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1. INTRODUCTION

If p is a prime, let Zp denote the integers modulo p and Z%¥ the set of
nonzero elements of Zp. It is well known that every function from Zp x Zp
into Z, can be represented as a polynomial of degree <p in each variable. We
say that a polynomial f(x,, x,) with coefficients in Zp is a Zocal permuta-
tion polynomial over Zp if f(x,, a) and f(b, x,) are permutations in 2, and
x, for all a, b € Zp.

In Section 2, we obtain a set of necessary and sufficient conditions on
the coefficients of a polynomial f(x,, x,) over Zp, p an odd prime, in order
that f(x,, x,) be a local permutation polynomial. Clearly the number of lo-
cal permutation polynomials over Zp equals the number of Latin squares of
order p. Thus, the number of Latin squares of order p equals the number of
sets of coefficients satisfying the set of conditions given in Section 2.
Finally, in Section 3, we use our theory to show that there are twelve local
permutation polynomials over Z which are given by

Flrys x,) = a0, +ag,x, +a,
where a;9 = 1 or 2, ag; =1 or 2, and qyy = 0, 1, or 2.

2. A NECESSARY AND SUFFICIENT CONDITION

Clearly, the only local permutation polynomials over Z, are x; + x, and
x, + £, + 1 so that we may assume p to be an odd prime. We will make use of
the following well-known formula

p-1
(2.1) Ejk = {
m=1

Suppose

0 if Kk # 0 (mod p - 1),

-1 if K =0 (mod p - 1).

p-1 p-1
Floys @) = 3 D, anyin]
m=0 n=0
is a local permutation polynomial. Let f(¢, j) = k;; for 0 <<, j <p - 1.
Since no permutation over Z, can have degree p - 1, we have

Ay, p-1 = 0,

(cn) p-1

D K'a, ,_, =0, k=1, ..., p- L

m=1

Suppose 7 = 0 so that
PO, 9 = agy +agd + o0 +ay , J7T =Ky
Let kéj = koj - koo for j =1,...,p - 1. The set {kéj} = Zg and, moreover,
Gord + Gppd® + oo g,y =KL for § =1, ..., p - L.

Raising each of the p - 1 equations to the kth power, summing by columns and
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using (2.1), we obtain

i X 0 if k = 2, R -2
@ S K 4
To1! eve Lo p_q! 01 0,p-1 e

P l1if k=p -1
where the sum is over all (p - 1)-tuples (iOl, cees io,p—l) with
(@) 0 < 2,5 «uus io,p—l <k,
(b) Loy + oee + iy, =k
() 24, + 205, + oo + (p - l)io’p_1 =0 (mod p - 1).

If £ > 0 is fixed, consider

" p-1 p-1

(2.2) O P D D N e L i I T
m=0 n=1

so that {k};}=2%. For each k = 2,..., p = 1 raise each of the p - 1 equa-
tions in (2.2) to the kth power, sum by columns, and use (2.1) to obtain

(€3) Z[]I]__.__=

3 1
m=0n=1 Tmn :

imn'z I
p-1p-1 klagmi™" { 0if k=2, ..., p -2
1lifk=p -1
for each 2 =1, ..., p - 1, where the sum is over all (p2 - p)-tuples

(Zggs eovs Tums oves ip_l’p_l)
which satisfy

(d) 0 < ipy <Kk,

p-1 p-1
(e) 2 Zimn =k,
m=0 n=1
p-1 p-1 p-1
(£) D iy ¥ 29 iy + vor t (0= 1) D imp-1 =0 (mod p - 1).
m=0 m=0 m=0

A further word of explanation about the sum in (C3) may be helpful at
this time. Conditions (d) and (e) arise because of the multinomial coeffi-
cients, while (f) determines which terms appear in the given condition.
Moreover, the Xm appearing in (C3) is understood to mean the sum, counting
multiplicities, of all the first subscripts of the a,,'s which appear in a
given term. Finally, we note that condition (C3) actually involves a total
of (p - 1)(p - 2) conditions.

If we now fix j and proceed as above, we obtain another set of necessary
conditions. For brevity, we simply state these as

Ayoq,9 = 0,

(c1") o1
n

2 Ky,

n=1

n
o
s
=
0
.
:
3
I
-
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When j = 0, we have

0 if k
k! i io-
2" z — g Ty eee @0 =
/Llo. ees L H 0 p 5 0 lifk

2, iy p -2

p-1
where the sum is over all (p - l)-tuples (2,45 «..» ip—l o) with
(a’) O f-ilo’ e ip—l,o <k,

') Tyt eee ip—l,o =k,

(e¢") zZ. + 2i20 + -0+ (p - 1)ip 0 (mod p - 1).

