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1. INTRODUCTION

In this paper we will extend the results of D. D. Wall [12], John Vinson
[11], D. W. Robinson [9], and John H. Halton [3] concerning the divisibility
properties of the Fibonacci sequence to the general Lucas sequence

(@} - v/ (ry - r,).

In particular, we will improve their theorems for the Fibonacci sequence.
Their results are inconclusive for those primes for which

(5/p) = (-1/p) = 1,

where (x/p) is the Legendre symbol for the quadratic character of x with re-
spect to the prime p. We will obtain sharper results in these cases.
Let

€)) Uy, = AU,  + by,

where uy, #;, a, and b are integers, be an integral second-order linear recur-
rence. The integers ¢ and b will be called the parameters of the recurrence.
If u, =0 and u; =1, such a recurrence will be called a primary recurrence
(PR) and will be denoted by u(a, b). Associated with PR u(a, b) is its char-

acteristic polynomial

22 —ax -b =0

with roots r, and r, where r, + r, = a and r;r, = -b. Let
D=a’*+4b = (r, - 7,)?

be the discriminant of the characteristic polynomial. 1If D # O, then, by the
Binet formula

(2) u, = (@ - r)H/(x, - r,.

One other type of sequence will be of interest: the Lucas sequence v(a, b) in
which

(3) V,pp, = QU + bv,, vy, =2, v, =a.

n+l
As is well known, the Lucas sequence is given by the Binet formula
(4) v, = rl+ rl

To continue, we need the following definitions which are modeled after
the notation of Halton [3]. The letter p will always denote a rational prime.

Definition 1: v(a, b, p) is the numeric of the PR u(a, b) modulo p. It is
the number of nonrepeating terms modulo p.

Definition 2: w(a, b, p) is the period of the PR u(a, b) modulop. It is the
least positive integer k such that

Upsx = Up (mod p)
is true for all n > v(a, b, p).
Clearly, if v(a, b, p) = 0,

Upap,p= 0 and Uy pp+1 = 1 (mod p).
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Deginition 3: a(a, b, p) is the restricted period of the PR u(a, b) modulo p.
It is the least positive integer X such that

Uy = SU, (mod p)

for all n > v(a, b, p) and some nonzero residue s.  Then & = g(a, b, p) is
called the multiplier of the PR u(a,b). If u; = 0 (mod p) for k > v(a, b, p),
we say that s(a, b, p) = 0 by convention.

Deginition 4: B(a, b, p) is called the exponent of the multiplier s(a, b, p)
modulo p. It is clearly equal to

ula, b, p)/ola, b, p).

Deginition 5: 1In the PR u(a, b) the rankof apparition of p is the least posi-
tive integer, if it exists, such that u; Z 0 (mod p).

We will restrict our attention chiefly to the PR's u(a, b), because, as
we shall see, if b # 0, then for these sequences the rank of apparition of p
exists. By [10], primary recurrences are essentially the only recurrences hav-
ing this property.

2. PRELIMINARY RESULTS

The following well-known properties of Lucas sequences will be necessary
for out future proofs. Proofs of these results can be found in the papers of
Lucas [8] or Carmichael [2].

(5) In the PR u(a, b) suppose that b Z 0 (mod p) and that p # 2.
Then
up_(D/p) =0 ('[IlOd p)-
(6) Uppn = Py + Uy g -
(7 U - U, Uy, = (D), m > 1.
(8) v2 - Du? = 4(-b)".
(9 Uy, = Uyplp -
(10) If pfbD, then p is a divisor of the Lucas sequence v(a, b) if

and only if a(a, b, p) = 0 (mod 2) for the PR u(a, b). Then
the rank of apparition of p in v(a, b) is (1/2)ala, b, p).

The following two lemmas will determine the possible numerics v(a, b, p)
for the PR u(a, b) modulo p.

Lemma 1: In the PR u(a, b) if b # 0 (mod p), then v(a, b, p) = 0 and ala, b, p)
is also the rank of apparition of p. Also, if u;, = O (mod p), then

ala, bs p) k-
Further
alas b, p)|p - (D/p).

Proof: Since there are only p? possible pairs of consecutive terms (U, u@+1)
(mod p), some pair must repeat. Suppose that the pair (u,, Uy ,,) 1is the first
such pair to repeat modulo p and that k#+ 0. Letm=vulas b, p). Then,

Upyn = U and U gy = Upyy (mod p).
However, by the recurrence relation (1),

bup .4 = Uxsr — AUy
Since b Z 0 (mod p),

Uy g = (Uppq = auy) /b (mod p).
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Hence, the pair (u;_q» uk) repeats modulo p which is a contradiction if k#0.
Thus, the pair (uy, u;) = (0, 1) repeats modulo p. Hence, the numeric is 0
modulo p and the PR u(a, b) is purely periodic modulo p.

Now, let n = afa, b, p). As in the above argument,(uo, u;) is the first
pair (uk, U, ,,) such that

Upyn= S, and w .. = sy, (mod p)

for some residue s (mod p).
the fact that the PR wu(a, b) is purely periodic modulo p. The rest of the
lemma follows from (5).

Lemma 2: 1In the PR u(a, b), assume that b Z 0 (mod p).
(i) If g # 0 (mod p), then v(a, b, p) 1 and u,
(ii) If a = 0 (mod p), then v(a, b, p) = 2 and u,

Proof: This follows by simple verification.
3. RESULTS FOR SPECIAL CASES

a” ! (mod p), n > 1,
0 (mod p), n > 2.

H

For certain special classes of PR's, we can easily determine u(a, b, r),
ala, b, p), and s(a, b, p). Of course, if u(a, b, p) and a(a, b, p) are known
exactly, B(a, b, p) is immediately determined. Theorems 1-4 will discuss these
cases. The proofs follow by induction and direct verification.

Theonem 1: 1In the PR u(a, b), suppose that b = 0,
(i) If a # 0 (mod p), then u, = a®t, n > 1.
Further,

v(a, b, p) =1, ala, b, p) =1, u(a, b, p) = ordy(a), and s(a, b, p) =

for all primes p, where ordp(x) denotes the exponent of x modulo p.
(ii1) If a = 0 (mod p), then u, = 0, n > 2,
via, b, p) =2, ala, b, p) =1, ula, b, p) =1, and s(a, b, p) =
Theorem 2: 1In the PR u(a, b) let @ = 0 and b # 0 (mod p). Then
=b ,n>0.

U,, =0 and u

n 2n+1

Further,
v(a, b, p) =0, ola, b, p) =2, ula, b, p) = 2 ordp(h), and s(a, b, p)

Theorem 3: 1In the PR u(a, b) suppose that D=0, a # 0 (mod p),and b Z 0 (mod
p). Then

1]
o

u, =n(a/2)*"*, n > 0.
Further
ala, b, p) = p, wla, b, p) = p ordp(a/2), and s(a, b, p) = a/2.

Theorem 4: In the PR u(a, b) suppose that r,/r, is a root of unity. Let k be
the order of the root of unity. Let g, be a primitive kth root of unity.
(i) If k =1, then a=2N, b=-N, D =0, r; =N, r, =N, and r/r, = 1.
Theorem 3 characterizes the terms of this sequence.
(ii) If k =2, thena =0, b =N, D = 4V, r,=/W, r,=-/N, and r, /r,
-1. Theorem 2 characterizes the terms of this sequence.

