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A CLASS OF SOLUTIONS OF THE EQUATION o(n) = 2n +t

NEVILLE ROBBINS
Bernard M. Baruch College, New York, NY 10010

INTRODUCTION
Let the nondeficient natural number n satisfy
D fn) =¢t,

where f(n) = o(n) - 2n, and ¢t is a given nonnegative integer. Clearly, (1)
is equivalent to

(1% om) =2n + t.

Definition 1: m is acceptable with respect to n if m is a nondeficient pro-
per divisor of n.

Deginition 2: n is primitive if no number is acceptable with respect to #;
otherwise, »n is nonprimitive.

Remank 1: Primitive nondeficient numbers were defined by L. E. Dickson [3],
p. 413.

If ¢t =0 in (1), then n is called perfect. It is known that when »n is
perfect:

(a) 4if n is even, then n = Zp_l(Zp - 1) where 2P - 1 is prime
(Euclid-Euler);

(b) 4if n is odd, then »n has at least 8 distinct prime factors
[4] and exceeds 10°° [5];

(¢) »n is primitive.

If £t =1 in (1), then n is called quasiperfect [2]. It is known that if
n is quasiperfect, then:

(a) »n is odd and primitive [2];
(b) 7 has at least 6 distinct prime factors and exceeds 10%° [6].

On the other hand, for ¢ = 3, by inspection we obtain the nonprimitive
solution n = 18. This suggests that nonprimitive solutions of (1), when they
exist, are more easily obtained than primitive ones.

In this article, we shall determine the set of all nonprimitive solu-
tions of (1) for each ¢ such that 2 < £ < 100. Theorem 1 states that Table 5
contains all such solutions for the given range of values of ¢.

*
* *
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Definition 3: For given nonnegative t, let S(t) denote the set of all non-
primitive solutions of (1).
Pomerance [7] showed that S(£) is finite unless there exists Kk such that

t =o(k) = 2k.

Remark 2: In this case, a subset of S(£) consists of all numbers kq where q
is prime and (k, g) = 1. If also k is even, so that ¢ = 2P(2P-1) and 2P-1
is prime, then it is easily verified that 22P~1(2P-1) and 2P"1(2P - 1)3 also
belong to S(¢).

Lemma 1: 1If m is acceptable with respect to n, then f(m) < f(n).
Proog: By [7], Lemma 5, we have o(m)/m < c(n)/n. Therefore,
(om) - 2m)/m < (o(n) - 2n)/n,
i.e., fm)/m < f(n)/n. Now,
fm) >0=F7fm/n < fm/m=Ffm/n < fn)/mn=7Fm <Ffx).

Deginition 4: m is maximal with respect to n if m is the largest number that
is acceptable with respect to #n.

Lemma 2: 1If n is nonprimitive and m is maximal with respect to #, then there
exists a prime, p, such that n = mp.

Proof: Let p be a prime which divides n/m, i.e., mp divides n. Now mp > m,
so that, by hypothesis and Lemma 1, we have

fmp) > f£0m) = 0.
Since m is maximal with respect to n, mp is not a proper divisor of n. Thus,
mp = n.
Conoflary 2.1: m is maximal with respect to n if and only if m = n/p, where

p is the least prime such that n/p is an integer which is acceptable with re-
spect to #n.

Proof: The proof follows directly from Lemma 2.

Conollary 2.2: 1f n/2 is a nondeficient integer, then #/2 is maximal with
respect to 7.

Proof: The proof follows directly from Corollary 2.1.

In order to construct Table 5, we first determine all nonprimitiven
such that f(n) < 100. Assume, furthermore, that n = mp where p is prime and
m is maximal with respect to n. The need for the latter condition will be
justified below.

Case 1. Suppose (m, p) = 1. Then
f() = f(mp) = o(mp) - 2mp = (p + LDa(m) - 2mp = pf(m) + o(m).
Thus, 2m < o(m) < f(n) < 100, so that m < 50. Now,
f(m) >0=>me {6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48}.

