
SOLUTIONS FOR GENERAL RECURRENCE RELATIONS 

LEONARD E. FULLER 
Kansas State University, Manhattan, KA 66502 

1. STATEMENT 0¥ THE PROBLEM 

In a recent article [1], the author obtained representations for the solu-
tions of certain r9s. recurrence relations. In this paper we shall give repre-
sentations for the solutions of general recurrence relations. In Section 4 we 
shall show that the results in[l] are a special case of the results of Sections 
2 and 3 of this paper. 

We first of all characterize all decompositions of an integer n9 restricted 
to the first m positive integers. We define a multinomial from this that sat-
isfies an mth-order recurrence relation with special initial conditions. Next 
the set of m positive integers is restricted to a subset A containing m9 and 
a second multinomial that satisfies a recurrence relation with special initial 
conditions is defined. 

In Section 3, we obtain solutions for comparable recurrence relations with 
general initial conditions. The final result gives us a solution for the gen-
eral recurrence relations 

Hp = raiHp_ai + •-• +ratHp_at; HQ , ..., E^at arbitrary. 

2, BASIC m£h-0RVER RECURRENCE RELATIONS 

One of the classic concepts in the theory of numbers is that of partitions 
of the positive integers. One of the subcases considered is for the component 
integers to be the set of integers from 1 torn, In this case we denote the set 
of all partitions of n as P(n;m). The number of elements in this set is Pm (n) . 
A given partition can be characterized by a set of integers k{. That is, 

n = 1/C-L + ... + mkm. 

The integers k^ are referred to as the frequency of £ in the given partitions. 
We refer to this given partition as p(k9n; m) . 

For a given p(k9n; m) 9 we can represent n as a sum of integers from 1 to m 
i n (k.L + ••• +km)l 

k\ ... km\ 

ways. Each such representation is called a "decomposition of n" (some authors 
call them "compositions"). We denote this expression as dm(k,n). It is the 
number of decompositions of the partition p(k, n; m) . 

This expression has a property that we shall find useful: 

(kx + ••• + k„)\ (fcj. + ••• + km - 1)! m 

kx\ . . . km\ kx\ . . . km\ Bml 

2-. J, i 
{k±+ ... +k„- l)\ 

k±< ... (ks - 1)1 ... km\ (2.1) 

Symbolically we have 

dm(k9n) = 2^dw(/c(s), n - s), 
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where dm(k(s) 9 n - s) = 0 if ks = 0, Otherwise., it is the number of decomposi-
tions for the partition of n - s where all the k^ are the same as for the k 
partition of n except that ks is reduced byl. 

We use this number of decompositions to define a multinomial, We then show 
that it is the solution for a special recurrence relatione Let 

Un = E dm^, nKl ••• *„*-, 
Pimm) 

that is9 we sum over all partitions of n9 a multinomial in P p . .., rm whose 
coefficients are the number of decompositions of the given partition. We can 
now prove our first theorem. 

Tho^oKQjn 2.1: The multinomial Un satisfies the recurrence relation 

- 0, - u, 

By a p p l y i n g p r o p e r t y (1) t o t h e d e f i n i t i o n of Un9 we have 

Un = ^ dm{k, n ) r « 
P(n;m) 

K 

P ( n ; m ) 8 - 1 

8 « 1 P ( n ~ . 0 ; m) 

m 

Or*' fc@-l » ^ m 

We have used the fact that decreasing the frequency of s by 1 gives the re-
stricted partitions of n - s. If s has a frequency of 0 for a given partition, 
then the corresponding term in the summation on s is 0* 

For n < m$ the frequencies for the integers n + 1 to m would all be zero, 
Hence the summation can be terminated at n, However, if we choose U„x = . . • = 
U, = 0S then we do not need any restriction. This gives m - 1 initial condi-
tions. For the mth ones we shall choose U0 = 1. This is logical9 since all 
factorials are 0! and all exponents of the ri are 0. This would give a value 
of 1. Hence the Un does satisfy the prescribed recurrence relation. 

