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The former yields, upon partitioning around the sum F± + Fk , the star nona-

gons |^| = |5|9 while the latter yields, upon partitioning around the sum 

F1 + F2 + F3 or around F39 the previous star nonagon or i \ = j 1. 

I have examined all the possible star nonagons for all n inclusive of 

21. When n = 13 and 21, this algorithm breaks down and will not produce< , >, 
(21\ (21) 
\,j> and JIQI- For larger values of n, other discrepancies will appear (n 
need not be a Fibonacci number) , but always much fewer in number than the 
star n-gons that are generated. 

It therefore appears that the Fibonacci sequence on its own cannot ex-
haustively generate all star n-gons. The basic reason for this nonisomorphism 
is that the Fibonacci numbers are related to the combinatorics of spanning 
trees, the combinatorics of planar graphs, not of nonplanar graphs. 
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ABSTRACT 

The major theorem proven in this paper is that every positive integer 
necessarily converges to 1 by a finite number of iterations of the process 
such that, if an odd number is given, multiply by 3 and add 1; if an even 
number if given, divide by 2. 

The first step is to show an infinite sequence generated by that itera-
tive process is recursive. For the sake of that object, an integral vari-
able x with (£ + 1) bits is decomposed into (£ + 1) variables a0, a19 ..., 
a%9 each of which is a binary variable. Then, Pth iteration, starting from 
x9 has a correspondence with a fixed polynomial of aQ, ..., a9 , say 

fr(aQ9 ..., az)9 

no matter what value x takes. Since the number of distinct fr
 fs is finite 

in the sense of normalization, the common fr must appear after some itera-
tions. In the circumstances, the sequence must be recursive. 

The second step is to show that a recursive segment in that sequence is 
(1, 2) or (2, 1). For that object, the subsequences with length 3 of that 
segment are classified into twelve types concerned with the middle elements 
modulo 12. The connectability in the segment with length 5 or larger, and 
the constancy of the values at the head of each segment, specify the types 
of subsequences, found impossible, as well as with lengths 1, 3, and 4. The 
only possible segment is that with length 2, like (1, 2) or (2, 1). 
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1, INTRODUCTION 

An iterative process illustrated in Figure 1 is conjectured to neces-
sarily converge to 1 with a finite number of iterations whenever its initial 
value is a positive integer. It seems, however, that no proof is yet found 
(see [1]). 

set x 

< x:even > 
yesj 
x - l x 

10 1 r 

x*(3x+1) 

stop j 

It is the main object to prove the truth of this conjecture. 
By preliminary considerations, we easily find: 
1. This iterative process is always feasible and not stopped without 

a reason before it attains 1. 
2. If we eliminate the stopping operation after we gain 1, the se-

quence will be followed by a recursive sequence such as (4, 2, 1, 4, 2, 1, 

3. Since (3x + 1) yields as an even number for odd x, then twice run-
ning on the odd side path would not occur in succession. 

2. NOTATIONS AND DEFINITIONS; STATEMENT OF THE PROBLEM 

I is a fixed number, I e Z+. 
at, i = 0, 1, 2, ..., I are binary (integral) variables in the range of 

[0, 1] and a0 + ax + ••e + a% + 0. 
x is a variable such that x = 2lan 

)i+i^ + a0 
{F(ad a-i • * #je,)K o r {F(cc)}9 for short, is a set of F(a0, a19 

a£)fs, the polynomials with integral coefficients about a0 
including a polynomial with 0th order. 

*AMS (MOS) Subject Classifications (1970). Primary 10A35,10L99,68A40. 
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F]i(aQ, a1$ . .., a £ ) , or Fy (a) , is an element of {F(a)} composed of the 
the terms about the combinations of I, aQ, . ..9 az, as: 

Fu (a) = c + e0a0 + oxa^ + ••• + Q^a^aY + ••• + oQ1 ...^a^ ... a£, 

where o, oQ, ..., cQ1 ... l e {09 1}. 

PC-?7(a)] is a binary function about some F(a) whose value is assigned as 
1 or 0 according to the parity (odd or even) of the values of F(a). 

AF(a) is the transformation of F(a) , where 

AF(a) = hF(a) + [F(a) + h]P[F(a)]. 