(iii) If k =3, a =0, b=-N", D==-3N*, »,=-,N, v, = ~C3N, and r /7,

ol
*(v) If k=4, a=20, b=-202, D =42, r, =1+ DV, r,=(1 - DN,
and r,/r, = i where 7 = v=1.
(v) 1f k=6, a=23N,D5b
and », /r, = T

-3§%, D = -3N2, r; = -1Cs/3 , v, = 1C3(/3)N,

]
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Moreover, if k > 2, then

ala, b, p) =k, wla, b, p) = k ordy(s),

and

11

sgn(ak) (=(-b) */?) (mod p),

where sgn(x) denotes the sign of x. Furthermore, if n =gk + 2, 0 > » > k, and
k > 3, then

s(a, b, p) = s

u, = s%u, = (—l)qukur.

In Theorem 4, note that k = 1, 2, 3, 4, or 6 are the only possibilities
for k since these are the only orders of roots of unity that satisfy a quadra-
tic polynomial over the rationals.

Just as we treated the divisibility properties of certain special recur-
rences with respect to a general prime, we now consider the special case of the
prime 2 in the following theorem. We have already handled the cases where b =
0 or a =0 (mod 2) in Theorems 1 and 2.

Theorem 5: Consider the PR u(a, b). Suppose that 2[ab. Then V(a, b, 2) = 0,
ula, b, 2) =3, ofa, b, 2) =3, and s(a, b, 2) = 1. The reduced recurrence
modulo 2 is then

0, 1, 1, 0, 1, 1, ...) (mod 2).

L. GENERAL RESULTS

From this point on, p will always denote an odd prime unless otherwise spe-
cified. Theorem 6 gives criteria for determining u(a, b, p), a(a, b, p), and
s(a, b, p) for the general PR u(a, b). TFor the rest of the paper, D' will de-
note the square-free part of the discriminant D, and X will denote the algebraic
number field Q(/D'), where § as usual stands for the rationals.

Theornem 6: 1In the PR u(a, b), suppose that p‘bD. Let P be a prime ideal in
K dividing p. If (D/p) = 1, we will identify P with p.
(i) wu(a, b, p) is the least common multiple of the exponents of r, and

r, modulo P.

(ii) oafa, b, p) is the exponent of »r,/r, modulo P. If (D/p) = -1, then
a(a, b, p) is also the least positive integer n such that r, is congruent to a
rational integer modulo P.

(iii) 1If k = a(a, b, p), then s(a, b, p) Pf (mod P).

Proo4: Let R dencote the integers of X. Since b # 0 (mod p), neither r; nor
r, = 0 (mod p). Since R/P is a field of p or p2 elements, rl/rzis well-defined
modulo P. Further, since D = (r, - r2)2 70 (mod P), u, = (v, - r3)/(ry - 7,)
is also well-defined modulo P.

(i) Let n = uw(a, b, p). Then

U, = (rf - r;)/(rl - r,) =0 (mod p) = 0 (mod P)

"

and
Uyyq = 1 (mod p) = 1 (mod P).
Thus, r] = r}' (mod P). Hence,
Uper = (rf+1 - r;+1)/(r1 -r) = (ri(r) - PZ(PZ))/(Tl -r) = r; = 1 (mod P)
n — k

Thus, r{ = r} = 1 (mod P). Conversely, if rf = ryS =1 (mod P) for some posi-
tive integer k, then it follows that u, = 0 and u = 1 (mod p). Assertion
. k k+1
(i) now follows.
(ii) Now let =

ala, b, p). Then u,=(r{ - r5)/(r; - r,) = 0 (mod P).
This occurs only if »; =

r} (mod P). Dividing through by »}, we obtain
(r,/r,)" =1 (mod P).

n
1

Hence, a(a, b, p) is the exponent of rl/r2 modulo P.
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Further, if (D/p) = -1, then
o(r)) =rf=r, (mod P) and o(r}) = (rf)" = r? (mod P),

where o is the Frobenius automorphism of R/P. This follows, since r; and r,

are both roots of the irreducible polynomial modulo P, x2 - ax - b. Thus, if
ri = v} (mod P), we obtain

{pf)P = r: = rf (mod P).
Let Z, denote the finite field of p elements. Now,

R/P = 2,[VD'].
In ZP{/ET], the only solutions of the équation x? — 2 = 0 are those in Zp by
Fermat's theorem. Assertion (ii) now follows.
(iii) Let k = ala, b, p). Then

Upy, = 8a, b, p) (mod p) = s(a, b, p) (mod P).
By the proof of (ii), rf = rf (mod P). Thus,
(riGe) = rf@)) /(e - )

= Pf = sla, b, p) (mod P).

111

1 1
Uppr = <P§+ - P§+y)/(rl - 7,)

The proof is now complete.
Theorem 6, while definitive, is impractical for actually computing

wia, b, p), ala, b, p), and sfa, b, p).

We will develop more practical methods of determining these numbers, although
our results will not be as complete. The most easily applied of our methods
will use the quadratic character modulo p andpertain to certain special classes
of PR's. For sharper results, we will also utilize the less convenient 27" - ic
characters modulo p.

A good theory of the divisibility properties of the PR u(a, b) with re-
spect to p should give limitations for the restricted period modulo p. Given
the restricted period, one should then be able to determine exactly the expo~
nent of the multiplier modulo p and, consequently, the period modulo p. Fur-
ther, we should be able to specify the multiplier modulo p. This will be our
program from here on. As a first step toward fulfilling this project, we now
present Theorems 7 and 8. Theorem 7 is due to Wyler [14] and, in most cases,
determines y(a, b, p) when ofla, b, p) and ordp(-b) are known. Theorem 8 is
the author's application of Wyler's Theorem 7.

Theorem 7: Consider the PR u(a, D). Suppose b 7 0 (mod p). Let h=ordy(-b).
Suppose =2°h', where A’ is an odd integer. Let k=afa, b, p) = 29k, where
k' is an odd integer. Let F be the least common multiple of % and k.

(1) wufa, b, p) = H or 2H; Rla, b, p) = H/k or 2H/k.

(i1) 1If ¢ # d, then ufa, b, p)=2H. 1f ¢ =d > 0, then u(a, b, p) = H.

This theorem is complete in the sense that if ¢ = d = 0, then u{a, b, p)
may be either H or 2H. For example, look at the PR u(3, ~1). TFer all primes
p, ho=ordy(1) =1 =2°(D).

If p = 13, then k = a(3, -1, 13) = 7 = 2°(7). Further, H = [1, 7] = 7.
By dinspection, p(3, -1, 13) = 14 = 27,

If p = 29, then k = (3, -1, 29)=7. As before, # = 7. But now we have

u(3, -1, 29) = 7 = A.
Theorem §: Let p be an odd prime. Consider the PR u{a, b), where b # 0 (mod
py. Let h = ordp(-b). Suppose h = 2°h', where h' is an odd integer. Let
k = ala, b, p)=29k"’, where k' is an odd integer. Let H=[h, k], where [z, y]
is the least common multiple of x and y. Let s = s(a. b, p).
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(1) 8% = (-b)* (mod p).