What we have just proved for the case of the restricted partitions of n can 
be specialized for a proper subset A = {a1, . .., a^} of the integers from 1 to 
m9 For convenience., we assume m is in A. The set of all partitions of n re-
stricted to the set A we label P(n; A). The number of elements in this set is 
PA (n) . A given partition can be characterized by a set of frequencies k^s so 
that 

n - axkai + -•• + adkar 

We refer to this given partition as p(k9n; a). 
For each such partition, we can represent n as a sum of integers in A in 

(,?>): 

ways. We denote this number as dA(k9ri)9 that is*, there are this many decompo-
sitions of the given partition, restricted to 1 We can define the following 
multinomial 
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Vn = £ dA{k, n)Il*V**-
P(n;j4) c?e^ 

We then have the following theorem. 

TkwtiQjn 2.2: The multinomial Fn satisfies the recurrence relation 

V* = 2 > , 7 t _ e ; V0 = 1, F., = ... = Vl.m- 0. 
s eA 

This theorem is a special, case of Theorem 2.1. First of all, the restric-
tion to the set A means that the frequencies k^ = 0 if £ e A. This means that 
for each partition of n there is no s corresponding to each such £ in the solu-
tion. Hence s is summed only on A, Furthermore, since the corresponding ri is 
always to the zero power, we drop these v^ in the multinomial. The number of 
initial conditions is dependent only on the largest integer in As which is as-
sumed to be m. 

3. GENERAL RECURRENCE RELATIONS 

Using the results of the last section, we can obtain solutions for recur-
rence relations with arbitrary initial conditions. We shall consider two cases 
that are comparable to those in the last section. Our solutions will involve 
the Un and Vn , respectively. 

Th<LOtiQjr\ 3. 7: The solution for the recurrence relation 

m 
Gt a E r « ( ? * - « ; Go> '••» Gi-m arbitrary, (3.1) 

is given by 
m m 

Gn = E HWn-iGj-,,- (3-2) 
3 - 1 q - 3 

For n = 1 in (3.2) the Z/n_j- = U<£-.j is zero except for j = 1. In this case 
UQ = 1. The double summation reduces to 

^ ' E ^ W 
which is (3.1) for t = 1 and q ~ 2„ 

For n = 2 in (3.2) the tf2-j = °  f o r J > 2» W e t h e n n a v e 

q=l q=2 

From the previous section, we have that UQ = 1 and £/ = P 1 . Also, by (3.1) 
the first sum is G1. Hence we have 

m m 
G2 = ̂ 1 + E P ^ 2 - ^ = HrqG2-q> 

q=2 q-1 

which is (3.1) for t = 2 and s = q. 
We assume that (3.2) is a valid solution for n - 1, . . . , £ - 1. For t ~ i 

in (3.1), 

£; = I>a^-a-

We have assumed solutions for all the Gi_s in this summation. Hence on substi-
tution into this expression, we obtain 
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P s 2*i 2LfrqUi-8-jGj-q 

m m / m \ 

J = l <?«,/ \ 8 - l / 
m m 

Z ^ 2«tf ^ ^ - J ^V ™ q * 

At the last step we use the fact that Un satisfies a recurrence relation. This 
final result is (3,2) for n ~ i. 

We are now ready to present the solution to a general recurrence relation. 
We assume that set A has the properties of the last section. 

Th&Q/iQJfi 392°* The s o l u t i o n fo r t h e r e c u r r e n c e r e l a t i o n 

Ht = YLroEt'8l HQ* •••» # i - m a r b i t r a r y , ( 3 .3 ) 
s zA 

i s given by 

qeA j=i 

This theorem follows from Theorem 3«IS just as Theorem 2„2 followed from 
Theorem 2.1, For conveniences we have interchanged the order of summations in 
the solution so that it is easier to adapt to the restriction on q. 

4. SOME SPECIAL CASES 

In this section we shall consider some special cases of the results of Sec-
tions 2 and 3. They are for both the Un and Gn relations for m = 2. 