Then, we can embed the original problem into the following: 

Let Z be artitrarily given. Let xQ be an arbitrary number, where 

xQ e {1, 2, 35 ..., 2Z + 1 - 1}. 
Then, 

(i) every x r , v - 1, 2, 3, . . . is a positive integer,, where 

x = h(3xr_1 + 1) for odd xr_1; xv = k%r_1 for even xr_l9 

and 
(ii) an infinite sequence (xQ, x±, . . . ) — referred to as the S-sequence 

—has a recursive segment (19 2). 

3. PROCEDURES OF THE PROOF 

The process of the proof is roughly classified into two stages: 
1. A sequence S:(x , x , ...) must necessarily have a subsequence with 

periodicity. 
2. This periodical subsequence must necessarily have a recursive seg-

ment as (1, 2). 

k. PROOF OF PERIODICITY 

LoynmCi 1 ' Let a* 9 i = 05 19 . . . 5 I be some fixed numbers, 
% 

a* e {0, 1} and a* + a* 4- - - - + a\ + 0. 

If ai = a*, then x = xQ, where 

x0 = 2*a* + 2 £ " V + ... + a* and x0 e {1, 25 ..., 2 £ + 1 - 1}. 

Converselys let xQ be a fixed number, 

x0 e {1, 2, .... 2 £ + 1 - 1}. 

If x - xQ, then ai = a£9 i = 0, 19 ...,ft, where 

• a* e. {09 I}'with a* + • •• + a* + 0. 

F/LOÔ : Obvious. 

COHJOUXUUJ 1-7: a^ = aV and P(a^) = a^ 9 i = 09 1, . . . , I , for v e Z + . 

Vtioofc It is obvious, since the statement does hold for arbitrary values a^ 
of a^, i = 0, 1, ..., I. 

lemma 2: {Fy (a)} C {F(a)} . 

{Fu(a)} is a finite set with 2 elements, where K = 2l+1. 
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{Fy(a)} is an ordered set with y = 2K"1o + 2K~2cQ + — + coi ••-l' 

Psioofi: It is obvious, since K is the total number of the coefficients 

O» On9 C-y9 . . . , C n i , , , o , 

that is, 

.•(':')*(';') — -(i:D-''-1-
CoKoltcUtij 2-1: There exists some F (a) for each F(a) , F(a) e {F(a)} , which 
satisfies 

Fy(a) = F{o) (mod 2). 

PKOOfa Obvious from the definition and Corollary 1-1. 

Lemma 3: P[F(a)] e {F(a)}. 

Ptiooj: Let a = a* be s imul taneous e q u a t i o n s ai=ah9 % = 0 , 1, . . . , £ , where 
each a* i s a f ixed number w i th v a l u e 1 or 0 . 

Let Fv(a) = F(a) (mod 2) for an arbitrarily given F(a) from Corollary 
2-1. Then, it holds for the following congruence with fixed y: 

Fu (a*) = F(a*) (mod 2) for any values a* e a. 

Then, the following equalities must be satisfied: 

1 - (_!)'„<«*> = 1 _ (_!)*(«*> 
= [l - (-l)][l + (-1) + (-1)2 + ••• + (-l)^*)"1] 
= 2, if F(a*) is odd, 
= 0, if F(a*) is even. 

Hence, 
2P[F(a*)l = 1 - (-l)Fn<a*> . 

Now, since F (a) is congruent to such a polynomial as 

Fu (a) = a + a0a0 + a1a1 + •• • + a01a0a1 + •• • (mod 2), 
where 

a, a0 ... e {0, 1} and a = o9 a0 = oQ ... (mod 2), 
we obtain 

(_l)Ma*) = (_1)0t + a0a^ + a1a*+... 

= (-l)a(-l)a«<(-l)° ia? x ... 

= (-l)a[l - 2P(a0a*)][l - 2P(axa*)] x ... . 
Since 

P(a0a*) = a0a*, P(axa*) = 04a*, ..., 
then 

(_1)M«*> = (~i)a(i - 2a0a*)(l - 2axa*) x ..., 
so that 

2P[F(a*)] = 1 - (-l)a(l - 2aQa*)(l - 204a*) x ... . 

