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ABSTRACT

The sequence {E;+1/E%} of ratios of consecutive Fibonacci numbers conver-
ges to the golden mean ¢ = %(1 + ¥/5), the positive root of x? -2 - 1 = 0.
Newton's method for the equation x° - x - 1 = 0 with initial approximation 1
produces the subsequence {F,, ,/F,n} of Fibonacci ratios. The secant method
for this equation with initial approximations 1 and 2 produces the subsequence
{Em+l/f%n}' These results generalize to quadratic equations with roots of un-
equal magnitudes.

It is well known that the ratios of successive Fibonacci numbers converge
to the golden mean. We recall that the Fibonacci numbers {Fn} are defined
by the recurrence F, = F,_; + F,_, with F, = 0 and F, = 1.* The golden mean,
¢=L%(1 + /5)~ 1.618, is the positive solution of the equation % - 2 - 1 = 0.

The ratios {E;+1/E%}' of consecutive Fibonacci numbers are a sequence of
rational numbers converging to ¢ linearly; that is, the number of digits of
Fn+1/F; which agree with ¢ is approximately a linear function of n. In fact,
there are constants a, B > 0 and € < 1 such that ae” < an+1/Fn - ¢| < gen-

We can obtain sequences of rational numbers converging more rapidly to ¢
by using procedures of numerical analysis for approximating solutions of the
equation x> - £ - 1 = 0. Two common methods for solving an equation f(x) = 0
numerically are Newton's method and the secant method (regula falsi) [1, 3].
Each method generates a sequence {x,} converging to a solution of f(x) = 0.

For Newton's method,
flx, 1)
(1) Ly = NEWTON(.’L‘n__l) = (X,'n__l - m.

The secant method is obtained from Newton's method by replacing f'(x,_,) by a
difference quotient:
f(xn-l)(mn-l"xn—z)
x

19 xn..z) n-1 f(xn_l) - f(mVL-Z)

i

n

x, = SECANT (xn _

(2)

xn-zf(xn-l) - mn—lf(xn-z)

f(xn-l) - f(xn-z)

[The first expression for SECANT(x,_,,x,_,) is more useful for numerical cal-
culations, while the second expression reveals the symmetric roles of x, , and
%,_5.] The familiar geometric interpretations of Newton's method and the se-
cant method are given in Figure 1.

Newton's method requires an initial approximation x,; the secant method
requires two approximations X, and x;. If the initial values are sufficiently
close to a solution & of f(x) = 0, then the sequences {x,} defined by either
method converge to &. Suppose that f'(£) # 0; that is, £ is a simple zero of
f. Then, the convergence of Newton's method is quadratic [1]: the number of
correct digits of x, is about twice that of x, _,, since Lnn - gla:qlxn_l - g{z

[

*For future reference, we note the first few Fibonacci numbers: 0, 1, 1,
2, 3, 5,8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597.
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for some o > 0. Similarly, the order of convergence of the secant method
is ¢ ~ 1.618., since Ixn - E|x alxn_l - E|¢ for some o > 0 [3].
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(a) Newton's method (b) Secant method

Fig. 1. Geometric interpretations of Newton's method and secant method

Both these methods applied to the equation x? - x — 1 = 0 yield sequences
converging to ¢ more rapidly than {En+1/Fn}. For this equation, we calculate

easily that
x? o+ 1 €, %, o+ 1
(3) NEWION(x. ) = ——*———  and  SECANT (x x,_,) = _ )
n-1 20, , -1 n-12 “n-2 x +x, , -1

n-1

For initial approximations to ¢, it is natural to choose Fibonacci ratios.
For example, with x; = 1, Newton's method produces the sequence,

1, 2/1, 5/3, 34/21, 1597/987, ...,

which we recognize (see note on page 1) as a subsequence of Fibonacci ratios.
From a few more sample calculations [e.g.,

NEWTON (3/2) = 13/8 or NEWTON (8/5) = 89/55]
we infer the identity:

(4 NEWION(Z ,  /F) =F /F

2n+l1'" 2n "
The sequence {x,} generated by Newton's method with x, = 1 is defined by x, =
E}n+1/F2n. Now it is obvious that the convergence of {x,} is quadratic, since
there are constants o, B > 0 and € < 1 such that ag?® < lxn - ¢| < 882”.

We can similarly apply the secant method with Fibonacci ratios as initial

approximations. From examples such as
SECANT (1, 2) = 3/2, SECANT(2, 3/2) = 8/5, and SECANT(3/2, 8/5) = 34/21,
we infer the general rule:

(5) SECANT(FM+1/F”I’ Fn+1/Fn) = Fm+n+1/Fm+n’
In particular, if x, = 1 and x, = 2, then the sequence {x,} generated by the
secant method is given by x, = Fp ,,/F; . Since F, is asymptotic to ¢7//5,
there are constants a, B > 0 and € < 1 such that ae*’< |z, - ¢| < Be®”, which
dramatically illustrates that the order of convergence of the secant method
is ¢.