Suppose that m = 2%3%c > 6, where a, b, and ¢ are natural numbers and 6, e)
= 1. Then n = 2a3bcp, with (6¢, p) = 1. If ¢ =1, thenag > 1 or b > 1. If
a > 1, then 2“"13bp is acceptable with respect to n, so that 2“'13bp < 2a3b,
which implies p < 2, an impossibility. Similarly, b > 1 implies p < 3. If
¢ > 1, then 2a3bp is acceptable with respect to u, so that 2a3bp < 293%;, and
p <c. Now,
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(6e, p) =1=p >25=¢c > 6.
But 6 <m < 50 = ¢ < 8. Thus,
(6, ¢) =1l=c=7=m=142=Ff(n) = 12p + 96 > 156,

contradicting the hypothesis. Likewise, m = 40 = f(n) = 10p + 90 > 120. 1If
m =6 and p > 5, then f(6p) = 12 By Corollary 2.1, it is easily verified
that 6 is maximal with respect to 6p. Ifm= 28 and (14, p) =1, then f(28p) =
56. If p < 11, then 1l4p is maximal with respect to 28p; if p > 11, then 28
is maximal with respect to 28p. If m= 20 and (10, p) =1, then f(20p) =42+ 2p.

As above, 20 is maximal with respect to 20p if and only if p > 11. Also,
f(n) = f(20p) < 100 =>p < 29.

For each m € {6, 28, 20}, and for each prime p such that m is maximal
with respect to m=mp, and f(n) < 100, we list m, p, n, and f(n) in Table 1.

TABLE 1
m p n £
6 =5 6p 12
28 >11  28p 56
20 11 220, 64
20 13 260 68
20 17 340 76
20 19 380 80
20 23 460 88
20 29 580 100

Cate 2. Suppose p divides m. Let m = pkr, n = pX+lr, where (p, r) = 1.
Now,

f@m) = a(m) - 2m = o(pkr) - 2pkr = o(pk)o(r) - 2pkr
= (p*k + o@*"YH)o(r) - 2pkr = pk(a() - 2r) + o(Pk-1o(®).
Similarly,
fn) =pk+ti(o(x) - 2r) + o(pk)o(r).
Therefore,
fn) - fm) = @*** - pX)(o(r) - 2r) + pka(r) = p¥(pa(r) - (p - D2r).
Now,

fn) =t=0<fn) - fm) =d=t.

Therefore, the solutions of (1) may be found among the solutions of

(2) f(n) - f(m) = d, where d < 100.

Let h(p, k, ») = pk(po(r) - (p - 1)2r). Then (2) is equivalent to
(3) h(p, k, r) = d,

with the restriction that

(4 fpkr) > 0.

Furthermore, (4) implies

(5) r > 2,
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since f(pk) < 0 for all primes p and all exponents k. Henceforth we consider
3).

Deginition 5: Let g(r) = o(r) - r, where r is a natural number.

Lemma 3: 1If

(6) h(2, k, ) = d, where » is odd,

then d = 0 (mod 4). All solutions of (6) for d < 100 are given in Table 2.
TABLE 2

