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ABSTRACT 
The sequence {Fn + 1/Fn} of ratios of consecutive Fibonacci numbers conver-

ges to the golden mean <p = %(1 + /5) , the positive root of x2 - x - 1 = 0. 
Newton1 s method for the equation x2 - x - 1 = 0 with initial approximation 1 
produces the subsequence {F2n+1/F2n} of Fibonacci ratios. The secant method 
for this equation with initial approximations 1 and 2 produces the subsequence 
{Fp +1/FF }. These results generalize to quadratic equations with roots of un-
equal magnitudes, 

It is well known that the ratios of successive Fibonacci numbers converge 
to the golden mean. We recall that the Fibonacci numbers {Fn} are defined 
by the recurrence Fn = Fn_1 + Fn_2 with F0 = 0 and F1 =. 1.* The golden mean9 
<p= %(1 + /5) « 1.618, is. the positive solution of the equation x2 - x - 1 = 0. 

The ratios {Fn+i/Fn} °f consecutive Fibonacci numbers are a sequence of 
rational numbers converging to <p- li-nearly; that is, the number of digits of 
Fn+1/Fn which agree with <p is approximately a linear function of n, In fact, 
there are constants a, 3 > 0 and e < 1 such that aen < |.FM + 1/Fn - <p\ < ge», 

We can obtain sequences of rational numbers converging more rapidly to <p 
by using procedures of numerical analysis for approximating solutions of the 
equation x2 - x - 1 = 0 . Two common methods for solving an equation f{x) = 0 
numerically are Newton*s method and the secant method (regula fals-i) [1, 3]. 
Each method generates a sequence {xn} converging to a solution of f(x) = 0. 
For Newton1s method, 

(1) xn = NEWTON(a^.j) = xH_± - j r ^ y 

The secant method is obtained from Newton's method by replacing f'(xn_1) by a 
difference quotient: 

/<*n-l>(*»-l-*„-2> 
Xn = SECANTfe^. xn_2) = *„., - /(x?j_i) _ /(aii_2) 

rc-2^ v n-l' n-1*' v n-2' 

/(^n-l) ~ AXn-2^ 
[The first expression for SECANT (#n _ x , a:n _ 2) is more useful for numerical cal-
culations, while the second expression reveals the symmetric roles of xn_1 and 
xn„2,] The familiar geometric interpretations of Newtonfs method and the se-
cant method are given in Figure 1. 

Newtonfs method requires an initial approximation x0; the secant method 
requires two approximations xQ and x±« If the initial values are sufficiently 
close to a solution 5 of f(%) = 0* then the sequences {xn} defined by either 
method converge to £. Suppose that f'(Q f 0; that is, £ is a simple zero of 
/. Then, the convergence of Newton1s method is quadratic [1]: the number of 
correct digits of xn is about twice that of x , since \xn - £ | ^ a\xn_1 - E,\ 

*For future reference, we note the first few Fibonacci numbers: 0f 1, 1, 
2, 3f 5f 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597. 
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for some a > 0. Similarly, the order of convergence of the secant method 
is v? % 1.618. since ou#« for some a > 0 [3]. 

^*»-i>+ 
f r ( x ) 
J K n-lJ 

/<*»-2H-

/<*»-!>- slope 

•̂ n -2 

n-l ^n ^n-l *~n-2 

(a J Newton's method (b) Secant method 

Fig. 1. Geometric interpretations of Newton's method and secant method 

Both these methods applied to the equation x2 x - 1 0 yield sequences 
converging to <P more rapidly than {Fn+ /Fn}. For this equation, we calculate 
easily that 

+ 1 + 1 
(3) NEWTON(xn_1) 

2x„ 1 
and SECANT ( x n _ l s xn_2) 

.1 + x
n-2 1 

For initial approximations to <P, it is natural to choose Fibonacci ratios. 
For example, with xQ = 1, Newton's method produces the sequence, 

1, 2/1, 5/3, 34/21, 1597/987, ..., 

which we recognize (see note on page 1) as a subsequence of Fibonacci ratios. 
From a few more sample calculations [e.g., 

NEWTON(3/2) = 13/8 or NEWTON(8/5) = 89/55] 

NEWTON (F^/F) F IF , 
2n+l' 2n 

1 is defined by xn = 
is quadratic, since 

we infer the identityi 

(4) 

The sequence {xn} generated by Newton*s method with xQ = 
F2„ -IF . Now it is obvious that the convergence of \xn} 
there are constants a, £ > 0 and e < 1 such that ae2n < \xn - *P\ < $szn. 

We can similarly apply the secant method with Fibonacci ratios as initial 
approximations. From examples such as 

SECANT(1, 2) = 3/2, SECANT(2, 3/2) = 8/5, and SECANT(3/2, 8/5) = 34/21, 

we infer the general rule: 

(5) SECANT (Fm + 1 /Fm, Fn+1/Fn) = Fm + n + 1/Fm+n . 

In particular, if x1 = 1 and x2 ~ 2, then the sequence {x n] generated by the 
secant method is given by xn = FF +1/FF . Since Fn is asymptotic to <pn//59 
there are constants a, @ > 0 and e < 1 such that ae*n< \xn - <?\ < £>£*", which 
dramatically illustrates that the order of convergence of the secant method 
is *f. 