(ii) 1If ¢ =d =0 and ula, b, p) = #, then s = (=) **M/2 (nod p).
(iii) If ¢ =d =0 and p(a, b, p) = 2H, then s = —(=b)*+M /2 (mod p).
(iv) If ¢ =d > 0, then s = =(-b)*/? (mod p).

(v) 1f d > ¢, then s = —~(-b) */2 (mod p).

(vi) If ¢ > d, then s = #»r, where r?>= (-b)* (mod p) and 0<r< (p-1)/2.

Further, both possibilities do in fact occur.

Proog:
(i) This follows immediately from (7), letting n = k.
(ii) Let ¢ = d = 0 and assume that u(a, b, p) = H. Then,

ordp(s) = B(a, b, p) = H/k = [h, k1/k.
Further, by (i),
82 = (-b)* (mod p).
Thus,

11

(=p) ®*PI2 or .= ~(-b)**P/2 (mod p).
In general, it is easy to see that if r is a positive integer,

ord,(-p)" = [k, r]/r.

S

Therefore,

ord,((-DY**W/2) = [n, (k + ) /2]/((k + 1) /2).
Suppose g = (h, k). Let h = gm and kK = gn, where (m, n) = 1. Then,
[, (k+ R)/21/((k + R)/2) = [gm, gim + n)/2]/(g(m + n)/2)
glm, (m +»n)/21/(g(m + n)/2).
Clearly, (m, m + n) = 1 and, a fortiori, (m, (m + n)/2) = 1. Hence,
glm, (m + n)/21/(g(m + n)/2) = (gn(m + n)/2)/(gm + n)/2) =m.

But,
[k, kK1/k = [gm, gnl/(gn) = gm/(gn) = m.
Thus,
ord,((-b) **M/2) = ord,(s) = m.
However, since m is odd,
ordp(—(—b)(k+M/2) = 2m.

Thus, s = (=b) **M/2 (pod ).

(iii)-(v) The proofs of these assertions are similar to that of (ii). 1In
calculating ordp(s) for (iv) and (v), we make use of Wyler's Theorem 7.

(vi) To see that both possibilities actually occur, consider s(1, 1, 13)
and s(1,1, 17).

Now, o(l, 1, 13) = 7 and ordlg(—l) =2, so ¢ > d. By inspection, we see

s(l, 1, 13) =8 > (13 - 1)/2 = 6 (mod 13).

Also, a(l, 1, 17) =9 and ord17(—1) = 2. Hence, ¢ > d. However, we now
find that

that

s(l, 1, 17) = 4 < (17 - 1)/2 = 8 (mod 17),
and we are done.

Unfortunately, Theorems 7 and 8 depend on knowing the highest power of 2
dividing a(a, b, p) and ordp(-b) to determine B(a, b, p) and u(a, b, p). Our
project will be to find classes of PR's (excluding the special cases already
treated) in which for almost all primes p the exponent of the multiplier mod-
ulo p, B(a, b, p), can be determined by knowing the residue class modulo m to
which a(a, b, p) belongs for some fixed positive integer m. In addition, we
would like a set of conditions, preferably involving the quadratic character
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modulo p, for determining a(a, b, p) modulo m without explicitly computing
ala, b, p).

By Theorem 7, these conditions can be satisfied if either

(i) ordp(—b)[m for a fixed positive integer m and for almost all primes
, OF

P (ii) 2H/o(a, b, p)lm for a fixed positive integer m and for almost all
primes p.

Now, condition (i) can be satisfied for almost all p iff b = #1. Thus,
we will consider the PR's u(a, 1) and u(a, -1). If b =1, then ord,(-b) = 2
for all odd primes p and, by Theorem 7, # = a(a, 1, p) or H = 2a(a, 1, p).
Hence, B(a, 1, p)|4 and B(a, 1, p) is largely determined if a(a, 1, p) is known
modulo 4. Similarly, if b -1, then B(a, -1, p) is largely determined if
a(a, -1, p) is known modulo

By Theorems 6 and 7, H
can be satisfied if

o

[ord,(r,/r,), ordp(-b)] . Hence, condition (ii)

(11) ry/r, = #b.

Since r,r, = -b, equation (l1) is equivalent to requiring that

(12) r,/r, = trr,.

Solving, we see that rg =1 or rg = -1. But, if r% = -1, then r, = +7 and

r, = ¥1. However, this case is already treated by Theorem 4(ii). If r: =1,
then », = *1. 1If r, = 1, then by Theorem 6 we see that B(a, b, p) = 1 always
no matter what a(a, b, p) is. If r, = -1, then Theorem 6 and a little analy-
sis shows that B(a, b, p)|2 and depends upon the residue class of o(a, b, p)
modulo 2. Note that if r, = 1, then

(13) r, =-b/r, =-b and a=r +r, =-b+ 1.
If r, = -1, then
(14) r, =b and a=b - 1.

1
Hence, we will also investigate the divisibility properties of the PR's

u(-b + 1, ») and u® -1, b).

From our preceding discussion, it will be very helpful if we can find
conditions to determine a(a, b, p) modulo 4. The following two lemmas and two
theorems determine the residue class of a(a, b, p) modulo 4 for a general PR

u(a, b).

Lemma 3: Let p be an odd prime. Consider the PRu(a, D). Suppose that p*bD.
(i) 1f ola, b, p) 1 (mod 2, then (-b/p) = 1.
(ii) If ala, b, p) 2 (mod 4), then (bD/p) = 1.
(iii) 1If ala, b, p) 0 (mod 4), then (bD/p) = (-b/p).

Proof: Firstly, note that by (8),

[T

(15) vZ - Du? = 4(-b)".
(1) Let k = ala, b, p) =1 (mod 2). By (15),
vy = 4(-b)* (mod p).

Since k = 1 (mod 2), this is possible only if (-b/p) = 1.
(ii) Let 2k = a(a, b, p). Then k = 1 (mod 2). By (10), v, =0 (mod p).
Then by (15),

-Duj = 4(-b)* (mod p).

If (-b/p) = 1, then clearly, (-D/p) = 1. 1f (-b/p)
since ¥k = 1 (mod 2). 1In both cases, (bD/p) = 1.

1]

-1, then (-D/p) = -1,
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(iii) TLet 2k = ala, b, p). Then ¥k = 0 (mod 2). By (10), v, =0 (mod p).
Then by (15),

—Dui = 4(=D)* (mod p).
Since k = 0 (mod 2), (-D/p) =1 in all cases. It follows that (bD/p) = (-b/p).

Theorem 9: Let p be an odd prime. Consider the PR u(a, b). Suppose plbD.
(1) 1If (-b/p) =1 and (bD/p) = -1, then a(a, b, p) 1 (mod 2).
(i1) 1f (-b/p) = -1 and (bD/p) = 1, then ala, b, p) = 2 (mod 4).
(iii) If (-b/p) = (bD/p) = -1, then ala, b, p) = 0 (mod 4).

Proof: This follows immediately from Lemma 3.
As we can see from Theorem 9, the only doubtful case occurs when

(-b/p) = (BD/p) = 1.

Lemma 4 and Theorem 10 give a new criterion for determining the restricted
period in some instances when (-b/p) = (bD/p) = 1.