d kK g r s n () d kg r s n__ fn)
4 1 1 3 + 12 4 64 1 16 * * * *
8 1 2 * % * * 64 2 8 49  + 392 71
8 2 1 3 + 24 12 64 3 4 9 + 144 115
8 2 1 5 + 40 10 64 4 2 * * * *
8 2 1 7 + 56 8 64 5 1 3 + 192 124
12 1 3 * * * * 64 5 1 5 4+ 320 122
16 1 4 9 + 36 19 64 5 1 7 + 448 120
16 2 2 * * * * 64 5 1 11 + 704 116
16 3 1 3+ 48 28 64 5 1 13 + 832 114
16 3 1 5 + 80 26 64 5 1 17 + 1088 110
16 3 1 7 + 112 24 64 5 1 19 + 1216 108
16 3 1 11+ 176 20 64 5 1 23 4+ 1472 104
16 3 1 13+ 208 18 64 5 1 29 + 1856 98
20 1 5 * * * % 64 5 1 31 + 1984 96
24 1 6 25 - * * 64 5 1 37 + 2368 90
24 2 3 * * * * 64 5 1 41 + 2824 86
28 1 7 * * * * 64 5 1 43 4+ 2952 84
32 1 8 49 - * * 64 5 1 47 + 3008 80
32 2 4 9 + 72 51 64 5 1 53 + 3392 74
32 3 2 * * * * 64 5 1 59 + 3776 68
32 4 1 3+ 96 60 64 5 1 61 + 3904 66
32 4 1 5 + 160 58 68 1 17 39 + 156 80
32 4 1 7 + 224 56 68 1 17 55 - * *
32 4 1 11 + 352 52 72 1 18 289 - * *
32 4 1 13 + 416 50 72 2 9 15 + 120 120
32 4 1 17  + 544 46 76 1 19 65 - * *
32 4 1 19 + 608 44 76 1 19 77 - % *
32 4 1 23 4+ 736 40 80 1 20 361 - * *
32 4 1 29 + 928 34 80 2 10 * * * *
32 4 1 31 + 992 32 80 3 5 * * * *
36 1 9 15 + 60 48 84 1 21 51 + 204 96
40 1 10 * * * * 84 1 21 91 - * *
40 2 5 * * * * 88 1 22 * * * *
44 1 11 21 + 84 56 88 2 11 21+ 168 144
48 1 12 121 - * * 92 1 23 57 + 228 104
48 2 6 25 + 200 65 92 1 23 85 - * *
48 3 3 * * * * 96 1 24 529 - * *
52 1 13 27 + 108 64 96 2 12 121 - * *
52 1 13 35+ 140 56 96 3 6 25 4+ 400 161
56 1 14 169 - * * 96 4 3 * * * *
56 2 7 * * * * 100 1 25 95 - * *
60 1 15 33+ 132 72 100 1 25 119 - * *
100 1 25 143 - * *
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h(2, k, v) = 2K(20() - 2r) = 2**1g9(r) =d; k2 1=d = 0 (mod 4).

To solve (6) for d < 100, we proceed as follows. For each d such that d = 0
(mod 4), and for each k such that d = 0 (mod 2%*1), we compute g(r) = 2-(k+1) g
Next, we list the corresponding odd values of r, if any, using [1], Table 6.1.
If no such r exists, then there is no solution of (6) corresponding to the
chosen values of d and k. In this case, the r» column and all columns to its
right contain asterisks. For each possible r, we compute f(2¥r) and list its
sign, s, considering O to be positive. If f(2kr) < 0, then there is no solu-
tion, and the last two columns contain asterisks. If f(Zkr) > 0, then we
have obtained a solution of (6), and n = 2k*1lp corresponds to a solution of
(2). In this case, we list n and f(n). If g(r) =1, then r is prime and (4)
implies »r < 2% - 1. 1In this case, we list only such r.

Lemma 4: 1If

@)) pa(r) - (p ~ D2r = v,

where p is an odd prime, (p, r) = 1, and (4) holds, then we must have:
(8) o(r) =pv + (p - 1)2u;

9 r=(p+ 1)v/2 + pu;

(10) P> v) = 1;

(11) r < va(pk)/2.

Egggﬁ: Solving (7) for o(r) and 2r in terms of p and v, one has

(8%) a(r) =pv + (p + Dw;

(9%) 2r = (p + 1)v + pw.

(9%) = w is even. Setting w = 2u, one obtains (8) and (9). (10) follows di-
rectly from the hypothesis. (11) is derived from (4) as follows:

fpkr) > 0 = 0@k o(r) > 2pkr = pa(p*)a(r) > 2p*+1ir;
(7) =po@k)a(@) - (p - Da@EK)2r = va(pk).
Therefore,
2pk+lp — (pk*l - 1)2r < vo(pk) = 2r < vo(pk) =>r
Conoflarny 4.1: 1If
(12) hip, k, ) =pis,

where p is an odd prime, s > 1, and (p, s) =1, then k = j.

< va(pk) /2.

