subsequent developments in this paper. 

Tk&QX&n 1: For n > 2, the roots of in(xs y5 z) are 

(2) l/z sinh (sinh"12//2v/i" + 2kni/n) , where fc = 19 2, eB.9 n - I, 

Vh-OOJi We have (x - y)in(x9 ys z) = t\ + t\ - (£" + t"), where 

_ x + ^ 2 + 4a , _ # - v42 + 4s , z/ + /u2 + 4s , _• y - //2 + 4s 
t i ™ 2 5 ^ 2 " 2 * 3 2 9 *+ 2 

Let x = 2i/5" sinh u9 so that A 2 + 4s = 2i/5" cosh us and 

t\ = /zeu and t-z = -/ze'u. 

Let z/ = 2i/i" sinh i?9 so that Vy2 + 4s = 2/i" cosh y9 and 

t = vrzev and t 4 = -Jze~v. 
Then 

(a? - z/Hn(*, 2/, 2) = A ^ n w + (-l)n£-n w] - A e n t f + (-l)ne-nv] 
n_ 

2s2(sinh nu - sinh no) for odd ns 

_n 
2s2(cosh nu - cosh no) for even n. 

Dividing by x - u = 2y/s~(sinh u - sinh i?), we find 

n-l . , . , 

~~~smh nu - sinh no c , , 
is — — —— , for odd n9 
J smh u - sinh V 

)Ln{xs y$ z) ^ 
I "2~cosh nu - cosh nu _ 
Iz — r-; for even n. 

sinh u - sinh v 
Now suppose n is odd* Then ln{x3 y3 z) = 0 when 

sinh nu = sinh no and sinh u £ sinh y; 

i.e. s when nu = no + 2/ciri and /c is not an integral multiple of n„ Thuss 
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in(x9 y5 z) - 0 when u - v + 2/ori/n for k = 1,' 2 , * . . , n - 1. 

For even n we similarly reach the same result. Substitution for u and V now 
completes the proof. 

2. GENERALIZED CYCL0T0MIC POLYNOMIALS 

Following the treatment of cyclotomic polynomials in Nagell [9, p. 158] , 
for n _> 2 let p±s p2, ..., pr be the distinct prime factors of n; let 

and for 1 <_ fc <_ P, let 

n0 = iy 

Jl^ - ii)Cn/p p ... P 

the product extending over all the k indices ij which satisfy the conditions 

1 £ ̂ x
 < ^2

 < ' * " < H — V' 
L&nma 1 : Let C±(x9 y9 z) = 1, and fo r n > 25 l e t 

n0n2 . . . 
(3) Cn(x9 y9 z) ILII 1 " 3 

The number of factors iq in the numerator equals the number of factors iq in 
the denominator. 

P/L00̂ » First consider the number of £qfs in the numerator: for 0^j<_[r/2] 

there are ( .) of the &aTs in Jlnj; 9 so that the number we seek is 

[r/2] 

S («)• [(r-l)/2l 

Similarly, we count ^ (o'+i) factors ilg in the denominator. That these 

two sums are equal for any v ^_ 1 follows from the identity 

E<-D*(£) - ^ - D ^ =°-
k = o x ; 

Let us recall now some facts about cyclotomic polynomials (e.g., [9]): 
In case ln - xn - 1, the quotient Cn in (3) defines, for n .>. 2, the nth cy-
clotomic polynomial, which is irreducible over the ring of integers. (The 
first cyclotomic polynomial is defined to be x - 1). Thus, for n >_ 1, the 
roots of the nth cyclotomic polynomial are the primitive nth roots of unity: 
e2kvt/n w h e r e (k, n) = 1. Writing cf>(n) for Eulerfs phi-function, the nth cy-
clotomic polynomial therefore has degree <J>(n). 

Referring to (2), let us call the root 
2/z sinh(sinh~12//2/i" + Ikni/ri) 

a primitive nth root of in(x9 y9 z) if (k9 ri) = 1. 
ThdOKQjn 1: For n >_ 2, the quotient Cn(x9 y9 z) in (3) is a polynomial with 
integer coefficients, having degree $(n) in x. Moreover, for n J> 2, Cn(x9 
1, 0) is the nth cyclotomic polynomial. 
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Plooj: Suppose n _> 2. By Lemma 2, if the quotient in (3) is formed with the 
polynomials (x - l)in(x9 1,0) in the products IIfe instead of ln(x9 1,0), 
then the result is Cn(x9 1, 0). But 

(x - l)in(x9 1, 0) = xn - 1, 

so that Cn(xs 1, 0) is the nth cyclotomic polynomial, which has degree (j)(n) 
in x. 

It remains to be proved that Cn(x9y9 z) is a polynomial for nj^2; i.e., 
that the polynomial D = Jl1Ti3 . . . divides the polynomial N = II0II2 . . . over the 
ring of integers. Since this is the case for (x9 1, 0), each linear factor 
x - v of D is a factor of N and must occur at least as many times in N as in 
D. But each such r is an nth root of unity, r - e2k^rfn for some k and n. So 
in the general case (x9 y9 z) , each linear factor x - 2/z sinh(sinh~1z//2/s"+ 
2ki\i/n) of D occurs at least as many times in N as in 5. Thus, D divides N. 
Since all the coefficients of N and D have only integer coefficients, the 
same must be true of the quotient Cn(x9 ys z), by the division algorithm for 
polynomials in x over the ring I[y 9 z] of bivariate polynomials with integer 
coefficients. 

