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PROBLEMS PROPOSED IN THIS ISSUE 

H-317 Proposed by Lawrence Somer, Washington, D.C. 

Let {Gn}™=o D e any generalized Fibonacci sequence such that 
Gn + 2 = Gn + 1 + Gn> (Go » Gl) = 1 ' 

and {£n} is not a translation of the Fibonacci sequence. Show that there ex-
ists at least one prime p such that both 

Gn + Gn+1 = Gn + 2 (mod p) 
and 

Gn+1 = rGn (mod p) 

for a fixed v t 0 (mod p) and for all n >_ 0. 

H-318 Proposed by James Propp, Harvard College, Cambridge, Mass. 

Define the sequence operator M so that for any infinite sequence {u^}9 

M(un) = M(un) - ^ M ( M i ) p 
i\n 

where is the Mbbius function. Let the "Mbbinacci Sequence" S be defined 
so that S = I and 

Sn = M(Sn) + M(M(Sn))9 for n > 1. 

Find a formula for Sn in terms of the prime factorization of n. 

H-319 Proposed by Verner E. Hoggatt, Jr., San Jose State University, 
San Jose, CA. 

If Fn < x < Fn+1 < y < Fn+2> t n e n x + y Is never a Fibonacci number. 

* 2 Corrected Problem Proposals* 

H-294 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA. 
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H-295 Proposed by G. Wulczyn, Bucknell University, Lewisburg, PA. 

Establish the identities: 

(a) Fk^k+Gr+3 Fk+8r + hFk + 2r + 1 = (~^' F 2r + 1^2r + l^k + hr + 2 » 

( b ) FkFk+Gr " Fk+8rFk + 2r = ( m l ) ^F\vL2vLk + hr ' 

SOLUTIONS 

One or Five 

H-285 Proposed by V. E. Hoggatt, Jr., San Jose State University, 
San Jose, CA. (Vol. 16, No. 5, October 1978) 

Consider two sequences {Hn}™=1 and {Gn}„=1 such that 

(c) #n+ 2 = Hn+1 + Hn ( n > l ) , and 
(d) #n+ 1 + ̂ ^ = sGn (n > 1), 

where s is independent of n. 

Show s = 1 or s = 5. 

Solution by Lawrence Somer, Washington, D.C. 

The following examples from the Fibonacci and Lucas sequences show that 
s may actually attain both values of 1 and 5: 

Fn-i +Fn+i = ! • £ „ . i»-i + £« + i = 5F». 
We are also evidently assuming that s is nonnegative0 Otherwise, let 

{Hn} = {-Fn} and {Gn} = {Ln}. 

Then #n m l + #n+ 1 = (-l)Gn- Similarly, if 

{Hn} = {-Lj and {£n} = {Fn} 9 

then fl^ + Hn + 1 = (-5)Gn. 
Now suppose that s M or 5. Since (Hn9 Hn+1) = 1 and (Gn9 Gn+1) = 1, 

clearly s ̂  0. I claim that the period (mod s) of {Hn} divides 4. This 
follows, since H1 + H3 = 0 (mod s) and H3 + F5 = 0 (mod s) together imply 
that Hi = #5 (mod s) . Similarly, #2 E #6 (mod s) . • 

Now, #! + #3. = 0 (mod s) and E1 + #2 = #3 (mod s) imply that #2 = -2FX 
(mod s) . Thus, using the recursion relation for {Hn}, the first five terms 
of {Hn} (mod s) are 

H19 H2 = - 2 ^ , #3 = -fiT1, Hh = -3H1, and #5 = - 4 ^ . 

Thus, - 4 ^ = ̂  or 5H1 = 0 (mod s) . If (5, s) = 1, then 5H1 = 0 (mod s) 
implies that ̂  E 0 (mod s). But then #2 E -2FX E 0 (mod s) and (Fx9 #2) ̂  
1. Hence, s > 5 and (5, s) = 5 . However, then 5H1 E 0 (mod s) implies that 
(s/5)|(#ls s). But then since H2'= -2FX (mods) and a fortiori #2 = - 2 ^ = 0 
(mod's/5), (s/5)|#2 also. Therefore, (s/5)|(#19 H2) and (Hl9 H2) + 1 as we 
assumed. Thus, s = 1 or 5. 

Also solved by P. Bruckman and G. Lord. 

Power Mod 

H-286 Proposed by P. Bruckman _, Concord, CA. 
(Vol. 16, No. 5, October 1978) 

Prove the following congruences: 
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(1) F5n = 5" (mod 5 n + 3 ) ; 

(2) F5n = L5n+i (mod 5 2 n + 1 ) , n = 0 , 1, 2 , . . . . 
Solution by the proposer. 