Proof: By hypothesis, (7) holds with v = pj'ks. Now (10) implies j - k = 0,
i.e., k=4.

Lemma 5: If
(13) hip, k, r) =q,
where g is an odd prime, then k = 1, and for some integer, a, we have

p=gqg=2%-1,pr =291

Proog: p divides g = p = q. Hypothesis and Corollary 4.
<

= k =1, Thus,
(13) reduces to (7) with v 1. From (l1), we have r 1

1
(p + 1)/2, so that
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u <0 in (9). But (5) and (9) = u > (3 - p)/2p. Therefore, u =0, i.e.,
o(r) =p, r=(p + 1)/2. o(r) =p =>r =591 for some prime, s, and some
integer a > 2. Now,

§4-l4+s5a-24 .. + 5+ 1=0(%1) =0@) =p=2r-1=2s2-1-1,
Therefore, 2 divides s, i.e., s = 2. Thus, » = 2971, p=2%-1.
Lemma 6: TFor any J, the unique solution of
(14) hp, k, r) = 37
is: p=3, k=g, r =2,

Proog: Clearly, p = 3, k = j, and (14) reduces to 30(r) - 4r = 1. (8) and

(9) =r = 2+3u, o(r) = 3+4u = o(r) is odd = r = 2°b? with a > 0 and b odd.
Furthermore, (3, ») =1 = (6, b) = 1. r =2 (mod 3) = 2%?% = 2 (mod 3)=
2922 (mod 3) =2 a >1=r is even = 0(r)/r > 3/2=>20(r) >3 =6+ 8u > 6 +

u=>u<0=r<2. By (5, r = 2.

Lemma 7: TFor no j does

(15) hp, k, r) = 57
have a solution.

Proof: 1If a solution exists, then p =5, k = J, and (15) reduces to 50(r) -
8r = 1, so that » = 3+ 5u, 0(r) = 5+ 8u, and r = 2°b? with a > 0 and (10, b)
=1. Nowr = 3 (mod 5) =>2%2 = 3 (mod 5) = 2% = 2 or 3(mod5) =a = 2¢+ 1.
But 0(2%°*') = 0 (mod 3). Thus,

g(r) Z0 (mod 3) =u =2 (mod 3) =2r =1 (mod 3)

= 22¢*1p2 = 1 (mod 3) =52 = 2 (mod 3),

an impossibility.

Lemma 8: 1If

(16) h(p, k, r) = q7,

where g is an odd prime, § > 2, and q¢ < 100, then k = j and either
(1) p=3,r=2,2<g <4; or
(i) p=7,»r =4, 5 = 2.

Proog:

g> <gqf <100=>g <10=q ¢ {3, 5, 7}.

If ¢q = 3, then 39 < 100 = j < 4, and the solutions of (16) are given by Lem-
ma 6. Lemma 7 =g # 5. If g = 7, then 77 < 100 =4 = 2, and (16) reduces to
70(r) - 12r = 1. Therefore, by Lemma 4, we have

o(r) =7+ 12u, r = 4 + Ju, r < 28.

By inspection, we must have r = 4,
Combining the results of Lemmas 5 and 8, we list all solutions of
17 h(p, k, r) =q7,

with ¢ an odd prime and ¢7 < 100, in Table 3. For each g7, we list p, k, »,
as well as the m, n of the corresponding solution of (2), and f(n). It is
easily verified that in each case m is maximal with respect to n.
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TABLE 3
q p K r m n )
3 3 1 2 6 18 3
7 7 1 4 28 196 7
9 3 2 2 18 54 12
27 3 3 2 54 162 39
31 31 1 16 496 15736 31
49 7 2 4 196 1372 56
81 3 4 2 162 486 120

Lemma 9: For no odd prime g does
(18) hp, k, r) = 2qg
have a solution.

