THE DECIMAL EXPANSION OF 1/89 AND RELATED RESULTS

CALVIN T. LONG

Washington State University, Pullman, WA 99164

One of the more bizarre and unexpected results concerning the Fibonacci sequence is the fact that

$$= \sum_{i=1}^{\infty} \frac{F_{i-1}}{10^{i}},$$

where F_i denotes the ith Fibonacci number. The result follows immediately from Binet's formula, as do the equations

$$\frac{19}{89} = \sum_{i=1}^{\infty} \frac{L_{i-1}}{10^i} \tag{2}$$

$$\frac{1}{109} = \sum_{i=1}^{\infty} \frac{F_{i-1}}{(-10)^i} \tag{3}$$

and

$$-\frac{21}{109} = \sum_{i=1}^{\infty} \frac{L_{i-1}}{(-10)^i}.$$
 (4)

where L_i denotes the ith Lucas numbers. It is interesting that all these results can be obtained from the following unusual identity, which is easily proved by mathematical induction.

Theorem 1: Let a, b, c, d, and B be integers. Let $\{\mu_n\}$ be the sequence defined by the recurrence $\mu_0 = c$, $\mu_1 = d$, $\mu_{n+2} = \alpha \mu_{n+1} + b \mu_n$ for all $n \ge 2$. Let m and ${\it N}$ be integers defined by the equations

$$B^2 = m + B\alpha + b$$
 and $N = cm + dB + bc$.

Then

$$B^{n}N = m \sum_{i=1}^{n+1} B^{n+1-i} \mu_{i-1} + B\mu_{n+1} + b\mu_{n}$$
 (5)

for all n > 0. Also, $N \equiv 0 \pmod{B}$.

Proof: The result is clearly true for n = 0, since it then reduces to the equation

$$N = cm + dB + bc$$

of the hypotheses. Assume that

$$B^{k}N = m \sum_{i=1}^{k+1} B^{k+1-i} \mu_{i-1} + B \mu_{k+1} + b \mu_{k}.$$

Then

$$B^{k+1}N = m \sum_{i=1}^{k+1} B^{k+2-i} \mu_{i-1} + B^2 \mu_{k+1} + Bb \mu_k$$

$$= m \sum_{i=1}^{k+1} B^{k+2-i} \mu_{i-1} + (m + Ba + b) \mu_{k+1} + Bb \mu_{k}$$

$$= m \sum_{i=1}^{k+2} B^{k+2-i} \mu_{i-1} + B(a\mu_{k+1} + b\mu_{k}) + b\mu_{k+1}$$

$$= m \sum_{i=1}^{k+2} B^{k+2-i} \mu_{i-1} + B\mu_{k+2} + b\mu_{k+1}.$$

This completes the induction. Finally, to see that $N\equiv 0\pmod B$, we have only to note that

$$N = cm + dB + bc = c(B^2 - Ba - b) + dB + bc = cB^2 - caB + dB \equiv 0 \pmod{B}$$
.

Now, it is well known that the terms of the sequence defined in Theorem 1 are given by

$$\mu_n = \left(\frac{c}{2} + \frac{2d - c}{\sqrt{a^2 + 4b}}\right) \left(\frac{a + \sqrt{a^2 + 4b}}{2}\right)^n + \left(\frac{c}{2} - \frac{2d - c}{\sqrt{a^2 + 4b}}\right) \left(\frac{a - \sqrt{a^2 + 4b}}{2}\right)^n. \tag{6}$$

Thus it follows from (5) that

$$\frac{N}{Bm} = \sum_{i=1}^{n+1} \frac{\mu_{i-1}}{B^i} + \frac{B\mu_{n+1} + b\mu_n}{mB^{n+1}} = \sum_{i=1}^{\infty} \frac{\mu_{i-1}}{B^i},$$
 (7)

provided that the remainder term tends to 0 as n tends to infinity, and a sufficient condition for this is that

$$\left|\frac{\alpha + \sqrt{\alpha^2 + 4b}}{2B}\right| < 1$$
 and $\left|\frac{\alpha - \sqrt{\alpha^2 + 4b}}{2B}\right| < 1$.

Thus we have proved the following theorem.

Theorem 2: If a, b, c, d, m, N, and B are integers, with m and N as defined above and if

$$\left| \frac{\alpha + \sqrt{\alpha^2 + 4b}}{2B} \right| < 1$$
 and $\left| \frac{\alpha - \sqrt{\alpha^2 + 4b}}{2B} \right| < 1$,

then

$$\frac{N}{Bm} = \sum_{i=1}^{\infty} \frac{\mu_{i-1}}{B^i} . \tag{8}$$

Of course, equations (1)-(4) all follow from (8) by particular choices of α , b, c, and d. To obtain (2), for example, we set c=2, $\alpha=b=d=1$, and B=10. It then follows that

$$m = B^{2} - B\alpha - b = 100 - 10 - 1 = 89$$

$$N = cm + dB + bc = 178 + 10 + 2 = 190$$

$$\frac{19}{89} = \frac{190}{10 \cdot 89} = \frac{N}{Bm} = \sum_{i=1}^{\infty} \frac{L_{i-1}}{10^{i}} \text{ as claimed.}$$

and

To obtain (3), we set c=0, $\alpha=b=d=1$, and B=-10. Then

$$m = B^2 - B\alpha - b = 100 + 10 - 1 = 109$$

$$N = cm + dB + bc = -10$$

and
$$\frac{N}{Bm} = \frac{-10}{-10 \cdot 109} = \frac{1}{109} = \sum_{i=1}^{\infty} \frac{F_{i-1}}{(-10)^i}$$
 as indicated.

Finally, we note that interesting results can be obtained by setting B equal to a power of 10. For example, if $B=10^h$ for some integer h, c=0, and $\alpha=b=d=1$,

$$m = 10^{2h} - 10^h - 1, N = 10^h,$$

and (8) reduces to

$$\frac{1}{10^{2h} - 10^h - 1} = \sum_{i=1}^{\infty} \frac{F_{i-1}}{10^{hi}}.$$
 (9)

For successive values of h this gives

$$\frac{1}{89} = \sum_{i=1}^{\infty} \frac{F_{i-1}}{10^{i}} \tag{10}$$

as we already know,

$$\frac{1}{9899} = \sum_{i=1}^{\infty} \frac{F_{i-1}}{10^{2i}}$$

$$= .000101020305081321...,$$
(11)

$$\frac{1}{998999} = \sum_{i=1}^{\infty} \frac{F_{i-1}}{10^{3i}}$$

$$= .000001001002003005008013...,$$
(12)

and so on. In case $B=(-10)^h$ for successive values of h, c=0, and $\alpha=b=d=1$, we obtain

$$\frac{1}{109} = \sum_{i=1}^{\infty} \frac{F_{i-1}}{(-10)^i},\tag{13}$$

$$\frac{1}{10099} = \sum_{i=1}^{\infty} \frac{F_{i-1}}{(-100)^i},\tag{14}$$

$$\frac{1}{1000999} = \sum_{i=1}^{\infty} \frac{F_{i-1}}{(-1000)^{i}},$$
(15)

and so on. Other fractions corresponding to (2) and (3) above are

$$\frac{19}{89}$$
, $\frac{199}{9899}$, $\frac{1999}{998999}$, ...

and

$$-\frac{21}{109}$$
, $-\frac{201}{10099}$, $-\frac{2001}{1000999}$, ...