Tfeeo/iem 3: For n >. 2, 

Cn(x, ys z) = O [x - 2 ^ sinh(sinh"1z//2v/i" + 2/ori/n)]. 
(k,n) = l 
0£k£n 

VK.00^' This is an obvious consequence of the one-to-one correspondence be-
tween roots of Cn(x9 y9 z) and roots of the nth cyclotomic polynomial 

Cn(x9 1, 0) = n (* - e2M?n). 
(k,n)-l 
Q±k±n 

Thzokom 4: For n _> 1, 

Zn(x9 y9 z) = l\Cd(x9 y9 z). 
d\n 

PfiOO^: First, £1(x, y9 z) = C1(x9 y9 z) = 1. Now suppose n >- 2. Then 

<^(x, z/, z) = (x - r1) ... (x - r$(d))> 

where the P^!S range through the roots l/z sinh(sinh""1z//2v/i" + 2krni/n) of 
ld(x9 y9 z) for which (k9 d) = 1. Each root of &„(#, y9 z) is a primitive 
dth root of one and only one Cd(x9 y9 z) where d\n. Thus each linear factor 
of in(x9 y9 z) occurs in one and only one Cd(x9 y9 s). 

Lemma 5 »' For n >_ 1, the polynomial Cn(x9 y9 0) is irreducible over the ring 
of integers. 

?HX)0jh} T n e statement is clearly true for n = 1. For n _> 2, suppose 

Cn(x9 y9 0) = d(x9 y)q{x9 y). 
Then 

Cn(x, 1,0)= d(x, l)^(x, 1). 

Since the cyclotomic polynomial Cn(x9 1, 0) is irreducible, one of the poly-
nomials d{x9 1) and q(x9 1) must be the constant 1 polynomial. Without any 
loss, we may suppose this one to be d('x9 1) and thus have 
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d(x9 y) = 1 + (y - i)e(xs y) 

for some polynomial e(x9 y). Then 

Cn(x9 ys 0) = q(x9 y) + (y - l)e(x9 y)q(x9 y). 

Now q(x9 y) includes the term x^^n' 5 which cannot appear in 

(y - l)e(x9 y)q(x9 y). 

Therefore, e(x9 y) = 09 so that d(x9 y) = 1. 

Tko.QK.2m 5- For n _> 19 the polynomial Cn(x9 y9 s) is irreducible over the 
ring of integers« 

Vnooj'. Suppose 
Cn(xs y9 z) = d(x9 y9 z)q(x9 ys z). 

Then 
Cn(x9 y9 0) = d(x9 y9 0)q(x9 y9 0 ) . 

By Lemma 5, one of the polynomials d(x9 y9 0) and q(x9 y9 0) is the constant 
1 polynomial. Consequently9 as in the proof of Lemma 59 we have 

d(x9 y9 z) = 1 + ze(x9 y9 z) 

for some polynomial e(x9 y9 z). Then 

Cn(x9 y9 z) = q(x9 y9 z) + ze(x9 y9 z)q(x9 y9 z). 

Now q(x9 y9 z) includes the term x$(n) 9 which cannot appear in 

ze(x9 y9 z)q(x9 y9 z). 

There fo re 9 e(x9 y9 z) = 0 , so t h a t d(x9 y9 z) = 1. 

TABLE 1 

Generalized Cyclotomic Polynomials Cn = Cn(x, y, z) 

C1 = 1 

C2 = x + y 

C3 = x2 + xy + y2 + 3s 

Ch = x2 + y2 + 4s 

C5 = xh + o3z/ + x2z/2 + xzy3 + yh + 5s (ic2 + ocy + y2) + 5 s 2 

C6 = < # 2 - a ? / + z/2 + 3s 

C8 = ^ + z/1* + 4s O 2 + y2) + 4 s 2 

Cg = xe + x3z/3 + z/6 + 3s (2xh + o3zy + xzy3 + 2yh) 

+ 9 s 2 ( o 2 + xy + y2) + 3 s 3 

C1Q = (x5 + z / ) / 0 r + y) + 5 s ( o 3 + z / 3 ) / 0 + zy) 4- 5 s 2 

^12 = x** " ^ 2 2/ 2 + 2/1* + 2s (x2 + z/2) + s 2 

A b b r e v i a t i n g Cn(x9 y9 0) as c n 9 we n o t e t h a t 

C3 = o3 + 3z9 Ch = oh + 4 s , C6 = o6 + 3z9 CQ = oQ + tee^ + 4 s 2 , 
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and 
C9 = os + 3z(c5 + c12) + 9s2e3 + 3s3. 

One wonders if all the coefficients of powers of z are linear combinations of 

3. THE CASE z = 0: FIBONACCI CYCL0T0MIC POLYNOMIALS 

Here we will determine the irreducible factors of the generalized Fibo-
nacci polynomials. In Section 1, the (not generalized) irreducible factors 
were named the Fibonacci cyclotomic polynomials and denoted ^n{x). Here, 
however, we shall deal with the natural generalization: the generalized Fi-
bonacci cyclotomic polynomials, denoted <$n(x9 y) . Theorem 6 will show that 

S„C*. y) - g , ( a + / g
2
2 + 4 y . * ~ /a22 + 4*. o) for n > 1, 

and Corollary 7 will show that the ^n{x)^s can be expressed as linear combi-
nations of generalized (unmodified) Lucas polynomials. 