1

10 -1,0
When j =1, ..., p - 1, we obtain

-1 P-— k'a""’n 0 if k
LD II1 =

1]

2, veusp =2

=0 mn! 1 if k

p-1

where the sum is over all (p? - p)-tuples (Z3g5 «++s Tmns ++vs Lp_1,,-1) that
satisfy

@ 02 ip, <Kk,

p-1 p-1
e D D imm =k
m=1 n=0
p-1

p- p-1 .
(£) D iin+ 29 dgy + oot @ - 1) 4y, =0 (mod p - 1).
m=0 n=0 n=0

We now proceed to show that if the coefficients of a polynomial f(x,, x,)
satisfy the above conditioms, then f(x,, %,) is a local permutation polyno-
mial. Suppose the coefficients of f(x,, x ) satlsfy (c1), (c2), (€3), (C1N,
(C2'"), and (C3'). For each fixed 7, let t;; = f(Z, J) - f(Z, 0) for j =1,
«e.» p - 1. The above conditions imply that for fixed ¢ =0, 1, ..., p -1
the t-j satisfy

2

p-1 0 if k
(2.3) thj =
i=1

1, ..., p -2,

-1 if k

1]

p - 1.
Let V be the matrix
i1 e t%p_l

2 2
Zyp=1

Using (2.3), we see that
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-1 0. 0 0
0O 0.. 0 -1
0 0 -1 0

det (V%) = det(V)det(V) = det e - 41,

0O -1... 0 O
Since det(V) is the Van der Monde determinant, we have, for fixed <,
det(V) = I (t;; - £t42) # 0
>k
so that the ¢;; for Jg=1, ..., p - 1 are distinct. Hence,

F(, 0) and £(i, §) = t,; + F(i, 0) for j =1, ..., p - 1

constitute all of Zp.
A similar argument shows that if for each fixed g,

=f, ) - £, §) for 2 =1, ..., p -1,

then
f(os j) andf(i: j)=sij+f(os j) fori=l, 0--sp_1
run through the elements of Z,. Hence, we have

Theorem 1: If f(x,, x,) is a polynomial over Zp, p an odd prime, then f is
a local permutation polynomial over Zp if and only if the coefficients of f
satisfy (Cl), (C2), (C3), (cl1'), (C2"), and (C37).

Coroflary 2: The number of Latin squares of order p an odd prime equals the
number of sets of coefficients {a,,} satisfying the above conditions.

We note from condition (Cl) that Ay, p-1 = al = eee =y poy =0,
since the determinant of the coefficient matrix in (Cl) is the Van der Monde
determinant. Similarly, (Cl') implies that a a,
= 0. We further note that we have a total of 2p(p - 1) COndlthHS so that,

in general, the conditions are not independent.

3. ILLUSTRATIONS

As a simple illustration of the above theory, we determine all local
permutation polynomials over Z;. If

2 2
flzys z,) = Z Z A T3E 5
m=0 n=0

then the set of necessary and sufficient conditions becomes

(2.4) Ayy, = Gyy =Qyy = Ay =y, =0,
2 2 _ 2 2 _
(2.5) Ay T Ay, = a3, T A, L,
2 2 _ 2 2 _
(2.6) ayy, tay, *2a5,a,, =a, ta, taaa, =1
2.7) a? +ad® +a .a,. =a®> +d*> +a a. . =1.



108 CYCLOTOMIC POLYNOMIALS [April

Using (2.4) and (2.5), we see that a,, = 1 or 2 and a;, =1 or 2. From
(2.6) and (2.7), we have a,; = 0. Since q;, is arbitrary, we see that there
are a total of twelve local permutation polynomials over Z,, given by

Fl@ys ) = ayg®y + ag12, + agys

where a,, = 1 or 2, a3, =1 or 2, and a;, = 0, 1, or 2,

IR

GENERALIZED CYCLOTOMIC POLYNOMIALS., FIBONACCI CYCLOTOMIC
POLYNOMIALS, AND LUCAS CYCLOTOMIC POLYNOMIALS®
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1. INTRODUCTION AND MAIN THEOREM

In [6], Hoggatt and Long ask what polynomials in I[x ] are divisors of
the Fibonacci polynomials, which are defined by the recursion

Folx) =0, Fi(x) =1, Fy(x) =xF,_ (@) +F _ (x) for n > 2.

In this paper, we answer this question in terms of cyclotomic polynomials.
We prove that each Fibonacci polynomial F, (x), for »n > 2, has one and only
one irreducible factor which is not a factor of any Fy (x) for any positive k
less than n. We call this irreducible factor the nth Fibonacci cyclotomic
polynomial and denote it F,{(x).

The method applied to F,'s to produce &F,'s applies naturally to the more
general polynomials %,(x, y, 2) which were introduced in [7] and are defined
just below. Accordingly, in Section 2, we shall apply the method at this more
general level rather than directly to the F,'s. The polynomials C,(x, y, )
so obtained from the £,(x, y, 8)s we call generalized cyclotomic polynomials.
Special cases of the (,'s are the ordinary cyclotomic polynomials C, {x, 1, 0),
the Fibonacci cyclotomic polynomials F, already mentioned, and a sequence

Lo(x) = Cplx, 0, 1)

which we call the Lucas cyclotomic polynomials. Section 3 is devoted to the
F's and Section 4 to the ¥,'s. In Sections 3,4, and 5, we determine all the
irreducible factors of the Fibonacci polynomials, the modified Lucas polyno-
mials defined in [7] as %,(x, 0, 1), and the Lucas polynomials.

In Section 6, we transform the generalized Fibonacci and Lucas polyno-
mials into sequences U, (x, z) and V, (¢, z) having the same divisibility prop-
erties as the F,'s and L, s, respectively. The ccefficients of these poly-
nomials are all binomial coefficients, in accord with the identity

28U, (x, 8) + V,(x, 2) = (x + 2)".
The polynomials %,(x, y, %) may be defined as follows:
L,(x, 38) - 0,(y, =)

L xs ¥y, B8) = Z =y for n > 0,
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