VK.OO{ ofa (7) : We w i l l use t h e fo l lowing i d e n t i t y , 
(3) F5m=25F5

m+25(-l)mFl+5Fm,m = 0 , l , 2 , . . . . 

Let S be the set of nonnegative integers n for which (1) holds. Since F5 = 5, 
clearly leg. Even more obviously, F1 = 1 = 5°  , so 0 e S. Suppose keSs and 
let m - 5k. Then, for some integer a, Fm = m(l + 125a). Hence, by (3), 

F- = 52ms(l + 53a)5 - 52m3 (1 + 53a)3 + 5m(l + 53a) 5m 

(mod 54?77) , i . e . , 

= 52m5 - 52m3 + 5772 (mod 5 ^ ) , 

5m But 52|TT?2, assuming k i s p o s i t i v e . Hence, 5^7771527773152m5. Thus, F5m = 5m 

F5k + 1 = 5k + 1 (mod 5k + 4 ) . 

Therefore, fc £ S => (& + 1) e £. The result of (1) now follows by induction. 

Vsioofi ol (2) : We will use the following identities, 

<4> ^sm-^m ~ 5(~1)*L3 + 5LW, 

(5) L2 = 5F2 +4(-l-r, " = ° " ' " 

Let 77Z = 5n. Then L5m - Lm = (L3 + Lm) (£2 + 4) = 5F„2 (L3 + Lw) . But, by (1), 
m\Fm , which implies 5m2 | 5F,2 . Therefore, L5m E LOT (mod 5m2), i.e., 

L5„ + i E L5n (mod 52n + 1 ) , 
which proves (2). 

More Identities 

H-288 Proposed by G. Wulczyn, Bucknell University, Lewisburg, PA. 
(Vol. 16, No. 5r October 1978) 

Establish the identities: 
(a\ jp 7-2 _ p j - 2 = / i \ H l r 3 -n T 
\cxj ^k^k + Br+S rk+8r + kljk + 2r + l v ' u2v + l r 2r + l^k + kr + 2 9 

(b) FkLk + Qr - Fk+QrLk + 2r = (-1) L2rF2rLk + hr ' 
Solution by the Proposer 

' a ' FkLk+6r + 3 " Fk+8r + hLk + 2r+l 

= - ^ { ( a * - e k ) [ a 2 k + 1 2 r + 6 + 32fc + 1 ^ + 6 + 2 ( - l ) * + 1 ] 
5 _ ( a

f e + 8 r + 4 - efc + 8 r t f ) [ a 2 k . + « « . + 2 + B 2 k + ^ + 2 + 2 ( - l ) * + 1 ] } 

= i z l 2 ^ i { a f c - ^ - . 2 ( a i 6 i . + 8 _ 2 a 1 2 r + 6 + 2 a 4 r + 2 - 1) 

_ pfc-i+r-2/pi6r+8 _ 2g 1 2 p + 6 -j- 28tt2' + 2 - 1)T 

• 1 ) * H 

/5 
(~1)k+1{ak+hr+2(a2r+1 + e 2 r + 1 ) 3 ( a 2 r + 1 - 3 2 r + 1 ) 

+ e" + ̂ ' + 2 ( a 2 r + 1 + g2r + 1 ) 3 ( a 2 r + 1 - 3 2 r + 1 ) } 
( _ 1 \ k + l r 3 TTT T-
v ' ^ 2 r + l r 2r> + lnk + kr + 2 ' 
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^ FkLk+Gr " Fk+QrLk+2r 

- Fk^L2k + i2r + 2 < - l ) * ] - Fk+8r[L2k + hr + 2 ( - l ) * ] 

- - ^ ^ ^ f a ^ ^ C a 1 ^ + 2 a 1 2 p ~ 2 a t f p - 1) - B*- 1 " ( B 1 6 r + 2B122' - 2 B ^ - 1)} 
/5" 

. ( " " 1 ) k + 1 [ a f c - ^ ( a ^ - 1) (ahr + 1 ) 3 - B*-1" ( B ^ - 1) ( B ^ + 1 ) 3 } 
/I" 

= { ~ 1 ^ + 1 { a ? c + I t r ( a 2 y - B 2 r ) ( a 2 r + B 2 r ) 3 + B*+" r (a 2 " - B 2 r ) ( a 2 P + B 2 " ) 3 } 

Also solved by P. Bruckman. 