TkzotiQjn 6«' For n ^_ 1, let Fn(x5 y) be the nth generalized Fibonacci polyno-
mial. Then 

M*. J/) = n cix + /a
2
2 + hK x - 7 f+ % o). 

d\n \ / 

. _, „ , ̂  + /a;2 + 4ty # - v^c2 + 4ty ~\ 3 as polynomials Moreovers the polynomials LA tJ-9 — u-9 0 1 

in x and y 9 are irreducible over the ring of integers. 

x + vx2 + 4z/ , x - A 2 + ky Vnjooji Wr i t e s = -j ^ and t = T J — • B^ ^ a n d T n e o r e m 4 , 

Fn(a;, z/) = £ n (s 3 t, 0) = II Q ( s , £, 0 ) . 

d\n 

To see that the Q f s are irreducible as polynomials in x and z/, suppose 
Cd(s9 t9 0) = p(xs y)q(x9 y). 

Then5 since # = s + t and 2/ = -s£, we have Cd(s9 t9 0) written as a product 
of two polynomials each in s and t . By Lemma 5 5 one of these polynomials is 
a constant polynomial 9 namely 1, since Cd is monic. Thus, either p(x9 y) = 1 
or q(x9 y) = 19 as desired. 

lkdOK.QJ(\ 7- For k >_ 1 s let Lk(x9 y) be the kth generalized (unmodified) Lucas 
polynomial. For n >. 35 the nth generalized Fibonacci cyclotomic polynomial 
is given by 

4>{n)/2 ^(n)_ . 

where 6,, w 2 = 1 and the numers 6 Q S &l9 &25 . .., ($£(n_)_1 are integers. 



1H CYCLOTOMIC POLYNOMIALS [April 

VKOO^I Suppose n >_ 3. With s and t as in the proof of Theorem 6, 

Vn(x9 y) = Cn(s, t , 0) = t*Wcn(s/t9 1, 0) 9 

where 

>(«)-! 
w ^ " ) " 1 + + a w + 1 Cn(u5 1, 0) = u 

is the nth cyclotomic polynomial. Thus, Cn(s9 t9 0) has the form 

* ( « ) - i t + s*(n) + a *(«) -l*- + a1st*{n)-1 + t H n ) 

Since Cn(s9 t9 0) is symmetric in s and t, this polynomial is expressible as 

,*(») + t' >(«) + a<f>(«) -1^1 + a0 ( n ) (st) *0(*) 
2 

Recalling st = -2/ and the Binet formula Lk(x9 y) = sk + tfe [in particular, 
L (#, <y) = 2 ] , we conclude that 

0(n) *(«) 

^nG*. 2/) = ̂ ( n ) ~ ^ 0(n)-l^(n)-2 + + (-D b{n) y V 
as desired. 

CoKolLcUtij 7» Only for the purpose of facilitating the statement of this cor-
rolary, suppose LQ(x9 y) = 1 (instead of 2). Then for n >_ 1, the nth Fibonacci 
cyclotomic polynomial ^n(x) is an integral linear combination of Lucas poly-
nomials Ln(x). 

VKOOfc The proposition is easily verified for n = 0, 1, 2. For n 2. 3, put 
z/ = 1 in Theorem 7. 

To illustrate Corollary 7, we write out, in Table 2, several Fibonacci 
cyclotomic polynomials 9° n = cFn(a:, 1) in terms of the Lucas polynomials Ln = 
Ln(x9 1) . Recall that the ̂ n's are the irreducible divisors of the Fibonacci 
polynomials, in accord with the identity 

F„ 
din 

degree 0 

degree 1 

degree 2 

^ 2 

TABLE 2 

Fibonacci Cyclotomic Polynomials 

1 

X = Li -I 

x2 + 1 = L2 - 1 

x2 + 2 = L0 

degree 4: &5 L,. 

10 

sr 12 

x2 + 3 = L2 + 1 

xh + 3a:2 + 1 

x4 + 4a;2 + 2 

x1* + 5x2 + 5 

x1* + kx1 + 1 

L2 + 1 

L4 + L2 + 1 
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TABLE 2 (continued) 

degree 6: 9 7 = x6 + 5a:4 + 6x2 + 1 = L6 - Lh + L2 - 1 

9 g = a:6 + 6a:4 + 9a:2 + 1 = Ls - 1 

9 l l f = ^ + 7 ^ + 14^2 + 7 = L6 + Lh + L2 + 1 

9^8 = a:6 + 6a:4 + 9a:2 + 4 = L6 + 1 

degree 8: 9 1 5 = a:8 + 9a:6 + 26a:4 + 24a:2 + 1 = LQ + L6 - L2 - 1 

gr i 6 = a:8 + 8a:6 + 20a:4 + 16a:2 + 2 = LQ 

<920 = a:8 + 8a:6 + 19a:4 + 12a:2 + 1 = LQ - L^ + 1 

9 2 4 = a:8 + 8a:6 + 20a:4 + 16a:2 + 1 = L 8 - 1 

9 3 0 = a:8 + 7a:6 + 14a:4 + 8a?2 + 1 = L 8 - L6 + L 2 - 1 

d e g r e e > 8 : g f u = L 1 0 - LQ + L 6 - L^ + L 2 - 1 

^32 ~ ^16 

^33 = L 2 0 + ^18 " Llh " ^12 + ^8 + ^6 "" L 2 " l 

^3 6 =-^12 ~ 1 

^ 0 = ^16 ~ LQ + 1 

^ 2 = ^12 " ^10 + L 6 " ^ + 1 

^45 = L2h + L 1 8 _ L 6 ~ 1 

^ 4 8 = ^16 ~ *" 

^50 = ^20 + ^10 + * 

^105 = L 4 8 " L 4 6 + L 4 4 + L 3 8 " ^36 + 2L 3 4 " L 3 2 + ^ 3 0 + L 2 4 

- L22 + L20 - L1Q + L16 - L11+ - LQ - Lh - 1 

Note in particular the coefficient of L3h in the polynomial 9105. 