Proof: If a solution exists, then by hypothesis, Lemma 3, and Corollary 4.1,
we have p # 2, p = g, and k = 1. Thus, (18) reduces to (7) with v = 2, and
we have a(r) = 2p + (p - D2u, r =p + 1 +pu, »r <p + 1. Now, (5 =>u =0,
r=p+ 1, a(r) =2p. Let » = 2% with ¢ > 1 and b odd. Then,

a(¥) = 0(2%)o(b) = 2p, so that o(b) = 2,

an impossibility.
Defdnition 6: 1f 0 < a < 3, let

C, ={r : 2 <r <100, and o(r) Z a (mod 4)}.
By inspection, we have

Cy =13, 6, 7, 11, 12, 14, 15, 19, 21, 22, 23, 24, 27, 28, 30, 31,
33, 35, 38, 39, 42, 43, 44, 46, 47, 48, 51, 54, 55, 56, 57, 59,
60, 62, 63, 65, 66, 67, 69, 70, 71, 75, 76, 77, 78, 79, 83, 84,
85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 99};

¢, = {9, 49, 50, 81, 100};

c, = {5, 10, 13, 17, 20, 26, 29, 34, 37, 40, 41, 45, 52, 53, 58, 61,
68, 73, 74, 80, 82, 89, 90, 97};

c, =1{2, 4, 8, 16, 18, 25, 32, 36, 64, 72, 98}.

Lemma 10: 1In (3), if » = gqb, where ¢ is prime, then g = 2 and » ¢ (;.
E&ggﬁ: (4) implies

(p/ - D)(qllqg - 1)) > @ r)pkr 2 2=>q < 2(p - 1)/(p - 2).

If p=3, then g < 4 >g=2, since (p, r)=1. If p > 5, then g < 8/3 =g=2.
o(2b) =26+l -1 =3 (mod 4) = r e C,.

Lemma 171: All solutions of (3) such that p is odd, d < 100, d # q7, where g
is an odd prime, are given in Table 4.

Proof: To obtain the desired solutions of (3), we proceed as follows: for
each d # 2q, # g7, for each odd prime p such that pkv =d, (p, v) =1, we
list p, k, v. If r exists such that (7) holds, we must have:
(i) r <r = [vo(pk)/2];
(11) r = v + 1)/2 (mod p);
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(iii) » € Cy, where pv = a (mod 4);
(iv) » is not a power of a prime unless » = 2P and q = 3.

For convenience, we list »r, r, [the least positive residue (mod p) of v(p+ 1)/2],
and a. If no r exists satisfying the above conditions, then (3) has no solu-
tion corresponding to that particular choice of p, d. In this case, the r
column and all remaining columns contain asterisks. For each » which does
satisfy the conditions, we compute and list w = po(r)- (p - 1)2r. If w # v,
then we have no solution, and the remaining columns contain asterisks. If
w = v, we have a solution. We list the values m and »n of the corresponding
solution of (2). Finally, we test m for maximality with respect to #n using
Corollaries 2.1 and 2.2. If the test is positive, the max column says yes
and the final column lists f(n); otherwise, the max column says no and the
final column contains an asterisk.

