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One of the more bizarre and unexpected results concerning the Fibonacci
sequence is the fact that
1

g9 = .0112358

13
21
34
55
89
144
233

(1

=‘Z: Fioa

i=1 10%
where F; denotes the <th Fibonacci number. The result follows immediately from
Binet's formula, as do the equations
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where L; denotes the Zth Lucas numbers. It is interesting that all these re-
sults can be obtained from the following unusual identity, which is easily
proved by mathematical induction.

Theorem 1: Let a, b, ¢, d, and B be integers. Let {u,} be the sequence defined
by the recurrence U, = ¢, Uy = d, Hn42 = Alus1 + DU, for all » > 2. Let m and
N be integers defined by the equations

B2 =m+Ba+b and N =cm + dB + be.
Then
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for all n > 0. Also, N = 0 (mod B).

Proof: The result ‘is clearly true for n = 0, since it then reduces to the
equation

N =cm + dB + bec
of the hypotheses. Assume that
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This completes the induction. Finally, to see that ¥ = 0 (mod B), we have only
to note that

N =ocm+dB + be = c(B*> - Ba - b) +dB + be = ¢B®> - caB + dB = 0 (mod B).

Now, it is well known that the terms of the sequence defined in Theorem 1
are given by
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Thus it follows from (5) that
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provided that the remainder term tends to 0 as »n tends to infinity, and a suf-
ficient condition for this is that

a + /a® + 4b a - Ya? + 4b
- R < 1 and 5 < 1.

Thus we have proved the following theorem.

Theonem 2: if a,b, c,d, m, N, and B are integers, with m and ¥ as defined above

and if
gt /a’ + bl g |a=Yal )
25 | 2B ’
then
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Of course, equations (1)-(4) all follow from (8) by particular choices of
as b, ¢, and d. To obtain (2), for example, we set ¢ =2, a=b =d =1, and
B = 10. It then folliows that

m =58> ~Ba -b =100 - 10 - 1 = 89
N =cm + dB + be 178 + 10 + 2 = 190
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and as claimed.

To obtain (3), we set ¢ = 0, a=b =d =1, and B = -10, Then
m = B* -~ Ba - b =100 + 10 - 1 = 109,
N =cm+ dB + be = -10,
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and y . -10 = 1 Z i1
Bm =10 - 109 109 £ (0¥
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as indicated.
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Finally, we note that interesting results can be obtained by setting B equal
to a power of 10. For example, if B = 10" for some integer %, ¢ = 0, and q =
b=d=1,

m = 102" - 10" - 1, ¥ = 10",

and (8) reduces to

-1
- . 9
102"~ 10* - 1 {71107

For successive values of % this gives
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as we already know,
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and so on. In case B = (-10)" for successive values of h, ¢ =0, and a = b = d =
1, we obtain
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and so on. Other fractions corresponding to (2) and (3) above are

19 199 1999
89° 9899° 998999’

and
21 201 2001

T7109° 10099° ~ 1000999°
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