It

Lemma 4: Let p be an odd prime. Consider the PR u(a, b). Suppose pka and
ala, b, p) =1 (mod 2). Then (-b/p) = 1. Let r® = -b, where 0<r< (p-1)/2.
Then

(16) (=2b + ar/p) =1 or (-2b - arlp).
where (~2b +-ar/p) denotes the Legendre symbol.

1,

Prood: By Lemma 3(i), we know that (-b/p) = 1. Let k

ala, b, p). By (6),

- 2 2 =
U, = bu&_l)/z + UGy o o 0 (mod p).
Hence, ) )
Ugsyso = Phg 1y, (mod p).
Thus,

Ugs1) /2 = UG -1y, (mod p).
Suppose that Ugsny /2 = Phx-1)/2 (mod p). Then

Ugssysz = gy sz T Plgeoay s = %G _ay 72+ Pl gy o

= (ar + Ddug .1y, (mod p).
Now, by (7),

_ 2 2
7"(2k+1)/2 = Ug -1y /o8E+3) /2 = PUG-1y 2 = (ar + P)uG 1y,
= (-ar - 2D)ud1yp = (-DYKD/2
= p*"1 (mod p).
Since k¥ - 1 is even, this implies that (~2b - ar/p) = 1.
Now suppose that Ug.1y,, T ~TUg-1)/2 (mod p). Continuing as before, we

obtain
r*¥"1 (mod p).

1

(—Zb + al”)u%k_l)/z

This similarly implies that (-2b + ar/p) = 1 and we are done.
In our statement of Lemma 4, note that

(-2b + ar)(-2b - ar) = bD.

Theorem 10: Consider the PR u(a, b). Let p be an odd prime. Suppose prD
and (-b/p) = 1. Let r be as in Lemma 4.
(1) If (-b/p)=(BD/p) = 1 and (-2b + ar/p) = (-2b - ar/p) = -1, then,
ala, b, p) = 0 or 2 (mod 4).
(ii) 1If (-b/p) = (bD/p) = (-2b + ar/p) = (-2b - ar/p) =1, then o(a, b, p)

can be congruent to 0, 1, 2, or 3 (mod 4).

Proog: This follows immediately from Lemma 4.
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The following examples in Table 1 from the Fibonacci sequence show the
completeness of Theorem 10. For the Fibonacci sequence,

a=b=1,D=5,bD =35, -2b+ar=-2+1%, and -2b - ar = -2 - 7.
TABLE 1

Examples from the Fibonacci Sequence in Which (-b/p) = bD/p) =1
-and a(a, b, p) Takes on All Possible Values Modulo 4

P (-b/p) (bD/p) (-2b + ar/p) (=2b - ar/p) o(l, 1, p) (mod &)
29 1 1 -1 -1 2
41 1 1 -1 -1 0
61 1 1 1 1 3
421 1 1 1 1 1
809 1 1 1 1 2
1601 1 1 1 1 0

By Theorems 9 and 10, we are so far unable to determine whether the re-
stricted period modulo p is even or odd only when

(-b/p) = (BD/p) = (-2b + ar/p) = (-2b - ar/p) = 1.

The next theorem will settle this case. We will use the notation [x/p], to
denote the 2" - ¢ character of x modulo p.

Theorem 11: Let p be an odd prime and suppose that p - (D/p) = 2%gq, where q
is an odd integer. Consider the PR u(a, b) and suppose that pJbD. Let P be
a prime ideal in K = @(/D). Then a(a, b, p) = 1 (mod 2) if and only if
Pfq = (-P)? (mod P).
If (D/p) =1, then afa, b, p) = 1 (mod 2) if and only if
[ry/plx_.1 = (D)7 (mod p).

Proof: This is proved by Morgan Ward [13] for the Fibonacci sequence in which
case b = 1. Our proof will be an immediate generalization of Ward's.
First we note that u; = 0 (mod p) if and only if

r2% = (-b)* (mod P).
This follows from the fact that

It

(Pik - (rlrz)k)/(rf(rl - Pz))

(T%k - (—b)k)/(rf(rl - 1r,)).

w = PPy = ) (i, - )

The result now follows easily.

Assume that afa, b, p) = 1 (mod 2). Then, up_(psp = O (mod p) by (5).
Further, by (6) it follows that umlun if mln. Thus, ©#g = 0 (mod p) since any
odd divisor of p - (D/p) must divide g. Thus, by our result earlier in this
proof,

r%q = (-p)? (mod P).

Conversely, if r%q = 0 (mod P), then ug = 0 (mod p) by the same result.
It thus follows that oaf(a, b, p) = 1 (mod 2). The last remark in the theorem
follows from the definition of [rl/p]k_l.

We will generalize the previous theorem in Theorem 12, which will deter-
mine when of(a, b, p) = 2™ (mod 2m+1y, First, we will have to prove the fol-
lowing lemma.
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Lemma 5: Consider the PR u(a, b). Let p be an odd prime. Suppose that p}bD.
Let kK = p - (D/p). Then

p!uk/z iff (-b/p) = 1.

Proo4: This was first proved by D.H. Lehmer [4]. Backstrom [1] also gives a
proof.

Theonem 12: Consider the PR u(a, b). Let p be an odd prime and suppose that.
p - (O/p) = 2%q, where q is an odd integer. Suppose p[bD. Let P be a prime
ideal in X dividing p.

(1) If (-b/p) = -1, then a(a, b, p) = 2% (mod 2**1).

(ii) If (-b/p) = 1, then ala, b, p) = 2™ (mod 2"*!), where 0 < m < k,if
and only if

2" = (p)?"7 (mod D).
but

r%mq F: (—b)2m-1q (mod P).

(iii) If (-b/p) = (D/p) = 1, then ala, b, p) = 2" (mod 2"*'), where 0 <

m < k,if and only if

[ry/p)y oy = (-£)?"7 (mod p),

2/l 2 (-B)¥" 79 (mod p).

but

Proof:

(i) This follows from Lemma 5, which implies that
aa, b, p)(p - @/p))/2.

(ii) First, m < k, since by Lemma 5,
ala, b, p)|(p - (@/p))/2.

Further, o(a, b, p) = 2" (mod 2"*') if and only if plu,n,, but plusme-1, . Now
apply the arguments of the preceding theorem, Theorem 11.

(iii) This follows from the definition of the 2" - Z¢ character modulo p
and part (ii).

Note, however, that the criteria of Theorems 11 and 12 are not really
simpler than direct verification that p is a divisor of some specified term of
{#,}. For example, in Theorem 11, we can show that a(a, b, p) = 1 (mod 2), if
we can show that p]uq, where g is the largest odd integer dividing p - (D/p).
This is equivalent to the criterion of Theorem 11. 1In the next section, we
will assume that b= 1. 1In this case, the criteria of Theorems 11 and 12 will
be easier to apply.

5. THE SPECIAL CASE b = #1

In this section we will obtain more complete results than those of Theo-
rems 7 and 8 for those particular PR's for which b = *1. We will first treat
the case in which » = 1 in the following theorems.

Theornem 13: Consider the PR u(a, 1). Let p be an odd prime. Suppose that
(D/p) # 0. 1f (-1/p) =1, let £ = /-1, where 0 < 2 < (p - 1)/2.