Two reminders (e.g., [9]) about the cyclotomic polynomials Cn(us 1, 0) 
$M (u) which are helpful in computing 9V s are the following J 

(i) If p is a prime and p )( ns then $„p (u) = §n(up) /$„ (u) ; 

(ii) If p is a prime and p | n9 then $np (w) = <3>n(up). 

As an example, we compute 9^5 as follows 

$45^) = ^is(^3) = ®3(u15)/$3(u6) 
-,,30 , 15 , i 

3\ - ^ ^,,15W^ ^,3^ =U ±_U ±_± 

u& + u3 + 1 

so that 
^5(o:5 z/) = C^5(s5 t9 0) 

u21 + u15 - u12 + u9 - u3 + 1, 

s3t21 + £24 

?24 + t24 - (st)3(s18 + t18) + (st)9(s6 + t6) - (st): 
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= L2h + y3L1& - y3L6 - y12 (Theorem 7), 

^5(x9 1) = L24 + L18 - L6 - 1 (Corollary 7). 

Since for highly composite values of n the cyclotomic polynomials tend 
to be complicated ([1], [3], [4], [11], [12]), the same is true for the cor-
responding Fibonacci cyclotomic polynomials. 

In Theorem 12 of [6], Hoggatt and Long find an upper bound for the num-
ber NQn) of polynomials of degree 2m that divide some Fibonacci polynomial. 
If we restrict NQn) to irreducible polynomials, then NQn) is the number of 
solutions n to the equation (j)(n) = 2m. For example, N(720) = 72. That is, 
there are 72 distinct Fibonacci cyclotomic polynomials cTn having degree 1440. 
See [10]. 

Still restricting NQn) to irreducible polynomials, we ask if NQn) = 0 
for any m. The answer is yes. C. L. Klee proved in [8] that §Qri) = 2wz has 
no solution n if m has no divisor d > 1 for which 2d + 1 is a prime. For ex-
ample, no 9^ has degree 14. 

4. THE CASE y = 0: LUCAS CYCLOTOMIC POLYNOMIALS 

Our main objective in this section is to determine the irreducible fac-
tors of the generalized modified Lucas polynomials in(x9 0, z). First, how-
ever, we wish to justify the names Lucas cyclotomic polynomials and general-
ised Lucas cyclotomic polynomials for the sequences 

Cn (x, 0, 1) and Cn(x9 0, z) , 

since these sequences are determined by (3) from the generalized modified 
Lucas sequence ln(x, 0, z) and not the generalized Lucas sequence Ln(x9 z). 
The justification is this: that, by Theorem 1, the quotient (3) defines 
polynomials analogous to cyclotomic polynomials in the former case, but does 
not generally define polynomials at all if the Ln

%s are substituted for the 
&n

fs. (Nevertheless, the irreducible factors of the Ln
fs will be easily de-

termined otherwise in Section 5.) 
In Section 1, the (not generalized) Lucas analogue of the Fibonacci cy-

clotomic polynomials were named Lucas cyclotomic polynomials and denoted by 
$£n(x). Here however., we shall deal with the natural generalization, the gen-
eralized Lucas cyclotomic polynomials, denoted ^.n(xs z) and defined by 

$£n(x9 z) = Cn{x9 0, z) . 

By Theorem 3 and t h e i d e n t i t y s i n h iu = i s i n u9 t h e r o o t s of $£n(x9 z) 
a r e 

2i/z s i n 2/ar/n, (k9 n) = 1, 1 £ fc _< n - 1. 

The roots of Fn(x9 z) are 2i/z cos ku/n for 1 £ fc £ n - 1, as proved in 
[5] and [6], and consequently, the roots of ^n(x9 z) are 

2i/z cos kJi/n9 (k9 n ) = l , l £ / c £ n - l . 

In order to reconcile roots of the %£n(x9 z)%s with those of the ̂ ( x, s)fs 
let 

Qn = {k : Qk9 n) = 1 and 1 £ k £ n - l}. 

for k £ Qn9 we have 

s i n 2/cir/n = cos (n - 4k)Tr/2n. 
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As k ranges through the set Qn5 it is natural to expect the numbers n - kk to 
range through residue sets modulo various divisors or multiples of n. Such 
expectations are fulfilled in the next theorem,, 

Tk^QKom 8: Except for ^1(x9 z) = I and ^h(x5 z) = x2 + 4s, the nth general-
ized Lucas cyclotomic polynomial ££„(#, z) can be expressed in terms of the 
generalized Fibonacci cyclotomic polynomials as follows: 

3Ln\Xs Z) 

9"2n (x9 z) for odd n5 n ^ 1, 

Qnix, z) for n = 2q5 q odd, 

^2(x, z) for n = 4q, q odd9 q ^ 1, 

9^* (̂5 s) for n = 2t+1q, q odd, £ j> 2. 