If we expand the righthand side as a polynomial of a*9 a*, ..., then we 
would find that every coefficient is an even number. 

Hence, we obtain the result that P[F(a*)] can be described as a fixed 
polynomial of a*, a*, .. . , af with integral coefficients for any values ct* 
of CC9 which is nothing but the statement of the present lemma. 

Co-KoUjOJty 3-1: 

P[F(a)] = P[F(a)v] = {P[F(a)]}P = hP{F(a) + P[F(a)]}9 fo r V v , p e Z + . 

PfLOofi: Obvious. 
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Lemma. 4y Let Ar + 1x = A(Arx) , if Avx e {F(a)}9 where r e {Z+, 0}. Then, 

Avx e {F(a)} for every v. 
VKOOJi When v = 0. 

Obviously, x e {F(a)} from the definition. 

When r >i I. 
Suppose Ar-1x e {F(a)} and P(Ar~1x) e {F(a)} for some r. Let F(a) = 

Ar'1x for some F(a) e {F(a)}. Then we obtain from the definition, 

Arx = %F(a) + [F(a) + h]P[F(a)]. 

Since F(a) = P[F(a)] (mod 2) for every value of a, then we obtain 

h[F(a) +P{F(a)}] e {F(a)} and ^ e {P(a)L 

By virtue of the last lemma9 we also obtain 

P(Arx) e {F(a)}. 

Hence, we induce that if 

Ar~1x e {F(a)} and P(Ar'1x) e {F(a)}9 
then 

ATx e {F(a)} and P(Arx) e {F(a)L 

Consequently, by the use of mathematical induction, we can justify the 
statement, since it is the truth for r = 0. 

Lemma 5: Ar + 1x = %Arx + (ATx 4- %)P(Arx) 9 r = 0 , 1, 2 , . . . , p/here 

4 r + 1 x = A(Arx). 

YhJOofc Obvious from t h e l a s t lemma. 

Lemma 6' Suppose that x and a have one-to-one correspondence in the way of 
Lemma 1. Then, there exists a function fr (a) e {Fy(a)} which satisfies for 
any values of x: 

Arx E fr (a) (mod 2) , 

where r e {Z + , 0}. 
Ynjoofc Lemma 4 shows that Avx yields a polynomial of a0, a15 . .., a% with 
integral coefficients. 

Since a} = ai9 for •£, V from Corollary 1-1, we can normalize Avx in 
the following way: 

ATx = 3 + 30a0 + • • • + B0i ... £aoai • • • a*> 
where 3, (30 ... e Z. Here, the number of terms reduces to 2 or less. 

The equation yields a congruence, modulo 2, such that Avx. is congruent 
to a polynomial of a0, a±, . . . , a£ with coefficients 1, which is nothing but 
an element of the set {Fy(a)}. 
Lemma 7- (i) Let y be some fixed number, where 2/ e {1, 2, ..., (2 -1)}, 
then Avy i 0 (mod 3) for v ^ I* where l ! = £ + 1. 

(ii) Let zy e Z+ and y i 0 (mod 3) . Then, Â z/ i 0 (mod 3) for r ^ 1. 

(iii) Let y± , y2 e Z + <â d let z/x ^ 0 (mod 3) and z/2 ^ °  (mod 3) . Jf 
z/1 E 2/2 (mod 4), then ̂ 1 E yk/2 ^ 0 (mod 6). 
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PflOOJ: (i) Suppose Ary is a multiple of 3 for some nonnegative integer p. 
Then9 every Ar'1y9 Ar ~~2y $ . . .» y must be an even number^ because an odd num-
ber causes a number not divisible by 3 at the next step. Hence9 2r • 3|z/. 
Since ̂  < 2£ 9 3, then Ary is not a multiple of 3 for p _>. &* contradicting 
the hypothesis. 

(ii) Obvious, because 3\y does not cause 31^. 
(iii) If we construct a sequence (y19 Ayis A1y1) or (y2, Ay2> A2y2) » 

the sequence yields one of four types9 according as the increasement or de-
creasement of values, illustrated as followss 

6m+2 
9/77+8 

4m+2 

3/T?+2 

4/77+1 
2/77+1 

4/77+4 

3m+l 
4m+3 

2/77+2 

/77+I 

Fig.2 
From the propositions we find that (2/ , Ay 9 A2y ) and (y , AT/ , A2y ) belong 
to a common type. 