(i) Bla, 1, p) 1, 2, or 43 s(a, 1, p) = 1, -1, or #¢ (mod p).

(i1) Blas 1, p) 1 iff ala, 1, p) = 2 (mod 4) and u(a, 1, p) = 2 (mod

|| Il

4).

(iii) B(a, 1, p)
(iv) Bla, 1, p)

) 2 iff ala, 1, p) = 0 (mod 4) and ula, 1, p) = 0 (mod
8).

1]
1
[

4 iff ala, 1, p) =1 (mod 2) and u(a, 1, p) 4 (mod

8).
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1l

(v) 1If (-1/p) = -1 and (a® + 4/p) = 1, then ala, 1, p)
B(CL: 1, p) = ]-s and U(a, 1, p) =2 (mOd 4)-
(vi) 1If (-1/p) = -1 and (a® + 4/p) = -1, then a(a, 1, p) = 0 (mod &),
B(a, 1, p) = 2, and u(a, 1, p) = 0 (mod 8).
(vii) If (-1/p) =1 and (a® + 4lp) = then a(a, 1, p)
Bla, 1, p) =4, and pla, 1, p) = 4 (mod 8).
(viii) If (-1/p) (a2 + 4/p) =1 and (-2 + ai/p) = (-2 - ai/p) = -
then a(a, 1, p) = 0 or (mod 4) and B(a, 1, p) =1 or 2.
(ix) If (-1/p) (a® + 4/p) = 1 and p = 5 (mod 8), then a(a, 1, p) Z 0
(mod 4) and B(a, 1, p) # 2.

Proo{:

2 (mod &),

1t

1 (mod 2),

I ]

(1) Apply Theorem 7. Since -b=-1, ord,(-b) = 2; hence, # = a(a, 1, p)
or # = 20(a, 1, p). Since B(a,1l,p) = H/o(a, 1, p) or B(a, 1, p)=2H/ala, 1, p),
B(a,1,p) =1, 2, or 4.
(ii)-(iv) These follow from Theorem 7.
(v)-(vii) These follow from Theorem 9.
(viii) This follows from Theorem 10.

(ix) Suppose P =5 (mod 8). Then I claim that a(a, 1, p) Z 0 (mod 4),
and, consequently, B(a, 1, p) # 2. Let k = a(a, 1, p), then by part (iii) of
this theorem,

= u(a, 1, p) = 0 (mod 8).

Since (a® + 4/p) = (D/p) = 1, Zklp-l by Theorem 6(i). But then p = 1 (mod 8),
which contradicts the fact that p = 5 (mod 8).

Theorem 14: Consider the PR u(a, 1). Let p be an odd prime such that (- 1/p)
= (D/p)=1. Let p-1 = 2%g, where q is an odd integer. Let €= (a, + ¢ /r—)/Z
be the fundamental unit in X = Q(/D'"), where D' is the square-free part of D.
Let € = -1/e. Consider further the PR u(a,, 1).
(1) W) =-1, r, = €™, and r, = - "= (®)™, where m = 1{mod 2) and
r, and r, correspond to the PR u(a, 1.
(ii) ala, 1, p)lala,, 1, p).
(iii) Either OL(a 1, p)_on(ao, 1, p) 21 (mod 2) or a(a, 1, p) = a(ay, 1, p)
(mod 4).
(iv) 1If [s:/p]k_1 =-1, then a(a, 1, p) =1 (mod 2), B(a, 1, p) = 4, and
H(a, 1, p) = 4 (mod 8).
(v) 1If [e/plx-1=1, then a(a, 1, p)
ula, 1, p) = 2 (mod 4).
(vi). If [e/ply_,# 1, then a(a, 1, p) = 0 (mod 4), B(a, 1, p) = 2, and
u(a, 1, p) = 0 (mod 8).

Proo{:

2 (mod 4), B(a, 1, p)

i
]

1, and

|

(i) Since N(»;) =r Pz = -1, it follows that N(e) = -1, », = €™, and
r, =-em= ()", where m =1 (mod 2).
(ii) First, we will see that € and € are roots of the characteristic
polynomial
x® - a,x -1 =0
associated with the PR u(a,, 1). Let

rl = (ay + Val +4)/2 and 1] = (q, - Vai + &)/2

be the roots of the characteristic polynomial. By definition of the fundamen-
tal unit €, it is easily seen that

ay = D'ct =-4.

Hence, /ag + 4 = c/D'. Thus,
= (ap + VDN /2 = r{ and € = (a; - ¢,¥D")/2 = »r].
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Now, by Theorem 6(ii), alays 1, p) is the exponent of e/t = -2 modulo p.
Similarly, a(a, 1, p) is the exponent of r,/r, = (-e2)" modulo p. It is now
easy to see that

(17) ala, 1, p) =alay, 1, p)/(ms alay, 1, p)).

Clearly, a(a, 1, p)lala,, 1, p).
(iii) Since m is odd, it is easy to see from (17) that (iii) holds.
(iv) By definitiom,

K-
= glo-1/287 L2 o g

111

(-1)7 (mod p).
1 (mod 2). By part (iii),

le/ply 1
By Theorem 11, it now follows that a(a,, 1, p)

1

ala, 1, p) = alay, 1, p) =1 (mod 2).

Therresult now follows by Theorem 13(iv).
(v) and (vi) The proofs of these parts are similar to that of part (iv).

The advantage of Theorem 14 is that it gives results for the infinite
number of PR's u(a, 1), for which the discriminants D all have the same square-
free part D', by analyzing only one PR u(a,, 1). When the 2" - Zc characters
modulo p in Theorem 14 are merely the quadratic characters, computations are
considerably easier. Further, when D' is a prime, we can make use of several
identities to calculate the quadratic characters. The following theorem dis-
cusses this in more detail.

Theotem 15: Consider the PR u(a, 1). Suppose that D', the square-free part
of D, is an odd prime. Let p be an odd prime. Suppose that

(-1/p) = (-1/D") = (p/D") = (D'/p) = 1.

Let €, = (a; + 01/57)/2 be the fundamental unit in K = @(/D7).
Let ¢, = (a, + ¢,/P)/2 be the fundamental unit in Q(/p).

Let D' =m§ + 4n? and p =m3 + 4nj.

Let §; = (m, + /D7y /2 and 8, = (m, +Vp)/2.

Let 7 = /-1.

(1) (e, /p) = 8,/p) = (ny + 2m,i/p) = (a; + 2i/p) = (mn, - m,n,/p)
(e,/D") = (8,/D") = (m, + 2n,2/D") = (a, +22/D")
= (myn, - myn,/D’).

(i1) If (e;/p) = 1 and p = 5 (mod 8), then

[l

ala, 1, p) = 2 (mod &), B(a, 1, p) =1, and ula, 1, p) = 2 (mod 4).
(iii) If (ey/p) = -1 and p = 5 (mod 8), then
alas, 1, p) =1 (mod 2), Bla, 1, p) = 4, and uCa, 1, p) = 4 (mod 8).