Co6e 1. Suppose n is odd and n ^ 1. Then 

\n - 4/CITT 

Let 

(n- - 4/C)TT J 

2™ " J 
A = {|n - 4/c| 
B = {5n - 4/c 

L U b " • " ̂  " " " JLUJL H-ft. ^ ->U 

(5n - 4/c) IT c / 7 ^ o 
cos r fo r 4/c > 3n 

2n 

: k e Qn and 4/c < 3 n } , 

: /c e Qn and 4/c > 3 n } , 
and 

A U B» 

It suffices to show that Q=Q2n
 a n d that each element of Q2n appears only once 

in forming the set Q« This will be shown in four steps: 

(i) A H B is empty; 
(ii) Q consists of <j>(2n) elements; 
(iii) If j e 6, then 1 < j < 2n - 1; 
(iv) If j e Q5 then (j\ 2n) = 1. 

To verify (i) , suppose n - kkx = 5n - 4/c2 where hk1 < 3n and 4/c2 > 3n. 
Then k2 - /^ = n, contrary to the inequalities 

1 <_k ^n - 1 and 1 <_ k2 <_ n - 1. 

If |n - 4/cJ = 4/^ - n = 5n™ 4/c2, then 2(k1 + /c2) = 3n, contrary to our as-
sumption that n is odd„ 

For (ii), we know from (i) that distinct /cfs in Qn provide distinct ele-
ments in Q. Furthermore 9 every element k in Qn does yield an element of A or 
B9 since kk = 3n is impossible for odd n. Thus, Q consists of the same number 
of elements as Qn> which Is cf>(n). Since n is odd, we have (j)(n) = cj)(2n). 

To verify (iii), first suppose 4/c < 3n« If n - 4/c > 0, then 1 ̂  n - 4/c 
since n is an odd positive Integer and, clearly, n - 4/c <• 2n - 1; if n - 4/c < 0, 
then, similarly, 1 <_ 4/c - n, and 4/c - n <_ 2n - 1 since 4/c < 3n. Now suppose 
4/c > 3n» Then 5n - 4/c <_ 2n - 1, and also 1 < 5n' - 4/c, since k < n« 
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For (iv) , if d\ (ft - 4ft)|and d\2n9 then d must be odd since ft- kk is odd. 
Consequently, d\n. But then d\kk9 so that d|fc. Since {k9 ft) = 1, we conclude 
that (ft-4ft, 2ft) = 1. The same clearly holds for 4ft - ft and 5ft-4ft. 

Co6e 2. Suppose n = 2q9 q odd. Then 

|? - 2ft |TT 
c o s f o r 2fe < 3<?, 

(n - 4ft)TT ! 
c o s 

(5ff - 2ft)ir - 07 ^ Q f c o s _̂ __̂  £_ for 2/c > 3q. 
ft ^ 

Here, the numbers \q - 2k\ and 5q - 2k, as stipulated, range through the set 
Qn as k ranges through the set Qn. The proof is so similar to that in Case 1 
that we omit it here. 

Ca4& 3. Suppose ft = kq9 q odd, q £ 1. Let 

4 = U £ £ n : ft < q}> B = {k e Qn : ? < ft < 2^}, 

C = {k e Qn i 2q < ft < 3q}, £ = {ft £ fi„ : 3q < ft}. 

Each ft in Qn in odd, so that (q - ft)/2 is an integer, and 

(q - &)/2|TT 
for / c s i U 5 5 

(ft - 4ft) TT _ J ? 

™ [(5^7 - k)/2]u 
2ft 

for ft e C U £. 

We first claim that as k ranges through the set AUG* the numbers | (q-k)/2\ 
and (5q~k)/29 as stipulated, range through the set Qq. This claim is veri-
fied as in the four steps in Case 1. Starting with 

A* = {|(q - ft)/2| : k £ A} and C* = {(5q - k)/2 : k £ C}, 
only step (ii) calls for anything new: To see that A*U G* consists of $(q) 
elements [granted from step (i) that distinct ftfs lead to distinct elements 
±n A U B U C U D] 9 we note that the number of ft*s in Qn is 

<K4?) = *(4)<K?) = 2<|>(?), 

and precisely half of these lie in A * U G* since, as is easily checked, the 
sets A9 B9 G, D are in one-to-one correspondence with one another: 

A ->• B : k -> 2q - ft, 
A + C : k + 2q + k, 
G -> D : k ->• 6q - k. 

Thus, the roots of ^n(x9 s) found for ft £ A U G are the roots of ^q{x9 z). 
That the same is true for k e B U D will now be proved. Since 

B = {2q - k i k e A}9 
we have 

(ft - 4ft) TT 7 J j U? - k)/2\lt 
c o s d _ . ̂  £ g ^ = <;cos _ : ft £ ,4 

Since Z> = {6q - k : k e G}9 we have 
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(ft - 4k)ir 7 n ( ) [(5a - fe)/2]Tr 7 c o s ^ £ _ . fc e j ) \ = < c o s ^ ——— j fc e 

Thus t h e r o o t s of $£n(x9 z) fo r k e B U D a r e t h e r o o t s of ^fq(x» z) * We con-
c lude t h a t &£„(#, z) = g^Oc, s ) . 