On the other hand, a sequence (z/1 , ̂ 2/1 , A2y1) or (z/2 , Ay2 , A2i/2) can be 
classified about the middle element modulo 6 as follows. 

12w+2 12/77+8 
6/77+6 

® 
M 

3/77+1 4/77+3 

Fig. 3 
Since 3|^ and since 3\Ay^ from(ii), where i = 1, 23 the types (6/7? + 3) and 
6/7? would not occur. Then9 the types of Figure 2 have one-to-one correspon-
dence with the types of Figure 3. Hence9 the statement is justified. 

Lejnmci 8: Suppose that x and a have one-to-one correspondence in the way of 
Lemma 1. Suppose that ATx = fr (a) (mod 2) for some fr (a) e {Fy (a)} at each 
v e {09 1, 29 . ..}. Suppose that there exist some positive integers s and 
t larger than or equal to is for which fs{d) = ft (a). Thens 

Asx Atx 

VKOOJi Let x8 = Asx\, 
range of x and let a* 

= x0 

a* 
and x 

for every value of x. 
A x\x=Xn for some fixed value xn •• x 0 

in the 

as in Lemma 1. respondence with x0 , as in Lemma 1. Suppose xt 
xs < xt . We obtain9 from the propositions9 

xs - fsfo ) + (an even number), 
%t = ft(a*) + (an °dd number) , 

a^ or a*9 for short, have a one-to-one cor-
^ #t, for a while s and let 
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which reduce to 

xt = f(a*) + 2T9 

where / ( a * ) = fs (a*) = / t (a*) and S < T. That i s , xs = #* (mod 2 ) . More-
over s s i n c e ss t ^ £, we f ind 3 | ^ s and 3|iCt f^om t h e l a s t lemma. 

F i r s t , l e t us d e a l w i th 2Asx and 2Atx. S ince Asx, i4*a: e { F ( a ) } , then 
2 4 s x , 2A*ff e { F ( a ) } ; b e s i d e s P(Z4 s x) = P{2Atx) = Q. T h e r e f o r e , A (2Asx) and 
A (24*2?) can be d e f i n e d . Since 

A(2ASX)\X = XQ = A(2xs) = a;s 

a s w e l l as 
A(2Atx)\x=>r = 4 ( 2 a t ) = xt9 

and since 2a:s E 2xt (mod 4) with 3J^csxt, we obtain, from the last lemma, 

A(2xs) E A(2xt) (mod 6), so that 2JS E xt (mod 3). 

That is, S = T (mod 3). 
Now let us again deal with Asx and Atx» Let y = ^(2JTS + xt) . Then. 

z/1 = /(a*) + 25 + V!T "" £) • 
Hence, z/ is an integer with P(?/1) = P[/(#*)]» and xs < 2/1 < xt. 

Let y2 = H(jx8 + 2xt) . Then, we obtain analogously 

i/2 = /(a*) + 2^ + %(5 - T) and i/2 e Z \ P(z/2) = P[/(a*)], ̂ s < y2 < x t . 

(i) When z/1 ̂  z/2 (mod 3) : 
There exists y1 or yz not a multiple of 3, so that at least one of 

Ay and Ay is not divisible by 3. 
(ii) When y1 E y2 (mod 3): 

Then, 
25 + \(T - S) E 2^ + %(5 - 20 (mod 3), 

which reduces to T E 5 (mod 9). 
On the other hand, we can calculate as follows: 

Ayx - Axs = h(T - S){1 - 2Ptf(a*)]}. 

Thus, Ay± E iirs (mod 3). Since Axs is not divisible by 3 for 3\x89 then 

Ay f 0 (mod 3). 

Consequently, we can always find a number yi 9 i = 1 or 2, which satisfies 

( 2/. = f(a*) + (an even number), 

( ^ 2 0 (mod 3). 