(iv) 1If (El/p) = -1 and p = 1 (mod 8), then

ala, 1, p) = 0 (mod 4), Bla, 1, p) = 2, and pla, 1, p) = 0 (mod 8).
(v) 1If (el/p) =1 and p = 9 (mod 16), then

ala, 1, p) 2 0 (mod &), B(a, 1, p) # 2, and u(a, 1, p) # 0 (wod 8).

Proo{:
(i) This is proved by Emma Lehmer in [6].
(ii) This follows from Theorem 14(v).
(iii) This follows from Theorem 14(iv).
(iv) and (v) These follow from Theorem 14(iv)-(vi).



328 THE DIVISIBILITY PROPERTIES OF PRIMARY LUCAS RECURRENCES [Dec.

In the case of the Fibonacci sequence, ¢ = b = landD = D' = 5, which is
a prime. Further, the fundamental unit of §(/5) is €. = (1 + V/5)/2, and 5 can
be partitioned as
5 =12 + 4(1)2.

With these facts, we can easily apply the criteria of Theorem 15 to the Fibo-
nacci sequence. Wherever possible, we prefer to use the criteria of Theorems
13 and 15, since these involve only quadratic characters rather than the higher-
order 2 - Zc¢ characters used in Theorem 14. Theorems 13 and 15 suffice to de-
termine o (1, 1, p) (mod 4) and, consequently, B8(1, 1, p) for all odd primes p <
1,000 except p = 89, 401, 521, 761, 769, and 809. Further, we know from Theo-
rem 15(v) that nomne of B(1,1, 89), B(1, 1, 521), B(1l, 1, 761), or B(1, 1, 809)
are equal to 2.

There are additional rules to determine (g£5/p) in addition to those of
Theorem 15. These are given by Emma Lehmer [5], [6], and [7]. Suppose that
p =1 (mod 4) and (5/p) = 1. Then the prime p can be represented as

(18) p =m?> + n?,
where m = 1 (mod 4) and Bim or SIn. Another quadratic partition of p is
(19) p = c?® + 5d°%.

Further, if we express the fundamental unit of @(/p) as (f+gvp)/2, then either
5|f or 5|g. We then have the following criteria for determining (e5/p):

(20) (eg/p) =1 iff p = 1 (mod 20) and n = 0 (mod 5), or
p =9 (mod 20) and m = 0 (mod 5).

@n (es/p) = (=14,

(22) (e5/p) = 1 iff £= 0 (mod 5).

Now, suppose that p and g are both odd primes and that (-1/p) = (-1/q) =
(plq) = (q/p) = 1. Let €4 be the fundamental unit of §( p). Emma Lehmer [7]
has given an analogous rule to that of equation (21) to determine (g4/p) in
terms of the representability of p or 2p by the form

e? + qd*

in the cases q = 13,17, 37,41, 73, 97, 113, 137, 193, 313, 337, 457, and 577.
These results are applicable to Theorem 15 when D' = g.

We now treat the PR's for which b = -1 and |a| >
for which ]a] < 2 are treated in Theorem 4.

3. The PR's u(a, -1)

Theorem 16: Consider the PR u(a, -1). Let p be an odd prime. Suppose p)D.
(i) B(a, -1, p) =1 or 25 s(a, -1, p) = 1 or -1 (mod p).
(ii) 1If o(a, -1, p) = 0 (mod 2), then B(a, -1, p) = 2 and u(a, -1, p)
= 0 (mod 4).
(iii) If ola, -1, p) =1 (mod 2), then B(a, -1, p) may be 1 or 2, and
u(a, -1, p) may be congruent to 1 (mod 2) or 2 (mod 4).
(iv) If (2 - a/p) = (2 + a/p) = -1, then

ala, -1, p) =0 (mod 2), B(a, -1, p) = 2, and ula, -1, p) = 0 (mod 4).
(v) If (2 -al/p) =1 and (2 + a/p) = -1, then

ala, -1, p) =1 (mod 2), B(a, -1, p) = 2, and y(a, -1, p) = 2 (mod 4).
(vi) If (2 - alp) =-1and (2 + a/p) =1, then

ala, -1, p) =1 (mod 2), B(a, -1, p) = 1, and u(a, -1, p) = 1 (mod 2).
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Proof:

(i) By Theorem 7,
Bla, -1, p) = Hlala, -1, p) or Ba, -1, p) = 2H/ala, -1, p).

Since -p = 1, ordp(-b) =1, and # = ofa, -1, p). Thus, B(a, -1, p) =1 or 2.
(ii) and (iii) These follow from Theorem 7 and the comment following
Theorem 7.

(iv) This follows from part (ii) and Theorem 10(i).
(v) and (vi) First notice that in both cases,

4 - a®/p) = -1 = (bD/p).
Thus, by Theorem 9(i), a(a, -1, p) = 1 (mod 2). Now, let k = a(a, -1, p) =1
(mod 2). Then, by (6),

(23) Uy = ‘“&—1)/2 + “&+1)/2 = 0 (mod p).
Hence,
Un+1)/2 = -1/ (mod p).

First, suppose that Ug,q),, = Uk -1y /2 (mod p). Then,

Urs) sz = ~Y - + AUy, T (@ = Dty ,qy/, (mod p).
Then, by (7)’( +3)/2 (k-1) /2 (k+1) (k+1)
_ 2
”é+1)/2 = Ukes)/2 * Hr-1)/2 T ué+1)/2 - (@ - 1ﬁﬂk+m/2
= (2 - Aufany o = 1%V/2 = 1 (mod p).
Thus, Ul 1y ,, = 1/(2 = a) (mod p), and (2 - a/p) = 1. Now, by (6),
Uppr = vy ° Hr-1) )2 T Uiy T a3y
= '“&+1)/2 + (a - 1)“(27<+1)/2 = (a - 2)”(2k+1)/2
= (a~-2)/(2 -a) = -1 (mod p).
Thus, if a(a, -1, p) = 1 (mod 2) and Ugs1)/2 = UWr-1)/2 (mod p), then,

(2 -al/p) =1 and B(a, -1, p) = 2.
Now, suppose that Ugs1) /2 = U)o (mod p). Then,
Uirsyso = Ha-1)/2 T Wpanyye = @+ Dy gy, (mod p).

Further,

2 — — k- —

Uks1)/2 ~ Uk-1)/2 ° Yresysz = @+ Z)Méaq)/z = 1*-1/2 = 1 (mod p).
Then, ua+1)/2 = 1/(2 + a) (mod p), and (2 + a/p) = 1. Now,
= 2
Ukrr T Urer)/2 " M- /2 T ke /2 " Wres) /o T (@ + 2)ugi1y),
= (a+ 2)/(a+2) =1 (mod p).

1 (mod 2) and U(k+1)/2 = “U(x-1)/2 (mod p), then,
(2 4+afp) =1 and B(a, -1, p) = 1.

Parts (v) and (vi) now follow immediately.

11

Hence, if (a, -1, p)

Theorem 17: Consider the PR u(a, -1), where ]a > 3. Let p be an odd prime
such that (4 - a?/p) = (2 - a/p) = (2 +a/p) = 1. T Let £ = (ap + 00/17)/2 be
the fundamental unit of Q(V/D'). Suppose N(e) = -1. Consider the PR u(ao, 1).
Suppose a(ay, 1, p) = qu, where ¢ = 1 (mod 2).
(1) r, = (a+V/D)/2 =€", where m = 2°d, ¢ > 1, and d = 1 (mod 2).
(ii) Oﬁ(a, —15 p)l(x(ao5 l: p)'
(iii) If k = ¢, then (a, -1, p) = 1 (mod 2) and
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sla, -1, p) = s(ays 1, p) (mod p).