Series Consideration 

H-289 Proposed by L. Carlitz, Duke University, Durham, N.C. 
(Vol, 16, No. 5, October 1978) 

Put the multinomial coefficient 
(m + m + ; • • + mk) ! 

(m,, m2, ...-, m,) - V m 2 , . „ . V 

Show that 

(*) J^ (r>s9t)(m-2r9n-2s9p-2t) 
r + s + t = X 

I] (-2)* + J' + *(^<7» k9 u)(m-j-k9 n-k-i9 p - i - j) (m + n + p .> 2\). 

Solution by Paul Bruckman, Concord, CA. 

Let 

(1) A(?779 n9 p) = £ ( P 9 s9 t)(m - 2v9 n - 2s, p - 2t) 9 
r + s + i = A 

(2) B(m9.n9 p) = ' ]T) (-2f + J*k(i9j9k9u)(m~j-k9n-k-i9p-i-j)* 
i+j+k+u=\ 

A l s o , l e t 

(3) >(# , i/, s) =, ' ] £ ^fa* w* p)xmynzP9 
m+n + p >_2\ 

(4) G'Gc, 2 / , . s ) = ] T B(?ws n9 p)xmynzP9 

m+n +p>.2\ 

assuming X is fixed. It will suffice to show that F and G are identical func-
tionss for then the desired result would follow by comparing coefficients* 
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Now 

F(x9 ys z) = ^2 (z?, s3 t) ^ (m - 2r9 n - 2s9 p - 2t)xmynzp 

, r + s + t = A m+n +p >_2X 

X (p9 s9 t ) ^ (m *" 2p* n - 2s, p - 2t)xmynzp 

r + s + t - X m>.2rin>.2s, p>_2t 

= 5 3 (r> s ' *)a;2 ry2 s22* 5 3 On, n, p)xmynzp. 
r + s + t » X m, n , p ^ O 

Now 
/ ^ (m9 n9 p)xmynzp = ^ 2 ^ (m» n* p)xmynzp 

m,n9p>.o k = 0 m + n + p=k 
00 

= ^ fe + 1/ + S)^ = (1 - X - 2/ ™ S) - 1 . 
k = 0 

Hence 9 

F{x, y9z) = ( l - x - y - z)'1 ^ (r9 s9 t)x2ry2s z2t
 s 

2>+S + £ = A 

or 
(5). F(x9 2/, z) = (x2 + z/2 + z2)x(l - x - y - z)'1. 

Also9 

G(x> y* z) = Z ("2)i + ̂  + fc(i, j , fc, M) 
i+j+k+u=\ 

/ ^ ( m - j - k 9 n - k - i 9 p - i - j)xmynzp» 
m+n + p>_2\ 

The c o n d i t i o n m + n + p _> 2 \ i s e q u i v a l e n t t o 

(m - J - k) + (n - fc - i) + (p - i - j ) >. 2 (A - £ - j - k) = 2u. 
Hence 9 

°(x> 2/ 3) = 5 3 (-2)i + d + k(i9 j , k9 u).x*+kyk + izi + 3 
i+j+k+u=\ 

' 23 (m. «. P)xmynzp 

m +n +p >_2u 

= £ (-2)i+j+ktt, 3, k, u)xO+Y+iz{+d 

i+a+k+u=\ 

' £ H (m' "• p)xmynzp 

h = 2u m + n+ p = h 

X) (-2)* + J' + *(£,j\:fc., u)x3'+kyk + izi + j]T (x + y+z)h 

i+j+k+u=\ h =2u 

= (1 - a:' - y - s)"1 ]j£ (-2)i + ^ 
£+j+fe+u=A 

8 (£, j , k9 u)x3' + kyk + izi+Hx + y + z)2u 
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= (1 - x - y - s)" 1 Y, (-2i/3)* (-2xz)3 (-2xy)k (x + y + z)2u(i, j , k, u) 

= (1 - x - y - z)'1{-2yz - 2xs - 2;n/ + (x + z/ + s)2}A 

= (1 - a; - 2/ - s ) " 1 ^ 2 + z/2 + s 2 ) A = F(x 9 z/5 z) , Q8E,De -. 

Also solved by the proposer. 

Identical 

H-290 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA. 
(Vol. 16, No. 6, December 1978) 

Show that 

(a) F F2 - F3 = (-l)k'¥1F2 (F - IF V 

(b) F, F2 - F3 ' = C-l)k+1F2 (F + 2F ) 

Solution by the proposer. 