Co^e jL Suppose n = 2 t + 1 ^ 9 7̂ odd9 £ .> 2 . Define s e t s As Bs Cs D as i n 
Case 3 , and have t h e fo l l owing o n e - t o - o n e co r r e spondences : 

A •+ B : k + 2*q - k9 
A -> C : k -> 2tq + fe, 
C -> £ : Zc •> 3 • 2tq - L 

Now 
k\i\ 

—— f o r / c e i U 5 5 

(ft - 4A:)TT 
COS - — 

2n 

2*1 

cos (5 • 2*'V - k)* for he CUD. 
2 \ 

We claim that as k ranges through the set A U C5 the numbers \2t~1q - k\ and 
(5 • 2t"1q - k) 9 as stipulateds range through the set S2t^. The four steps in 
Case 3 easily verify this claim. We omit the verification, except to note 
that for step (ii) we have §(2t+1q) = 2$(2tq) , so that ^(2tq) roots are found 
for k e A U C*. 

As in Case 39 we have 

(ft - 4/C)TT 7 D l i n ( ) (ft - 4̂ C)TT 7 . , , n cos - 2 : feeBU^ = <cos -z — : AC £ .4 U C 

Therefore9 ^n(x9 g) =zC32
tq s and Theorem 8 is proved. 

Theorem 8 and Theorem 4 enable us to factor the polynomials Zn(x9 09 z) 
completely in terms of irreducible factors. For example9 

£ 6 0 ( x 9 09 z) = I I Cd(x, 09 z) 
d|60 

= n ^(*» 3) 
d|60 

= * ( * 2 + 4S)(g3g;5g:6griog: i5gr30)2. 

Recalling that F30 = ̂ ^ ^ ^ I O ^ I S ^ O > t h a t ^ e o ^ ' ° s s ) = Leo " 2z3° > a n d 

that 2J2 + 4s is the discriminant £(#, z) of t2 - xt - zs we rewrite L6Q as 
follows: 

L6Q(x9 z) = D(x9 z)F2
30(xs z) + 2s30. 

Putting x = z = 1, we find an identity L60 = 5F2
0 + 2 involving the thirtieth 

Fibonacci number and the sixtieth Lucas number. These considerations lead to 
the following theorems and corollary. 
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Tke.QJim 9 OH Suppose m = 2tq9 q odd, t > 2. Then 

(4) L2m&> s) = (̂ 2 + 4s)*£(*» z) + 2sw. 

- *(*2 + 43)g^ ... s ^ g ^ s ^ ••• ^ 

= x ( x 2 + kz)F2/x2, 

and (4) fo l lows immedia te ly . 

Tkzotim 9b: I f 777 i s odd 5 then 

(5) L2m(X> 3> " 2 ^ = L5U*» 2)e 

Vh.00^: The proof of this known identity is so similar to that of Theorem 9a 
that we omit it here. 

Co/iotlaAy 9: For k > 05 l e t Ffe and Lfe be t h e k t h F i b o n a c c i and Lucas num-
b e r s . I f m = 2tq9 q odd, t J> 2 , then 

I f m i s odd5 then 
L2m =L2

m + 2. 
Pfioofi: Put # = z = 1 in (4) and ( 5 ) . 

5. THE IRREDUCIBLE FACTORS OF THE LUCAS POLYNOMIALS 

Hoggatt and Bicknell prove in [5] that for n >_ 1 the roots of the nth 
Lucas polynomial Ln(xs 1) are 

2i cos — , k = 0, 1, ..., n - 1. 
In 

The methods of Section 4 could be used to compare these roots with those of 
the Fibonacci cyclotomic polynomials. However, we choose a different way, 
which depends on the well-known identity F2n= LnFn . 

lh<L0K<m 10: For n >_ 1, write n = 2 ^ , where t > 0 and q is odd. The nth 
generalized Lucas polynomial Ln(xs z) is a product of (irreducible) Fibonacci 
cyclotomic polynomials: 

Ln(x, z) = n^**1^ ^ ^* 

« ~ P ~ n ~ M <*" 
r " 11 g: d\2n. 

d\n d d\n 
Now 

{d i d\2n and d|n} = {2 + 1d : d\n and d is odd}, 

so that the conditions d\2n9 d\ n are replaceable by the condition 2 +1d|2n, 
i.e., d\q. 
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ExmP1^ ^i^^^^^gs^o^^^s^o^^o^o^o^i^ 
6 0 

^ 1^2^3 ̂ V^5^6 "̂ 1 0^1 2^1 5^2 0^3 0 ̂ 6 0 

^ S ^ ^ O ^ O * 

CoKotioJiij 10: For even n >_ 29 Ln(x9 z) is irreducible if and only if n = 2k 

for some fc >_ 1. 

Vnjooji Suppose n = 2k for some k >_ 1. Then by Theorem 10, we have Ln = 9:2n , 
which is irreducible by Theorem 6. If n is even but not a power of 2, then 
by Theorem 10s SF2n is a proper divisor of Ln(x9 z) . 

In [2]3 Bergum and Hoggatt prove Corollary 10 using Eisensteinfs Crite-
rion. 

We conclude this section by noting that the divisibility properties that 
are already established for the polynomials Fn9 Ln9 and l n in terms of the 
irreducible polynomials cFn now carry over to divisibility properties of 
Chebyshev polynomials of the first and second kinds. 

It is well known that the nth Chebyshev polynomial of the first kind is 

Tn(x) = \LU{2X9 -1), n = 0, 1, ... . 

Accordingly, the factorization of Tn(x) in terms of factors which are irre-
ducible over the ring of integers is given by Theorem 10. 