Next let us replace a pair (xs , #t) with another pair (xs , y^) and re-
peat the calculations above. Then, we would obtain, analogously, some num-
ber y! which satisfies 

( y• = f(a*) + (an even number), 

< Ay I i 0 (mod 3), and 

\ xs < y[ < hi • 
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Since this procedure can be continued infinitely, we obtain an infinite se-
quence of numbers y. , y!^9 y!!9 . .., which satisfies 

xs < ••• < y" < y! < yi < xt. 
It is impossible in reality, because all of yi9 y!9 ..., are integers. 

Hence, we must conclude that xs = xt , contradicting the hypothesis in this 
proof. 

ThzoKQm 1: An infinite sequence, Si(xQ9 x±9 x2, . . . ) , ^xQ £ Z+, xr = ArxQ9 
is a recursive sequence. 

VK.00^1 Lemmas 6 and 2 show that an upper limit of the number of the distinct 
/p(a)Ts is the total number of elements of the finite set {Fu (a)} like 2K. 
That is, the number of the distinct fr (a)fs is finite. 

On the other hand, since a sequence (x0 , x1, ...) is infinite, there 
exists at least one pair (xs , xt) which satisfies fs (a) = ft (a) along with 
s9 t ̂  £. For that reason, we obtain from the preceding lemmas 

*̂ s ~ ^ t * 

Then, x3 +1 = xt + 19 x8 + 2 = ̂ t + 2 s — > so that the sequence is recursive. In 
addition, the length of a recursive segment is limited within the number of 
the distinct /r(a)fs, like 2K. 

[NOTE: This theorem may be extended to the case of xQ e Z", by slight 
modifications.] 

5. PROOF ABOUT THE LENGTH OF A PERIOD 

Lemma 9: Suppose that S:(xQ, x±, ..., xg + 1, ..., xt, .. .) , where 

xr = î Ttfla..̂  for xQ e {1, 2, ..., 2£ + 1 - 1} 

is an infinite sequence with recursive segment Sp :(xs+1, ..., x t ) . 

(i) Let Mj , j £ {lj 2, 3, 4} he the total number of elements in an Sp 
with value congruent to j modulo 4. Then9 M1 = M2. 

(ii) Let Nk9 k £ {l, 2, ..., 12} he the total number of elements in an 
Sp with value congruent to k modulo 12. Then, 

N1 = N2 and N3 = N5 = N6 = N7 = N8 = Ns = N10 = N12 = 0 . 

?MOo£: (i) If we construct sequences £/3's0rr, Ax\x=Xr9 A2X\X=XT) for each 
element xv of an 5P , the number of U3s is equal to the total number of ele-
ments of an Sp 9 that is, M1 + M2 + M3 + MM . Besides, every U3 is a subse-
quence of S. As we saw In Lemma 7, Z73's are classified into four-types like 
Figure 2. It is easily recognized that the number of each type coincides 
with Mi , Ml9 M39 and M^, respectively. 

On the other hand, concerning the middle elements, U3s can be classi-
fied into six-types modulo 6 as illustrated in Figure 3. In this place, we 
should like to omit 6??? + 3 and 6772, since these would not appear as a recur-
sive element. Then, we can also recognize that the number of each type co-
incides with M2, M19 0, Mh, M3, and 0, respectively. 

Hence, we obtain the following contrast. 

M1i total number of type (4TT? + 1) = total number of type (67?? + 2 ) , 
M2 : total number of type (Urn + 2) = total number of type (67?? + 1) , 
M3 : total number of type {km + 3) = total number of type (6??? + 5), 
Mi total number of type (4??? + 4) = total number of type (6T?? + 4). 
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Then, we can calculate the total number of the odd types in two ways: one 
is based on the types modulo 4 and the other is based on the types modulo 6. 
The result is M± + M3 M2 + M3 . Hence, M1 Mn 

(ii) Let us subdivide the types of the above table modulo 12. For in-
stance, the type (4m 4-1) is subdivided into the types (12m 4- 1), (12m + 5), 
and (12m + 9). Then, we can reconstruct the above table as follows: 

M1i total number of types 
(12m + 1) 
(12m + 5) 
(12m + 9) 

M2: total number of types 
(12m + 2) 
(12m + 6) 
(12m + 10) 