Equations (4) and (5) are interesting because they imply that the sequences 
of rational approximations to (p produced by Newton's method and by the secant 
method are simple subsequences of Fibonacci ratios. 
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We now verify (4) and (5), In fact, these identities are valid in general 
for any sequence {un} defined by a second-order linear difference equation 
with uQ = 0 and u± = 1, provided the sequence iun+1/un} is convergent. 

Lemma i Let {un} be defined by aun + bun_± + oun^2 = 0 with u0 = 0 and uL = 1. 
Then aum+1un+1 - cwmwM - aww+ n + 1 for all m, n ̂  0* 

Vhjoo^i By induction on n. For n - Q, the lemma holds for all m since 
aum+lul " cumuo = aum+le 

Now assume that for n - 1 the lemma is true for all m» Then 

aUm+lUn+l " °UmU = ( ^ n " CUn-l^Um+I + ^ + 2 + hum + JUn 

~ au
m+2Un ™ cum+lun-l 

aU (m +i) + (w - 1) +1 
= a \ + n + l ' D 

The lemma g e n e r a l i z e s t h e F i b o n a c c i i d e n t i t y [ 2 ] : 
p p + p p - p 
J-m + l^n + l ^ LmJ-n J-m + n+i* 

Suppose that ax2 + bx + a has distinct zeros X± and A2, Any sequence {un} 
satisfying the recurrence aun + bun_x + oun_2 = 0 is of the form 

u n = k ^ l + /c2A*s 
where k1 and ?C2 a r e constants determined by the initial values u0 and uim If 
|Ai| > l^2| an<^ '̂ 1 ̂  ®» then wn is asymptotic to /C-LA-L, and so {un+1/un} con-
verges linearly to XL. We now show that if u0 = 0 and w3 = 1, then Newtonfs 
method and the secant method, starting with ratios from {un+1/un}9 generate 
subsequences of {un+1/un}. 

Th2.0H.em: Let {un} be defined by aun + bun „x + cun _2 = 0 with u0 = 0 and uL = 1. 
If the characteristic polynomial f(x) = ax2 + bx + c has zeros XL and A2 with 
I X-j_ J > I X2 I s then: 

(i) un + 0 for all n > 0; 

(ii) lim un+1/un = Ax; 

(iii) NEWTON(un+1/un) = uZn+1/uZn; 

(iv) SECANT(um+1/um, un+1/un) = u 

(i) It is easily verified that un = /c(A" - An
2), where fc = ±a/Sb2 - 4ac. 

(The sign of /c depends on the signs of a and 2?.) Since |AX| > |A2|, if n > 0, 
then I Ai| > |X"| and, therefore, un £ 0, 

(Ii) We note, as an aside, that the sequence {un+1/un} satisfies the 
first-order recurrence xn = ~(bxn_1 + o)/axn_1. To verify (ii): 

u HX"+I - xr1) 1 - ( \ A )M+I 

——- = — — = A , — Y A as n > » , since A,/A2| < 1. 
Un ka\ - xn

2) i - (x^x.r 
(Iii) For the equation ax2 + bx + c = 0, Newtonfs method and the secant 

method are given by 

(6) NEWTON(x ) =-—U- -T- and SECANT(x , x ) = 
"-1 lax + b J n-is n-27 a(# + a? ) + b° 

n-1 n-1 n-2 
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Therefore, NEWTON(#n_x) = SECANT(a?„_x , xn_1)9 and so (iii) follows from-(iv). 
Note that this identity holds for any polynomial equation f(x) = 0 . 

(iv) By (6),. 

SECANT(um+1/um9 un+1/un) 
a(um+1/um)(un+1/un) - a 

a(um+1/um + M n + l /"«) 
aUm+lUn+l ~ SUmu 

aUm+lun + 
aU*+lUn+l 

au
m

u„+l + 
~ CM

m
M* 

+ 

n 

b 

bumun 

Remcmki* t 

aum+n+1/aum+n (by the lemma) 

Um+n+l'Um+n9 D 

1. The theorem does not generalize to polynomials of degree higher than 2. 
2. Not only do the ratios of the consecutive Fibonacci numbers converge to 

ip9 they are the "best" rational approximation to #>; i.eM if n > 1, 0 < F <_ Fn 
and P/F + Fn + 1/Fn9 then \Fn + 1/Fn-<p\ < \P/F-<P\ by [4]. Since Newton's method 
and the secant method produce subsequences of Fibonacci ratios, they also pro-
duce the best rational approximation to <p, 
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A CHARACTERIZATION OF THE FUNDAMENTAL SOLUTIONS TO 
PELL'S EQUATION u2 - Dv2 = C 

M. J . DeLEON 
Florida Atlantic University, Boca Raton, FL 33432 

Due to a confusion originating with Euler, the diophantine equation 

(1) u2 - Dv2 = C9 

where M s a positive integer that is not a perfect square and C is a nonzero 
integer, is usually called Pell1's equation. In a previous article [1, Theorem 
2], the following theorem was proved. 

TkdOKOm I: Let x1 + y 1/D be the fundamental solution to x2 - Dy2 = 1. If k = 