Let us define modified Chebyshev polynomials of the first kind by 

— Ty, (x) for odd n, 
x 

£n(x) = t 
^\Tn(x) - (-l)fl for even n > 0. 

Then we have tn(x) = — ln(2x9 0, -1), so that the divisibility properties of 

the tn s are the same as those of the £w
fs. In particular, the irreducible 

factors are given by Theorem 8. Moreover, many of the results proved in [7] 
[e.g., concerning greatest common divisors, (&ms &«) = &(m,n)] carry over to 
similar results for the modified Chebyshev polynomials. 

It is well known that the nth Chebyshev polynomial of the second kind is 

Un(x) = Fn + 1(2x, -1), n = 0, 1, ... . 

Accordingly, the factorization of Un(x) in terms of irreducible factors is 
given by Theorem 6. 

Finally, note that the roots of the Chebyshev and modified Chebyshev 
polynomials, and also the roots of their irreducible factors, are easily ob-
tained from Theorem 1 and Theorem 3. 

6. TRANSFORMED FIBONACCI AND LUCAS POLYNOMIALS 

For any integers (or indeterminants) a, b9 e9 where a ̂  0 + o9 let 

Un(x9 z) = Fn(ax9 bx2 + oz2), 

Vn(x9 z) = -jLn(ax9 bx2 + ez2), 
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and Wn(x> s ) = ^n{ax9 0 , bx2 + cz2). 
Then the quotients (3) are clearly polynomials for each of the sequences 

Un(x, z) and Wn(x9 z), 

since this is true for the sequences Fn and £n. Similarly, the divisibility 
properties of the 7n? s follow from those of the L„*s, as given in [2] and Sec-
tion 5. 

One of the most attractive special cases is (a, b9 o) = (2, -1, 1). We 
tabulate the first few [/„' s and 7„' s in this case. Then we tabulate the first 
few Wn s and the first few transformed Fibonacci cyclotomic polynomials; i.e., 
the quotients (3) formed from the £/n?s. These, we shall show, are irreduci-
ble except for a constant multiple; hence, they are the irreducible factors 
not only of the £/n!s, but also of the Vn' s and the Wn's, After the tables, 
we shall return to arbitrary a, b9 e satisfying 
Binet forms, etc. 

+ kb - 0 and find roots, 

TABLE 3 

Transformed Generalized Fibonacci Polynomials Un = Fn (2x, z2 - x2 ) 

and Transformed Generalized Lucas Polynomials Vn -Ln(2xr z2 

n 

1 

2 

3 

4 

5 

6 

7 

1 

2x 

3x2 + z2 

hx3 kxz^ 

5x* + 10xzsz + z* 

6x5 + 20x3z2 + 6xz** 

7xe + 35x*z2 + 2lx2zh + z6 

xs + 3xz2 

;5 + 10x3z2 + 5xzh 

x2) 

z1 + 20x5s2 + 35x3z* + 7xz6 

One immediately detects Pascal!s triangle lurking within Table 3. We 
shall soon ascertain that zUn + Vn = {x + z)n for n ̂  1. 

TABLE 4 TABLE 5 

Transformed Generalized Modified 
Lucas Polynomials 

Wn = 

= 1 
= 2x 

W* 

WK 

in(2x, 0, Z x2) 

x2 + 3z2 

W„ = 8xz2 

= xh + I0x2z2 + 5zh 

= 2x5 + 12x3s2 + lte4 

= ̂ r6 + 21^s2 + 35x2zh + 7s6 

= 32x5s2 + 6hx3zh + 32^3 6 

Transformed Generalized Fibonacci 
Cyclotomic Polynomials 

clin = Vn(2x, z2 x2) 

1 
2x 
3x2 + z2 

2x2 + 2s2 

5x 
~2 

2 ^ 2 + 10XZSZ + 3 
xz + 33' 
2xH + 12x 2 s 2 + 2z* 

xh + 14x 2 s 2 
+ 5zH 

+ z* 
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Lomma. 11: Suppose n is an odd positive integer >_ 3. Then 

% cos2 M = 2 l - , ^ " c o s 2 Vk^DjL . n2l-K) and "f s l n 2 M , _.n2l-B> 

Suppose n i s an even p o s i t i v e i n t e g e r >_ 4 . Then 
re-2 re-2 

fl cos2 ^ = n21"n and fj sin2 ̂  = n 22"\ 
k = l n k=l n 

Suppose n is an even positive integer _> 2. Then 

n-l 

I I cos = z 

P/L00_£: For odd n _> 35 we have 

II 2i cos f^ = Fn(0) = 1, 

so that n- l 

2«-i r T c o s 2 — I-
fc-i n 

For even n >. 4, let Gn (#) = -Fn(a;). Then Gn(0) = n/29 and 

I"! (# - 2£ cos — ) = x n [x - 2i cos — J = xGAx) 
n - l 
] 

so t h a t 

and 

f l 2£ cos — = Gn(0) = n / 2 , 
l < f c < n - l n 

2 - kn_ 
n 

2 n c° s — =n/2-
Proofs of the other four formulas follow from similar considerations of Ln(0) 
and £n(05 0, 1). 

ThdOKom 11: Suppose a2 + 42? = 0, Then, for n >: 3, the roots of the polyno-
mials Un(x9 z), Vn(x, s), and Wn(x9 z) are given by the following factoriza-
tions. 