( a ) FkFk+Sr+3 ~ FLhr + 2 

= -^(ak ~$k)la2k+2r + G +$2k + 2r + G -h2(-~i)k}~ [a 3 k + 22, + 6 - B3fc + 2l, + 6 .+ 3 ( - l ) k + 1 ] } 
5v5 

= ( - 1 ) * { a " ( a 1 2 r + 6 - a a * ' * 2 - 2) - B*(B 1 2 * + 6 - 3gI , r + 2 - 2 )} 
5/5 

- ( - 1 ) ^ [ a " ( a " r + 2 + l)2(ahr + 2 - 2) - 3 k (B* ' + 2 + l ) ( a * ' + 2 - 2 )} 

= ( - 1 ) * [a" + ity + 2 ( a 2 r + 1 - g 2 r + 1 ) 2 (a l t r + 2 - 2) - g k + ^ + 2 ( a
2 r + 1 - (32r + 1 ) 2 ( B * ' + 2 - 2 )} 

5v 5 

= ( - l ) k + 1 F 2 (F - 2F ) . • 
2r + l fc+8r+4 k+**r + 2 

( b ) FkFk+er * Fk + hr 

:+12r. + 

_ [a3fe+12r _.g3k+12r + 3 ( J l ) * + l ( a * + ̂ - _ gk + I f r)B 

= (""1 )^-+ 1{afe(a1 2 r - 3 a ^ + 2) - 3 k (3 1 2 2 3 - 3 3 ^ + 2 ) } 
5/5 

= , ( ~ 1 ) ' ^ 1 { a f c ( a ' , r - l ) 2 ( a 1 , r + 2) - 3*((3I,r - lMB"2" + 2 ) } 
5/5^ 

= - ^ ^ { a * + ^ ( a 2 j - - g 2 r ) 2 ( a ^ + 2) - 6 * + ^ (a21" - B ^ ) 2 ( B ^ + 2 )} 

Also solved by P. Bruckman. 

= - ^ { ( a f c - 3k) [a2 f c + 1 2 r . + 3 2 * + 1 2 r + 2 ( - l ) ' : + 1 ] 
5/5 
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Square Your Cubes 

H-291 Proposed by George Berzsenyi, Lamar University, Beaumont, TX. 
(Vol. 16, No. 6, December 1978) 

Prove that there are infinitely many squares which are differences of 
consecutive cubes. 

Solution by Bob Prielipp, University of Wi sconsin-Oshkosh, WI. 

Clearly9 it suffices to show that the equation (x + I ) 3 - x3 = y 2 has 
infinitely many solutions (x, y) where x and y are positive integers. But 
the preceding equation is equivalent to (2y)2 - 3(2a? 4- l ) 2 = 1. Hence, we 
need only determine the solutions of the Pellfs equation u2 - 3v2 = 1 in 
positive integers u9 V such that u is even and V is odd. Its least solution 
in positive integers is u 0 = 2, vQ = 1. Thus, all of its positive integer 
solutions are contained in the infinite sequence (uk9 Vk) 9 k = 1, 2 9 ...9 
where 

ufe + 1 = 2uk + 3vk and Vk 1 = uk + 2vk* k = 05 1, 2, ... . 

[The preceding is an immediate consequence of the following result which is 
generally established as part of the theory involving Pellfs equation: All 
of the solutions of the equation u2 - Dv2 = 1 in positive integers are con-
tained in the infinite sequence 

( U Q 9 VQ)9(ul9 v1)9 (u2, v2), 
where (u0s v0) is the least positive integer solution and (uk, Vk) is defined 
inductively by uk+1 = uQuk + DvQvk, vk+1 = v0uk +uQVk, k = 1, 25 — .] 

It is easily seen thats if uk is even and Vk is odd9 then uk+1 is odd 
and Vk+1 is even. Also9 if uk is odd and Vk is even, then uk+1 is even and 
y.+1 is odd. This implies that all of the solutions of the equation 

u2 - 3v2 = 1 

in positive integers u 9 V with u even and V odd are \ulk , v2k) where k = 09 

1, 29 ... . Therefore9 the equation (x + 1 ) 3 - x3 = y 2 has infinitely many 
positive integer solutions. 

Also solved by H. Klauserr P. Bruckman, E. Starke, L. Somer, G. Wulczyn, W„ 
Brady, S» Singh, G. Chainbus\, and the proposer. 

Get the Point 

H-292 Proposed by F* S. Cater and J. Daily, Portland State University, 
Portland, OR. (Vol. 16, No. 6, December 1978). 