M3: total number of types 
(12m + 3) 
(12m + 7) 
(12m + 11) 

Mi): total number of types 
(12m + 4) 
(12m + 8) 
(12m + 12) 

total number of types 
(12m + 2) 
(12m + 8) 

total number of types 
(12m + 1) 
(12m + 7) 

total number of types 
(12m + 5) 
(12m + 11) 

total number of types 
(12m + 4) 
(12m 4- 10) 

If we omit the types with a multiple of 3 for the reason stated, 
late in two ways, we obtain the following relations: 

and calcu-

M, N± +N5 N2 + N8 

M3 = *ii N5 +N11X Mu N, +NQ 

vio - N± + N79 

Besides, we obtain, from (i), 

Then, they reduce to the following relations: 

M, M0 

N« Na Nl = N2> N3 

Lemma 10: Suppose that 

U : \X Q , ^ T S • • • / 5 ^ 0 C- l l j ^-3 

ff, Na = Na 

( 2 l 

"10 N12 = 0 . 

L) I 9 Xr — A X\x=xn 

is an infinite sequence with recursive segment Sp i(xs+1, ..., xt). Let p be 
the length of an irreducible Sp. Then p £ 1, 3, 4. 

VK.00{: Since each element of SP shows the value increasing or decreasing, 
according as the preceder is odd or even, then possible Sp must necessarily 
involve an odd element as well as an even element. 

Now, let us assume, without loss of generality, that the first element 
of Sp is an odd number. Here p £ 1, for if not, a segment would cause the 
value to increase. Hence, the cases to be examined are those for p = 3 and 
p = 4. 

Let xs+1 = 2 i ? + l . Since xs + 1 £ Z + , then R e {Z + , 0 } . Moreover, we ob -
t a i n xs + 2 ~ 3R+2. 

( i ) When p = 3 : 
The cases examined are classified into four types according to the 

parities of xs+2 and xs+^e Then, we can calculate x8+h as a function of R. 
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Since xs+1 = x 
a criterion for the existence of 

The result is as follows: 

and Re {Z+, 0} must be simultaneously satisfied, we have 
a recursive segment. 

XS +2 

odd 
odd 
even 
even 

xs + 3 

odd 
even 
odd 
even 

xs+h 

(27R + 23)Ik 
(9R + 7)/4 
(9R + 8)/4 
(31? + 2)/4 

2?s + l — xs + h 

19R + 22 = 0 
1? + 3 = 0 
R + 4 = 0 
51? + 2 = 0 

1? £ {Z + , 0}? 

no 
no 
no 
no 

Hence, any recursive segment with length 3 does not exist. 
(ii) When p = 4: 

Analogously, we examine the simultaneous compliance of 

s + 4 ^ xs+2 and R e {Z + , 0}. J s+l 

Xs+2 
odd 
odd 
odd 
even 
odd 
*even 
even 
even 

x s + 3 
odd 
odd 
even 
odd 
even 
odd 
even 
even 

x 
odd 
even 
odd 
odd 
even 
even 
odd 
even 

xs + 5 

(811? + 73)/8 
(271? + 23)/8 
(271? + 25)/8 
(271? + 28)/8 
(91? + 7)/8 
(91? + 8)/8 
(91? + 10)/8 
(31? + 2)/8 

x X a + 1 
R + 1 

111? + 15 
111? + 17 
111? + 

71? + 

R z {Z+ , 0}? 

131? + 

20 
1 
R 

1R 
6 

no 
no 
no 
no 
no 
yes 
no 
no 

In the above table, the asterisk marks the case of xs + 3 = ^(31?+2). Since 
xs+1 £ xs+3 is required for an irreducible segment, then R £ 0, which con-
tradicts xs+1 = xs + 5. 

After all, there exists no irreducible Sp with p = 4. 

Tk&Q/i&n 2: Suppose that 

Siix, . . • ) , X Q £ \ 1 , Z , (2 i + i 1)}, xr = Arx\ 

Then, an irreducible segment of recursion9 Sp is is a recursive sequence. 
(1, 2) or (2, 1). 

Vtwok1 Since p, the length of an Sp , is not equal to 1,3 or 4, as we saw, 
then the bases to be examined are limited to those of p ̂ > 5 and p = 2. 