TABLE 4
d p k ) r 7, a r w m n max f(n)
12 3 1 4 8 2 0 * * * * * *
15 3 1 5 10 1 3 4 5 12 36 no *
15 5 1 3 9 4 3 4 3 20 100 yes 17
18 3 2 2 13 1 2 10 14 * * * *
20 5 1 4 12 2 0 12 44 * * * *
21 3 1 7 14 2 1 9 3 * * * *
21 7 1 3 12 5 1 9 -17 * * * *
24 3 1 8 16 1 0 * * * * * *
28 7 1 4 16 2 0 * * * * * *
30 3 1 10 20 2 2 20 46 * * * *
30 5 1 6 18 3 2 18 51 * * * *
33 3 1 11 22 1 1 * * * * * *
33 11 1 3 18 7 1 * * * * * *
35 5 1 7 21 1 3 16 27 * * * *
35 7 1 5 20 6 3 * * * * * *
36 3 2 4 26 2 0 14 129 * * * *
39 3 1 13 26 2 3 8 13 24 72 no *
39 13 1 3 21 8 3 8 3 104 1352 yes 41
40 5 1 8 24 4 0 14 8 70 350 yes 44
42 3 1 14 28 1 2 10 14 30 90 yes 54
42 7 1 6 24 3 2 10 6 70 490 yes 46
44 11 1 4 24 2 0 24 180 * * * *
45 3 2 5 32 1 3 4 5 36 108 no *
45 3 2 5 32 1 3 16 29 * * * *
45 3 2 5 32 1 3 25 -7 * * * *
45 5 1 9 27 2 1 * * * * * *
48 3 1 16 32 2 0 14 16 42 126 yes 60
50 5 2 2 31 1 2 26 2 650 3250 yes 52
51 3 1 17 34 1 3 4 5 * * * *
51 3 1 17 34 1 3 16 29 * * * *
51 3 1 17 34 1 3 25 -7 * * * *
51 17 1 3 27 10 3 * * * * * *
52 13 1 4 28 2 0 15 -48 * * * *
52 13 1 4 28 2 0 28 56 * * * *
54 3 3 2 40 1 2 10 14 * * * *
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d p k % r r a r w m n max  f(n)
54 3 3 2 40 1 2 34 26 * * * *
54 3 3 2 40 1 2 40 110 * * * *
55 5 1 11 33 3 1 8 11 40 200 no *
55 5 1 11 33 3 1 18 51 * * * *
55 11 1 5 30 8 1 8 5 88 968  yes 59
56 7 1 8 32 4 0 * * * * * *
57 3 1 19 38 2 1 * * * * * *
57 19 1 3 30 11 1 * * * * * *
60 3 1 20 40 1 0 22 20 66 198 yes 72
60 5 1 12 36 1 0 6 12 30 150 yes 72
63 3 2 7 45 2 1 * * * * * *
63 7 1 9 36 1 3 8 9 56 392  no *
65 5 1 13 39 4 1 * * * * * *
65 13 1 5 35 9 1 9 =47 * * * *
66 3 1 22 44 2 2 20 46 * * * *
66 3 1 22 44 2 2 26 22 78 234 yes 78
66 11 1 6 36 3 2 * * * * * *
68 17 1 4 36 2 0 * * * * * *
69 3 1 23 46 1 1 * * * * * *
69 23 1 3 36 13 1 * * * * * *
70 5 1 14 42 2 2 * * * * * *
70 7 1 10 40 5 2 26 -18 * * * *
70 7 1 10 40 5 2 40 150 * * * *
72 3 2 8 52 1 0 22 20 * * * *
72 3 2 8 52 1 0 28 56 * * * *
72 3 2 8 52 1 0 46 32 * * * *
75 3 1 25 50 2 3 8 13 * * * *
75 3 1 25 50 2 3 32 61 * * * *
75 5 2 3 46 4 3 4 3 100 500 yes 92
76 19 1 4 40 2 0 21 -148 * * * *
77 7 1 11 44 2 1 9 -17 * * * *
77 11 1 7 42 9 1 9 -37 * * * *
78 3 1 26 52 1 2 10 14 * * * *
78 3 1 26 52 1 2 34 26 102 306 yes 90
78 3 1 26 52 1 2 40 110 * * * *
78 3 1 26 52 1 2 52 86 * * * *
78 13 1 6 42 3 2 * * * * * *
80 5 1 16 48 3 0 28 56 * * * *
80 5 1 16 48 3 0 33 =24 * * * *
80 5 1 16 48 3 0 38 -4 * * * *
80 5 1 16 48 3 0 48 296 * * * *
84 3 1 28 56 2 0 38 28 114 342 yes 96
84 7 1 12 48 6 0 6 12 42 294  yes 96
84 7 1 12 48 6 0 27 =44 * * % *
85 5 1 17 51 1 1 * * * * * .
85 17 1 5 45 11 1 * * * * * *
87 3 1 29 58 1 3 4 5 * ® * *
87 3 1 29 58 1 3 16 29 48 144  no *
87 3 1 29 58 1 3 25 -7 * * * *
87 29 1 3 45 16 3 16 3 474 13456 yes 89
88 11 1 8 48 4 0 15 -36 * * * *
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d p k v r r a »r w m n max  f(n)
88 11 1 8 48 4 0 48 404 * * * *
90 3 2 10 65 2 2 20 46 * * * *
90 3 2 10 65 2 2 26 22 * * * *
90 5 1 18 54 4 2 * * * * * *
91 7 1 13 52 3 3 * * * * * %
91 13 1 7 49 10 3 36 319 * * * *
92 23 1 4 48 2 0 48 80 * % * *
93 3 1 31 62 2 1 50 79 * * * *
93 31 1 3 48 17 1 * * * * * *
95 5 1 19 57 2 3 32 59 * * * *
95 19 1 5 50 12 3 * * * * * *
96 3 1 32 64 1 0o 22 20 * * * *
96 3 1 32 64 1 0 28 56 * * * *
96 3 1 32 64 1 0 46 32 138 414  yes 108
96 3 1 32 64 1 0 55 -4 * * * *
98 7 2 2 57 1 2 * * * * % *
99 3 2 11 71 2 1 50 79 * * * *
99 11 1 9 54 10 3 32 53 * * * *
100 5 2 4 62 2 0 12 44 * * * *
100 5 2 4 62 2 0 22 4 550 2750  yes 116
100 5 2 4 62 2 0o 27 -16 * * % *
100 5 2 4 62 2 0 42 144 * * * *
100 5 2 4 62 2 0 57 -76 * * * *
100 5 2 4 62 2 0 62 -6 * * * *