The restricted partitions of n for m = 2 would be. of the form n = k1 + 2k2* 
The summation over all such partitions can be represented by a summation on 
j when j = k2. Then k^ = n - 2j, and the summation is from 0 to [n/2]. The num-
ber of decompositions for a given partition would be given by 

d (k n) = (Ji^JLlJH = (n - a\ 
dz{k> n) (n - 2j)!j! V 3 r 

The solution for Un in this case is 

' 2 ' 

For the more general Gn relation we have 

j = i q~3 

= ( ^ n - i + r 2 « /„ . 2 )G 0 + r 2 t f » - i G - i - UnG0 + r ^ n - i ^ - i ' 

S u b s t i t u t i n g in t he s o l u t i o n for Un and Un^j5 

We change the second index of summation by replacing j + 1 by j 9 as follows:. 
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^ - E (n} jyrj^0 +
{±\n.: jyr1-2^-!-

J - 0 j ' - i 

The author gave representations for some special recurrence relations in a 
previous paper [1], We shall now show that these were particular cases of the 
Un and Gn relations for m. = 2. 

The first relation presented was a generalized Fibonacci sequence, 

Gk - r G ^ +sGk„z; GQ = 0, G± = 1, 

which has the solution 

1 K -

j-o x J f 

We observe that both our indexing and the constants of the relations are dif-
ferent, To reconcile them, we replace n by k - 1, v1 by rs and P 2 by s in the 
Un solution. This gives us the desired result, 

As a special case, when r = s = 1 we have the Fibonacci sequence. The gen-
eral term would be given by , , 

h - E (*" •" J')> 
J-0 

which is the number of decompositions of k - 1 restricted to 1 and 2. 
Another sequence presented in[l] is the generalized Lucas sequence Mk9 for 

which 
Mk = ritffc-3. + sMfc.2; W0 = 2, tfx = r. 

To obtain the solution we specialize the Gn for m = 2. We replace n by k - 1, 
i^ by P, P 2 by s', £0 by r, and G-:L by 2. We have 

We. observe that the powers of r and s in both sums are the same. Hence we 
combine them into a single sum. It can be verified that this yields 

[ f ] 
«. - i Th(k; J>-"« k-2j aj 

which is the solution given in [1]. 
The third relation discussed in [1] is 

Uk = rUk_2. + sUk-2> ^i» ô arbitrary. 
We can identify this with our <2n relation if we let n - k - 1, r1 .= i5, r2 

s, £0
 = U13 and c^ = £/0. This gives 

tH1]., . .. Hi 
^ E (k-y 3y-^s% + E (k - i_-x sy-*e%. 

Applying some algebra to combine the two sum yields the following solution: 
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J - 0 X J / 

_ . (k - 2j)U1 + jrUQ 
r k ~ l - 2 j s j ^ 

This can also be verified directly. 
In a future paper we shall show that there are generating functions for the 

four recurrence relations given in this paper. These can also be used for the 
special cases of this section. We can use them to generate with a computer as 
many terms in a given recurrence relation as desired. 
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1. IHTROVUCTIOH 
Recently, Weiss et at. [9] gave a direct proof of a result due to Narayana 

[8] and Kreweras [6]: 

E E 
(p+ s - l\(r + s - I 

r + s - 1 -urvs= \[l-u- V- (1- 2(u+V) + (U-V)2)1'2] ( 1 - 1 ) 
P=l 8=1 

A special case of Theorem la of this paper is a five-parameter generalization 
of (1.1): 

E n ukvp (a + gk + k + hp\/$ + gek + hep + p\ 

,. n ~„ (a + 1 + gk + hp) \ k A p / k=o p=o 

= (1 + g)a+1(i + y) 
(a + 1) 

3 + 1 

- F 
2 1 

1, 1 + f 

.(a + 1 + h)/h 

P 
e - ac 9 

(1.2) 

where 
y 

(1 + s)?+1(l + yY (l + s)ha +y) hc + 1 

See Luke [7, Sec. 6.10] for a discussion of Pade approximation for the hyper-
geometric function on the right-hand side of (1.2). Letting 

•I, c = 1, a -2, and g = -2 g = »i, Ti 

in (1.2) and some manipulation will give (1.1). 
Equation (1.2) also appears to be an extension of the important equation 

(6.1) of Gould [5], to which it reduces for z = 0. 
An interesting simplification of (1.2) is the case. 3 = ®*c + c - 1, giving: 

V* Y* ukvP (a + 0* + k + hp\/ac + c - 1 + gck + hep + p\ 
1^ 2-rn (a + 1 + gk + hp) \ k A p ) fc = 0 P = 0 

(1 + g)a + 1(l + .V)C 
(1 + a) (1-3) 