(i) When p J> 5: 
If we construct sequences U^s:(xr9 Ax\ , A2x\x=xr , A3x\ x= , ) 

for each element xv of an Sp, the number of U^s is equal to the total num-
ber of elements of an Sp. Besides, every Uh is a subsequence of S. As in 
Lemma 8, U^s can be classified into 12-types about the second elements mod-
ulo 12 as follows. 
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12w+l 

v 
12m+7 

Fig.A 
Since each number of type (12m + k), k e {l, 2, ...9 12} coincides to 

the Nk stated in Lemma 8', the types (12m + k) , fe=3, 5, 6, 7, 8, 9, 10, 12 
do not exist, in reality. 

Now, let us construct Z75's:(#r, i4x|a: = a;r5 . .., ̂ 4^1* = ̂  )• Since every 
Uh is a subsequence of S and since p ̂  5, then any Z75 involves at least one 
combination of two U^s such that the second, third, and fourth elements of 
the first Uh overlap to the first, second, and third elements of the second 
UhS respectively. 

Hence, we obtain the possible combinations: 
N1 + Nz; N2 -> N±i Nh + Nh; N±1 + N±1. 

Since each of the latter two would not cause a recursive segment, the for-
mer two only may exist. Consequently, successive elements of SP show the 
alternative increasing or decreasing of values, if it exists. In general, 
however, a sequence like (odd, even, odd, even, odd, ...) causes a decrease 
of value in the global sense, except the sequence (1, 2, 1, 2, 1, . . . ) . 

Hence, it is impossible to construct SP with p ̂  5. 

(ii) When p = 2: 
Obviously, the only Sp:(l9 2) exists, if the first element is odd. 

ThtOKem 3'* There exists an infinite sequence (xQ9 x±9 ...) generated by a 
recursion formula: 

xr+1 = hOxr + 1), if xv is odd; xr+1. = hxr> if %r is even, 

where x0 is arbitrarily given in Z . 
This sequence necessarily has an element with value 1 in a finite posi-

tion less than or equal to M = 2K+ l9 K= 2Z + 1 from the top of the sequence, 
where K > xQ . 

VKOO^1 Obvious from Theorems 1 and 2. 

Complement'' An infinite sequence (x0, x1, ...) with the recursion formula 
like Theorem 3 starting from an arbitrary x0 in Z" is a recursive sequence. 

VKOol} Left to the reader. 

® 
12w+ll 

12^+12 

® 
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6. CONCLUSION 

We have proven a number-theoretical problem about a sequence, which is 
a computer-oriented type, but cannot be solved by any computer approach. 
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1. INTRODUCTION 

The Stirling numbers of the first and second kind can be defined by 

(1.1) (x)n = x(x + 1) ••• (x + n - 1) =]T 5x(n, k)xk
9 

j k = 0 

and 
n 

(1.2) xn = ]T S(n9 k)x .(x - 1) ••• (x - k + 1) , 
k = o 

respectively. In [6], the writer has defined Weighted Stirling numbers of 
the first and second kind, S1(n9 k9 A) and S(n9 k9 A ) , by making use of cer-
tain combinatorial properties of S1(n9 k) and S(n9 k) . Numerous properties 
of the generalized quantities were obtained. 

The results are somewhat simpler for the related functions: 

( R1(n9 k9 A) =~S1{n9 k + 1, X) + S1(n9 k) 
(1.3) I 

{ R(n9 k9 X) = S(n9 k + 1, A) + S(n9 k). 
In particular, the latter satisfy the recurrences, 

R1(n9 ks X) = R1(n9 k - 1, X) + (n + A)i?x(n, fc, A) 
(1.4) 

i?(n, fe, A) = R(n9 k - 1, A) + (k + A)i?(n, fc, A), 
and the orthogonality relations 

n 
£/?(n, 3, A) • (-iy'kR1(.j, k, X) 

£ {~})n-'R1{n, 3, X)RU, k, A) = {J (" J §. 
j =0 

We have also the generating functions 

(1.5) 

d.6) £ J T E ^ I ^ ' k> x)yk = ( 1 - xy \-y 

ni 
n = 0 li = 0 