Equations (4) and (5) are interesting because they imply that the sequences
of rational approximations to ¢ produced by Newton's method and by the secant
method are simple subsequences of Fibonacci ratios.
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We now verify (4) and (5). 1In fact, these identities are valid in general
for any sequence {u,} defined by a second-order linear difference equation

with uy = 0 and w, = 1, provided the sequence {u,,,/u,} is convergent.
Lemma: Let {u,} be defined by au, + bu,.; + cu,., = 0 with u, = 0 and 2, = 1.
Then AUy yq Uy oy = CU U, = au . for all m, n > 0,

Proof: By induction on n. For n = 0, the lemma holds for all m since
Ay oy My = Clplhy = Al 4 -
Now assume that for n - 1 the lemma is true for all m. Then

AUy 1y oy — CUptt = (buy = cuy_du, o + (aw,,, + bu,, du,

fl

AUy Uy = ClUp Uy

=AUty +(n-1) +1

= AUpypere O

The lemma generalizes the Fibonacci identity [2]:

FogiFrnwr Y EF, = Fpynyye

Suppose that axr?® + bx + ¢ has distinct zeros A, and A,. Any sequence {u,}
satisfying the recurrence qu, + bun , tcu,_, =0 is of the form

n n

= KA+ kAT,
where k; and k, are constants determined by the initial values u; and u,. If
[X1] > |A,| and k; # 0, then u, is asymptotic to k 1Ay, and so {un+1/un} con—
verges linearly to A1. We now show that if u; = 0 and u; = 1, then Newton's

method and the secant method, starting with ratios from {un+l/un}, generate
subsequences of {u, ,/u,}.

Theorem: Let {u,} be defined by aun+bu, ,+cuy_-, = 0 with uy, = 0 and u; = 1.
If the characteristic polynomial f(z) = ax? + bz + ¢ has zeros XA; and A, with
Ikll > ]le, then:

(1) wu, # 0 for all n > 0;

(i1) 1lim Uy [tn = A1}
(iii) NEWTON (2, ,1/%,) = Upypy/toys
(1v)  SECANT (uy o [ty Uy yy /%) = Upsp i1 [Umin-
(i) It is easily verified that u, = k(k - X ), where k = +a//57__Z3E
(The sign of k depends on the signs of a and b.) Since IX l > ]Xz‘, if n > 0,

then ]Ali \AZI and, therefore, u, # 0.
(ii) We note, as an aside, that the sequence {u,_ ,/u,} satisfies the
first-order recurrence x, = -(bx, , + ¢)/ax,_,. To verify (ii):
Upia k(kq+1 - AZ+1> L= (Al/kz)n+l .
= =X + A, as n » », since [Xl/le <1,
tn KO = A - Oy /)"

(iii) For the equation ax? + bx + ¢ = 0, Newton's method and the secant
method are given by

6) NEWTON(wn_l) = and SECANT(xn_l, x, J) = ; Y + b’
n
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Therefore, NEWTON(x,.;) = SECANT(x,_;, *£,_1), and so (iii) follows from (iv).
Note that this identity holds for any polynomial equation f(x) = 0.
(iv) By (6),
a(um+1/um)(un+1/un) -

luy + vy, /u,) + D

SECANT (u,, o /u, s U, /u,) = 2, .

AU, Uy 4q = ClUmlhy,

aum+1un + aumun+1 + bumun

aum“un” - cumun

au, U, = ClhnU,_

= QUpy 441 /Up,, (by the lemma)
Re,manlu: = um+n+1/um+n° o

1. The theorem does not generalize to polynomials of degree higher than 2.

2. Not only do the ratios of the consecutive Fibonacci numbers converge to
¢, they are the '"best'" rational approximation to ¢; i.e., if n > 1, 0 < F < F,
and P/F # F,,.,/F,, then |F,, ,/F, -®| < |P/F-¢| by [4]. Since Newton's method
and the secant method produce subsequences of Fibonacci ratios, they also pro-
duce the best rational approximation to ¢.
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A CHARACTERIZATION OF THE FUNDAMENTAL SOLUTIONS TO
PELL'S EQUATION u? - Dv? =(C
M. J. DeLEON
Florida Atlantic University, Boca Raton, FL 33432
Due to a confusion originating with Euler, the diophantine equation
€] u? - pw? =0,

where D is a positive integer that is not a perfect square and C is a nonzero
integer, is usually called Pell's equation. In a previous article [1, Theorem
2], the following theorem was proved.

Theorem 1: Let z, + y,vD be the fundamental solution to x? - Dy? = 1. If k =