n-l 

I I {oz2 - bx2tan2 ~f\ fo r odd n > 3 , 

Un (x, z) 

n ^ 2 - te2tan2 M ) 
n - 2 

9 1 B ,^~ ~~ „™ _ , fo r even n >_ 4 . 
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nax 
2 

n - 3 
2 

n 
fe = 0 

oz2- to2tan2 ^K 

Vn(x, z) 

ri U 
k = 0 L 

2 - to2tan2 - ^ 

5J J fo 

+ 1)TT1 
>n J 

r odd n _>_ 3 9 

n - 1 
2 

w n 
k = l 

oz2- bx2cot2 2/orl 
n J 

Wn(x, z) 

n C3 ~ to COt [] 

for even n > 2 . 

fo r odd n >_ 3 9 

fo r even n _> 4 . 

VnjQOJi Un(x, z) = Fn (ox9 to2 + oz2) = H | ax 
k-

n-1 / 
2 i / t o 2 + c s 2 cos : ^ ] . 

I f n i s odd and _> 3 , then t h e n - 1 r o o t s of Un (x9 s ) occur i n con juga te 
p a i r s , so t h a t 

n - 1 

M ^ > s) = n i"a2x2 + 4(te2 + ^ 2 > c o s 2 —1 
k = 1L ^J 
n-1 

- II (-4te2sin2 ̂  + 4C3
2cos2 M ) 

n-1 

n(. 
fe = l 

oz2 - to2tan2 — J n / 

by Lemma 11. 

If n is even and >_ 49 then the n - 2 roots of Un(xs z) remaining after 
the root 0 is excluded occur in conjugate pairs, and we find as above that 

Un{x, z) 
k = lx 

oz - bx'tan kfr\ 
n y 

With the help of Lemma 11, the remaining four factorizations are proved in 
the same way. 

Lemma. 12: Suppose a2 + kb = 0. For n >_ 39 the transformed generalized Fi-
bonacci cyclotomic polynomial Qi^x, z) = ^n(axs bx2 + oz2) is given by 
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PI \ ^ 2 - to2tan2 —J fo r odd n > 3 , 
" - D / 2 

= 1 

n U - te2tan2 M) 

0( n (x , 3) ~ 
1 YlCtX 

~2~ II l ^ ™ ^^t a n^ ~ ) f o r e v e n n >_k. 
l£k£(n-2) /2^ 

(k ,n) - l 
P 1̂0Q »̂ This i s an obvious consequence of Theorem 11 and t h e f a c t t h a t t h e 
r o o t s of <x^n(x5 z) a r e 

2i/z cos — , (ks n) = ls I < k < n - I, n ~ — 

TkdOtiQjm I2: Suppose a, b5 a are integers and a2 + 4£ = 0„ Except for an in-
teger multiple, for n _> 1 s the polynomial cKn(xs z) is irreducible over the 
ring of integers. 

PsiOO^t The proposition is clearly true for n = 1 and n = 2. Suppose, for 
n _> 3, that Qin0£, s) = p(x, s)̂ (a;, a). By Lemma 12 and the irreducibility 
(since -b > 0) of the factors 

2 T_ 2 2 kl\ 
cz - bx tan — n 

over the real number field, p(xs z) has the form P(x5 z2)andq(x9 z) has the 
form Q(xs z2) . Thus, putting v = ccx and s = bx2 + CB 2

5 we find 

( r_ g2s - br2\Q lr_ a2s - br2\ 
as a2o ) \a' a2a ) ' 

Since ?n(p, s) is irreducible, one of the polynomials P and Q must be constant. 
But then p(xs z) or q(x5 z) is constant, as desired. 

Tk&Qfiom 13* Suppose (a, bs a) = (2,-1, 1). The Binet formulas for the poly-
nomials Un, Vn5 and Wn are as follows: 

M * . « ) - ° c + ' ) ,
2; ( a ;"8 )" 

-Fn(x, 2) for odd n, 

(* + 3)n + (x - g) w - 2(s2 - x2) n/2 . 
_v i_ >s j . b 1 for even n. 

2x 

p ^ . . L e t t i . y + /y
2
2 + 4 s , t2 = * - /P22 + 4 S, t3 = v^, t, - Vi". Putting 

p = 2x and s = s 2-^ 2, the desired formulas follow immediately from the Binet 
formulas 

Fn(r, s) = x _ 2, 

Ln(r, s) = tl + t\ 
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£n(r, 0, s) = , _ . 
^1 ^2 ^3 ^ 
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GEOMETRIC RECURRENCE RELATION 

LEONARD E. FULLER 
Kansas State University, Manhattan KA 66502 

1. INTRODUCTION 

In a previous paper [1], we considered p, s sequences {Uy} and obtained 
explicit formulations for the general term in powers of r and s. We noted 2 
special sequences iGy) and {Mk}. These are sequences that specialize to the 
Fibonacci and Lucas sequences where r = s = 1. 

In this paper, we propose to consider the relationship between r,s re-
currence relations and geometric sequences. We give a necessary and suffi-
cient condition on r and s for the recurrence relation to be geometric. We 
conclude the section by showing how to write any geometric sequence as an r, 
s recurrence relation. 

In the final section, we briefly consider a special Fibonacci sequence. 
We give an explicit formulation for its general term. We are then able to 
note when it is a geometric sequence. 