Further,

Bla, =1, p) =1 if alay, 1, p) = 2 (mod 4).

Moreover,

Blas =1, p) = 2 if ala,, 1, p) = 0 (mod 4).

(iv) If k > ¢, then ala, -1, p) 0 (mod 2) and B(a, -1, p) = 2.

(v) If k < ¢, then ala, -1, p) 1 (mod 2). If k =0 and ¢ =1, then
Blas -1, p) = 2. If ¢ # 1 and k < e, then B(a, -1, p) = 1.
Proo4:

(i) Since N(g) = -1, where ¢ is the fundamental unit, and

V(ry) =r,r, =-b =1,

e

it follows that r, =¢" where m is even.

(ii) Just as in the proof of Theorem 14(ii), we see that € and € are
the roots of the characteristic polynomial of the PR u(a,, 1). Again, just as
in equation (17) of the proof of Theorem 14(ii), it follows that

(24) ala, -1, p) = alay, 1, p)/(m, alay, 1, p)).

Clearly, afa, -1, p)l|alay, 1, p).

(iii) Since m and a(a,, 1, p) are both even and divisible by the same
power of 2, it follows from equation (24) that a(a, -1, p) = 1 (mod 2). Since
alags 1, p) =0 (mod 2), it follows from Theorem 13 that s(a,, 1, p) = #1 (mod
p). Now, by Theorem 6(iii),

(25) s(ay, 1, p) = 2@ 1P = +1 (mod p).
Also, by Theorem 6(iii),
(26) s(a, -1, P) = (Pl)a(afd,p) = (Em)awo’ldﬂl(mﬂﬂaml’p»(mod p)c

The last congruence follows by equation (24) in the proof of part (ii). How-
ever, since the same power of 2 divides both m and @(ao’]d p), it follows that

m/(m, ola,s 1, p))=r,
where » = 1 (mod 2). Hence,
s(a, -1, p) = [e*@LP]” = [s(ay, 1, P]7 = (1)
= %1 = s(a,, 1, p) (mod p).

]-5 p)9 B(as "']-: P) = B(aos ]-s p)- If oc(ao, l, p)E
p) = 1 by Theorem 13(ii). Consequently, B(a, -1, p)
(mod 4), then Blay, 1s p) = 2 = B(a, -1, p) by Theo-

Since s(a, -1, p) = s(a,,
2 (mod 4), then R(a,, 1,
= 1. If ala,, 1, p) =0
rem 13(iidi).

(iv) If k > ¢, it follows from equation (24) that a(a, -1, p) = 0 (mod
2). The result now follows from Theorem 16(ii).

(v) If k < ¢, it follows from equation (24) that a(a, -1, p) = 1 (mod
2). By (25) and (26),

(27) s(as -1, p) = [ Lo/ (molotp),

If k=0 and ¢=1, then gelao,1,p) = + /07 (mod p) and q(ao, 1, p) = 4 by Theorem
13(iv). Further,

mf(ms alays 1, p)) = 2 (mod 4),
since k¥ = 0 and ¢ = 1. Thus, by (27),
s(a, -1, p) = (/-1 = -1 (mod p),
and hence B(a, ~1, p) = 2.
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Now, suppose ¢ # 1 and k < c.

If k = 0, then ¢ > 2 and
4lm/(my olays 1, p)).
+/=T (mod p), and by (27),
[Ea(ao,l,p)]m/('ﬂ,a(ao,l,p)) = (/D% = 1 (mod p).
If k # 0 and k < ¢, then,
2|m/(m, olay, 1, p)).
and Theorem 6(iii),

£%@0 1,p) = +1 (mod p).

Then, again, %@ 1,p)

s(a, -1, p)
Thus, B(a, -1, p) = 1.

m

il

Further, by Theorem 13

Thus, by (27),

1

s(a, [%@> 1P m/(mat@,lp) = (+1)2 = 1 (mod p).

_l’ p)

Therefore, B(ao, 1, p) =1, and we are done.

Note that in Theorem 17 we obtain results for the infinite number of PR's
u(a, -1) which have the same square-free part of the discriminant D' by con-
sidering only one PR u(a,, 1). Since b =1 for this PR, we are able to make
use of Theorems 13-15. Further, note that in Theorem 17 we are able to calcu-
late the exponent k for which a(a,, 1, p) = 2% (mod 2%*!) by Theorem 12. 1In
Theorem 18, we will consider the remaining case where N(g) = 1.

Theorem 18: Consider the PR u(a, -1). Let p be an odd prime such that

4 - a%*/p) = (2 - alp) = (2 +alp) = 1.

Let ¢ = (a, + ¢,/D")/2 be the fundamental of Q(VD').
Consider the PR u(a,, -1).

Suppose that N(g) = 1.
Suppose that a(a,, -1, p) = 2¥g, where g = 1 (mod

2).
(i) », = (@ +V/D)/2 = €™, wherem = 2°d, ¢ >0, and d = 1 (mod 2).
(i1) a(a, -1, p)lalass -1, p).
(iii) 1If k = ¢ and k > 1, then a(a, -1, p) = 1 (mod 2) and R(a, -1, p) =
2.
(iv) 1f k = ¢ = 0, then a(a, =1, p) = 1 (mod 2). If
s(ays -1, p) = €*7 = 1 (mod p),
then B(a, -1, p) = 1l; otherwise, B(a, -1, p) = 2.
(v) 1If k > ¢, then a(a, -1, p) = 0 (mod 2) and B(a, -1, p) = 2.
(vi) 1If k < ¢, then a(a, -1, p) = 1 (mod 2) and B(a, -1, p) = 1.
Proof:
(i) This follows since N(r;) = r;r, = 1 and € is the fundamental unit
of Q(/D").
(ii) It is easy to see that € and € are the roots of the characteristic
polynomial

2> —a@x+1=0

of the PR u(a,, -1). The rest of the proof follows as in the proofs of Theo-
rem 14(ii) and Theorem 17(ii).

(iii)

(28)

Since kK = ¢

Just as in the proof of Theorem 17(ii), it follows that
OC(CZ, "ls p) = a(aoy _19 p)/(ms a(aos "1’ p))-

, it follows that a(a, -1, p) = 1 (mod 2). Since a(ap, -1, p) =0

(mod 2), it follows from Theorem 13(ii) that B(a,, -1, p) = 2 and s(a,, -1, p)

= -1 (mod p).

By (25) and (26), it follows that
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(29) sa, -1, p) = s(ay, -1, p) ™™ e@ 1.p)

—pm/(mat@, L) = _1 (mod p),

since kK = ¢. Thus, B(a, -1, p) = 2.

(iv) It follows just as in the proof of part (iii) that a(a, -1, p) = 1
(mod 2). By (29),
s(a, -1, p) = s(a;, -1, p) /(Moo 1P,
Since k = ¢ and s(a,, -1, p) = *1 (mod p) by Theorem 16, it follows that
S(aos -1, p) = S(Clo, -1, p) (mod p).
The rest follows from Theorem 6(iii).
(v) If k > e, it follows from (28) that a(a, -1, p) = 0 (mod 2). It

now follows from Theorem 16(ii) that B(a, -1, p) = 2.