Find all real numbers r e (09 1) for which there exists a one-to-one 
function fr mapping (09 1) onto (09 1) such that 

(1) fr and f'1 are infinitely many times differentiable on (09 1) 9 and 

(2) the sequence of functions 

J T s Jv Jv 9 J v Jv Jr 9 Jy? J -p Jx> Jp 9 • • <• 

converges pointwise to r on (0, 1 ) . 

Solution by the proposers. 

Let q denote the golden ratio %(-l +./5), let f(x) = 1 - (1 - x2)2 and 
g(x) = f(x) - x. Then f(q) - q = g(q) = P by inspection and grr(x) - -\2x2 4- 4 



^ O ] ADVANCED PROBLEMS AND SOLUTIONS 287 

changes sign once in (0,1), from positive to negative. Since ^(0) = g(l) = 
09 it follows that g(x) < 0 for 0 < x< q and g(x) > 0 for q < x < 1. Also 
/ and f'1 are evidently increasing on (0S 1), so for any xe (0, q)9 

x < rHx) < Xf'1 ° f1)^) < if'1 o f-i o / - i ) (a?) < . . . < q , 

and for xe (q9 1) , 

x > rHxy > e r 1 o r1) («) > (r1 ° r 1 ° r 1 ) (*) > • • •' > 4* 
In either case, this sequence converges to some point we (0, 1). Since f'1 

is continuous at w9 /_1 (w) = w.' But q is the only fixed point of / and of 
f'1 in (0, 1), so w = q. Thus, 

r1* f^of-K r1 of-1 of-\ ... 
converges pointwise to q on (0, 1) . Also, 

f'Hx) = (1 - (1 - xt>f\ 
so / and f'1 are both infinitely many times differentiable on (0, 1). More 
generally, put t = (log q) / (log r) . Then, fr (x) = (.f"1^))^ satisfies (1) 
and (2). Thus, all numbers re (0, 1) satisfy the requirements of the prob-
lem. 

RomcUi\l» Functions similar to fT given here were studies by R. I. Jewett, in 
"A Variation on the Weierstrass Theorem," PAMS 14 (1963);690. 

The Old Hermite 

H-293 Proposed by Leonard Carl itz, Duke University, Durham, N.C. 
(Vol. 16, No. 6, December 1978) 

It is known that the Hermite polynomials {Hn(x)}nssQ defined by 

n = 0 

satisfy the relation 

l£Bn + k(x)%- = e**'-**nk(x - * ) , <fc = 0, 1, 2, . . . . ) . 
n = 0 n' 

Show that, conversely, if a set of polynomials {fn(x)}™=0 satisfy 

(i) L/»+k(«)f7-E/»(«)fr-A<"-»)» (fe = °> !• 2> •••>» 
n = 0 w = 0 

where /0 (a:) = 1, /x (#) = 2xs then 

/„(*) = #„(*), (n = 0, 1, 2, . . . ) . 

Solution by Paul F. Byrd, San Jose State University, San Jose, CA. 

Let 

(1) G{X, z) = X> ,» f r , 
n = 0 

£(*, 0) = fQ(x) = 1, f-six) = 2x 
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denote the generating function for the set of polynomials {/„(#)}. Then the 
given relation can be written as 

(2) Z 4 + k t o ) S r = G(x> z)fk(x - *>. (& = 0, 1, 2, . . . > . 
n = 0 

Multiplying this by uk/kl and summing yields 

znuk 

. .. . .. ,n\V\ 
fc=0 n=0 k=0 

Now with the use of Cauchyfs product rule, the lefthand side of (3) becomes 

znuk \T * r N V* «n"k"k 

fc = 0 n=0 n = 0 k=0 

(2 + UY 

<3> E E /„+*<*>S£ -G -̂ s > E ^ - *>*f 

(4) E E £+*<*>;$£= E /»<*> E fe!(n -ul)\ 

= E/Bfa> n! = ff(x's + M)-
But the righthand side of (3) is clearly equal to G(x, z)G(x - z9u). Thus, 
from (3) and (4), we have the functional equation 

(5) G(x9 z + u) = G(xs z)G(x - z9 u) 

whose unique solution is 

(6) G(x9 z) = elxz~z\ (for any value of u) . 

But, this is precisely the same well-known generating function for the Her-
mite polynomials Hn(x). Hence, 

(7) *2"-'t-Zfnl*>£-
n = 0 

and it follows from TaylorTs theorem that 

<•> ft«---[^'-,-,,]..1 
with fQ (x) = 1 = #0 (x), f1 (x) = 2x = H1 (x) . 

Also solved by P. Bruckman, T. Shannon, and the proposer, 

(-l)"e«2 • -^-(e*») = ff (x)', 