Combining the results of Tables 1, 2, 3, and 4, we form Table 5. For
each ¢ such that 2 < ¢t < 100 and S(t) is nonempty, we list the members of
S(t). If S(t) is empty, then ¢t does not appear as an entry. The requirement
that the solutions listed in Tables 1, 2, 3, and 4 satisfy a maximality con-
dition assures that distinct entries from these tables yield distinct corre-
sponding entries in Table 5. Therefore, we have proved:

Theorem 1: All solutions of (1) such that »n is nonprimitive and 2 < t < 100
are given in Table 5.

TABLE 5

t S(t) t S(t) t S(t) t S(t)

3 18 28 48 52 352, 3250 74 3392

4 12 31 15736 54 90 ok 76 340

7 196 32 992 56 224,1372, 28p 78 234

8 56 34 928 58 160 80 156, 380, 3008
10 40 39 162 59 968 84 2952

12 24,54, 6p* 40 736 60 96, 126 86 2824

17 100 41 1352 64 108, 220 88 460

18 208 44 350,608 65 200 89 13456

19 36 46 490, 544 66 3904 90 306, 2368
20 176 48 60 68 260, 3776 92 500
24 112 50 416 71 392 96 204, 294, 342, 1984
26 80 51 72 72 132,150, 198 98 1856

100 580
p prime, (6, p) =1 **p prime, (14, p) =1
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1. INTRODUCTION

The Stirling numbers of the first and second kind can be defined by

(1.1) n
@y Zx@+1) -+ @+n-1) = 5 (n, Kxk
and k=0
(1.2) x" = E: S, Kz - 1) -+ (x -k + 1),
k=0
respectively.

It is well known that S, (n, k) is the number of permutations of
Z, =11, 2, ..., n}
with k cycles and that S(n, k) is the number of partitions of the set Z, into

k blocks [1, Ch. 5], [2, Ch. 4]. These combinatorial interpretations suggest

the following extensions.
Let n, k be positive integers, n > k, and let k;, k,, ..., kK be non-
negative integers such that

ky + ky, + oo + ky

k
(1.3)
no=Kky + 2k, + o+ + nkn.
We define S(n, k, \), Ei(n, k, A\), where )X is a parameter, in the following
way.
(1.4) S(n, ky A) = X (kA + k0% + ooe + kA,
where the inner summation is over all partitions of Z, into X; blocks of car-

dinality 1, k, blocks of cardinality 2, ..., kn blocks of cardinality #; the
outer summation is over all k,, k,, ..., k, satisfying (1.3).



