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MJ-i = ^ - A + %_2eM0 = vG._x + 2sGj_2e 

Since Gj = rGj_± + sGj_2* i t follows that 2sGj_2 = 2&j - 2r£J-_1. We sub-
s t i tu te this into the expression for M._19 and also write the expression for 
Mi to give the two equations: 

The solutions for Gi and Gi_1 

and 

G, 

vM. + 2sM._± M±M. +sM0MJ.„1 

G. = _ = 
r2 + 4s M\ + sM2 

2Md - rMJ_1 2(rMj._1 + sM^2) - rM._1 M1MJ._1 + sMQM 
0 J -2 

J - 1 ~ — ~ 

r2 + 4s r2 + 4s Af* + sM;J 
I o 

Substituting the results in the expression for Uk of Theorem 4 gives the 
required expression for this theorem. 

The formulation for Uk given in Theorem 5 has been programmed by Robert 
C. Fitzgerald. He is a senior in Computer Science. We can generate the Uk 
for specified values of r, s9 UL and U0 , 

Special cases of this result for e = 0 and other particular values of r 
and s will be considered in a future paper, 
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THORO'S CONJECTURE AND ALLIED DIVISIBILITY PROPERTY 
OF LUCAS NUMBERS 

SAHIB SINGH 
Clarion State College, Clarion, PA 16214 

In [3], Thoro made a conjecture that for any prime p = 3 (mod 4), the 
congruence F2n+1 E 0 (mod p) is not solvable where F2n + 1 is an arbitrary Fi-
bonacci number of odd index. The conjecture has already been proved. In 
what follows5 we give a different proof of this and discuss another problem 
that arose during this investigation. 

VK.OO{I If possible,, let the above congruence be true: since F2n + 1 = F„ + Fn + 1 
(see [1]9 p. 56)s we get 

(1) Fn + Fn+1 E 0 (mod p) 

Under this hypothesis9 it follows that p divides neither F„ nor F „. This 
L '<• n + x 
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is justified because if, on the contrary, p divides Fn , then (1) would enable 
us to conclude that p divides Fn+i9 forcing us to the invalid result that p 
divides (Fn , Fn + 1) or p divides 1. Hence, 

Fn = ~Fn+l < m o d P>« 

Using Legendre symbol, it means that 

1-1 I 

1 or 

-F' n + l 

(?)-• 
This is not valid, since the prime p is E 3 (mod 4). The required con-

clusion is now immediate. 
Further analysis in regard to divisibility property possessed by Lucas 

numbers yielded the following theorem. 

lh(L0K<tf1\: If L2n is an arbitrary Lucas number of even index, then there always 
exists a prime p = 3 (mod 4) which satisfies the congruence L2n = 0 (mod p). 

VKQOJ: Using the result F2n + 1 = 1, 2, 5 (mod 8) of [3] and the fact that 
£<2n = Fin-i + Fin+i (see [1], p. 56), we obtain L2n = 2, 3, 4, 6, 7 (mod 8). 
This means that £2n ^ ^ (m°d 4). Since the case of L2n being even arises 
only when 3|n, we conclude that LGn±2 = 3 (mod 4). This means that £ 6 n ± 2 

always contains at least one prime factor p with p E 3 (mod 4). In fact, in 
this case, either this Lucas number is prime of this type or it will contain 
an odd number of prime factors of this type. For discussion of the case Lsk , 
we first observe that all the members of the family L6k can be obtained from 
^2m(6n+3) ky choosing suitable values of m and n, wherem = 1, 2, 3, ... and 
n = 0, 1, 2, ... . Now, using the fact that 

Lt\La iff s = (2k - l)t 

(see [1], p. 40), we get 

L2m \L2m(Gn + 3)' 

Since (2m, 3) = 1, by previous discussion, there always exists a prime p E 3 
(mod 4) such that p\L2m , which implies that p|-̂ 2m(6n + 3) anc^ t^ie Pro° f is com-
plete. It is easy to verify that 3|L6, 71̂ 3̂ 2, 3|i18, 47|L24 and so on. For 
a strong result, namely 2 • 3k|L2.3k , refer to [2]. 

CoKoZZoAiji L6n contains an even number of prime factors p where p E 3 (mod 
4). 

VKOO^ From the well-known identities (see [1], p. 56), we have 

which yields 

2 2 9 
L = F + 2F + F 

£c = F* n + 2F* + F* . 6n 3n- 1 3n 3n + l 
Since F3n is even whereas F3n_1 and F3n + 1 are odd, we have ^3 n_! = 1 (mod 8), 
F* , = 1 (mod 8), and 2F^ E 0 (mod 8). Therefore, L, = 2 (mod 8) or Lc = 

Oft T X Ĵ 2 or! IQYI 

2(4a + 1) for a suitable a. 
From the above theorem, we have the existence of at least one prime 

p E 3 (mod 4) such that p\L6n. We conclude that L6n must have an even number 
of such factors for justifying the odd factor (4a + 1) stated above. 
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A CLASS OF SOLUTIONS OF THE EQUATION a-(n) = 2n + t 

NEVILLE ROBBINS 
Bernard M. Baruch College, New York, NY 10010 

INTRODUCTION 

Let the nondeficient natural number n satisfy 

(1) f(n) = t, 

where f(n) = a (ft) - 2n, and t is a given nonnegative integer. Clearly, (1) 
is equivalent to 

(1*) 0(n) = In + t . 

Vzj-LviUtiovi 1 • m is acceptable with respect ton if m is a nondef icient pro-
per divisor of n . 

Vz&sLviUxon 1«' n is primitive if no number is acceptable with respect to n; 
otherwise, n is nonprimitive. 

RomcOtk 1»' Primitive nondef icient numbers were defined by L. E. Dickson [3], 
p. 413. 

If t = 0 in (1), then n is called perfect. It is known that when n is 
perfect: 

(a) if n is even, then n = 2 p (2 - 1 ) where 2P - 1 is prime 
(Euclid-Euler); 

(b) if n is odd, then n has at least 8 distinct prime factors 
[4] and exceeds 1050 [5]; 

(c) n is primitive. 

If t = 1 in (1), then n is called quasiperfect [2]. It is known that if 
n is quasiperfect, then: 

(a) n is odd and primitive [2]; 
(b) n has at least 6 distinct prime factors and exceeds 1030 [6]. 

On the other hand, for t = 3, by inspection we obtain the nonprimitive 
solution n = 18. This suggests that nonprimitive solutions of (1), when they 
exist, are more easily obtained than primitive ones. 

In this article, we shall determine the set of all nonprimitive solu-
tions of (1) for each t such that 2 <. t <_ 100. Theorem 1 states that Table 5 
contains all such solutions for the given range of values of t. 