(vi) If k < e, it follows from (28) that a(a, -1, p) = 1 (mod 2). By
(29),

s(a, -1, p) = s(a,, -1, p) "M@ 1.e)
Since k < ¢, m/(m, ala,, =1, p)) = 0 (mod 2). Since s(a,, -1, p) = *1 (mod p),
it now follows that
s(a, -1, p) = (#1)2 = 1 (mod p).

Thus, B(a, -1, p) = 1.

In Theorem 18, we are again able to calculate the exponent k for which
ala,, -1, p) = 2% (mod 2%¥*1) by Theorem 12. Theorem 18 just reduces the prob-
lem of finding the restricted period modulo p of a PR u(a, -1) for which b =
-1 to that of considering another PR u(a,, -1) for which also b = -1. However,
since »r, = €™, |a0] g_la%, and it is easier to work with the PR u(a,, -1) in-
stead of the PR u(a, -1).

6. THE SPECIAL CASE »r, = %1

In this section, we will conclude our paper by considering those PR's for
which one of the characteristic roots is *1. Theorems 19 and 20 will treat
these cases.

Theorem 19: Consider the PR u(-b + 1, b), where b # 0 and b # 1. Then r; =
-b, v, =1, and D= (b + 1)2. Let p be an odd prime such that b # 0 and b Z -1
(mod p). 1If (-b/p) =1, let r®* = -b (mod p), where 0 < » < (p -'1)/2.
(1) a(-b + 1, b, p) = ordp(-D).
(ii) B(-b + 1, b, p) = 1 always; s(-b + 1, b, p) = 1 (mod p) always.
(iii) If (-b/p) = -1 and p = 3 (mod 4), then

a(-b + 1, b, p) = u(-b + 1, b, p) = 2 (mod 4).
(iv) If (-b/p) = -1 and p = 1 (mod 4), then
a(-b + 1, b, p) =u(-b +1, b, p) =0 (mod 4).
(v) If (-b/p) =1 and p = 3 (mod 4), then
a(=b + 1, b, p) = u(-b + 1, b, p) = 1 (mod 2).
(vi) If (-b/p) =1, p =1 (mod 4), and
(-2b + (1 -~ BP)r/p) = (-2b - (1 = b)r/p) = -1,

then a(-b + 1, b, p) is congruent to 0 or 2 modulo 4.

(vii) Suppose that p-1 = qu, where g = 1 (mod 2). If (-b/p) = -1, then
a(-b + 1, b, p) = 2% (mod 2**'). 1f (-b/p) =1, then a(-b + 1, b, p) = 2"
(mod 2"*1), where 0 < m < k iff
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[-b/ply_, = 1 (mod p), but [-b/p] -1 (mod p).

kK-m+1 —
Further,
a(-b + 1, b, p) =1 (mod 2) iff [—b/p]k = 1 (mod p).
Proof:
(1) and (ii) Since a=-b+1, it easily follows that r, =-b and r,=1.
By Theorem 6(ii), it follows that

uw(-b + 1, b, p) = ordp(r&/rz) = ord,(-b).
Further, by Theorem 6(i),
(-b + 1, by, p) = [ordp(-b), ordp(1)] = ordy(-b).
The results now follow.
(iii)-(vi) These follow from Theorems 9 and 10.
(vii) This follows from Theorem 12 and Theorem 11.

Theorem 20: Consider the PR u(b-1, b), where b # 0 and b # -1. Then », = b,
r, = -1, and D= (b + 1)?. Let p be an odd prime such that b # 0 and b # -1
(mod p). Suppose p = qu, where k =1 (mod 2). If (-b/p) =1, let r? = -p

(mod p), where 0 < r < (p - 1)/2.
(i) G‘(b - 1, b’ p) Ordp(_b)e

(ii) B® -1, b, p) lor2; st -1,b, p)= £l (mod p)
(ii1) Tfa - 1, b, p) = 1 (mod 2), then B(h - 1, b, p) = 2.
If o - 1, b, p) = 0 (mod 2), then B - 1, b, p) = 1.

(iv) 1If (-b/p) = -1 and p = 3 (mod 4), then
ab -1, b, p) =u® -1, b, p) = 2 (mod 4).
(v) If (-b/p) = -1 and p = 1 (mod 4), then
a -1, b, p) =u® -1, b, p) = 0 (mod 4).
(vi) 1If (-b/p) =1 and p = 3 (mod 4), then
ab -1, b, p) =1 (mod 2) and u( - 1, b, p) = 2 (mod 4).

Hence, if p = 3 (mod 4), then u(» - 1, b, p) 2 (mod 4).
(vii) If (-b/p) =1, p =1 (mod 4), and

(=2b + (b - Dr/p) = (-2b - (b - Dr/p) = -1,

then a(® - 1, b, p) is congruent to 0 or 2 (mod 4). .
(viii) If (-b/p) = -1, then a(b - 1, b, p) = 2% (mod 2°*1).
If (-b/p) =1, then a(b - 1, b, p)= 2" (mod 2"*'),where 0 < m < %k

[-b/pl,_, = 1 (mod p), but [-D/ply_n+1 = -1 (mod p).
Further, a(b - 1, b, p) = 1 (mod 2) iff [—b/p]k = 1 (mod p).

Proog:
(i)-(iii) If a=b - 1, it follows that »;, = b and r, = -1. Now, by

Theorem 6(1), Wb - 1, by p) = [ordp(B), ordy(-1)7.
If ordp(p) = 0 (mod 4), then ordp(h) = ordp(-b) =u - 1, b, p).
If ordp(h) 2 (mod 4), then ordp(-p) = 1 (mod 2).

Thus,

iff

HE

ord,(p) = u - 1, b, p) = 2 * ord,(-b).

If ordp(p) = 1 (mod 2), then ordp(—b) = 2 (mod 4).
Hence, ‘

ordp(-p) = 2 « ordp(b) = u(b - 1, b, p).
Now, by Theorem 6(ii),

ab - 1, b, p) = ordy(r,/r,) = ordp(-b).
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Thus, by our above argument, if a(b - 1, b, p) = 0 (mod 2), then

ab -1, b, p) =u® -1, b, p), and B(® - 1, b, p) = 1.

If a(b - 1, b, p) =1 (mod 2), then

The

10.

11.

12.

13.

14.

w® -1, b, p) = 2a(b -1, b, p), and B(b - 1, b, p) = 2.

results of parts (i)-(iii) now follows.
(iv)-(vii) These follow from Theorems 9 and 10.
(viii) This follows from Theorems 11 and 12.
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MIXING PROPERTIES OF MIXED CHEBYSHEV POLYNOMIALS
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The Chebyshev polynomials of the first kind, defined recursively by
to@) =1, t;(x) =2, t,(x) = 2xt,_;(x) - t,_,(x) forn =2, 3, ...,

or equivalently, by

1

t,(®) = cos(n cos™ ) form =0, 1, ...,

commute with one another under composition; that is

tm(tn(-’x;)) = tn(tm(x))-



