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~uQ + V0/D = U-L + vX/D belongs to the same class of solutions to u2 - Dv2 = C 
as uQ +'v0/D. Since we are assuming u0 < 0, this contradicts (iv) of Remark A 
[1]. Hence, even in this case, v1 > V0 . In a similar manner, it is seen that 
we always have u1 > uQ. Since.wn > 0 and vn > 0 for n >_ 1, (2) implies that 
un+i > un a n d vn+1 > vn forn > 1. 

TkdQltm 4; If u + y/D is a solution in nonnegative integers to u2 - Dv2 = -N, 
where # _> 1» and if v>_ku9 where k = (^1)/(^1- 1) s then u + y/D is the funda-
mental solution of a class of solutions to u2 - Dv2 =-N. If u + yi/5" is a solu-
tion in nonnegative integers to u2 - Dv2 = N, where N > 1, and If u >_ kv5 where 
fc = (Dy1)/(x1- 1) 9 then u + y/D is the fundamental solution of a class of solu-
tions to u2 ~ Dv2 - N. 

Vftooj- By Theorem 2, u + y/D = (u0_+ u0/D) (̂ x + yx/D)n = un + i^/D, where 
n is a nonnegative integer and uQ + y0/^ is a fundamental solution to u2 - Dy2 

= ±21/. We shall prove u + v/D = u0 + U0i/D. So assume n _> 1. Then we have 

Thus W n - 1 = Xlun - Dy1vn and ^ _ x = -y±un + xxvn. 
First, suppose u + v/D is a solution to u2 - Dv2 = -N. We know that 

v = vy, > ku-y, -

Hence 
Vn-l = "2/iW„ + ̂ n = (xl ~ l)Vn ~ 2/'l̂  n + Un .> ̂ n • 

But by the corollary to Lemma 3, Vn_± < vn for n > 1. Thus n = 0 and the proof 
is complete for the case u2 - Dv2 = -N. 

Now, suppose u + y/Z? is a solution to u2 - Dv2 = N. We know that 

u n >_ fcur 
% A 

(Please turn to page 92) 
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ABSTRACT 

An integer m is said to be n-hyperperfect if m = 1 + n[o(m) -m- 1] . These 
numbers are a natural extension of the perfect numbers, and as such share re-
markably similar properties. In this paper we investigate sufficient forms for 
hyperperfect numbers. 

1. IMTROVUCTWN 

Integers having "some type of perfection" have received considerable atten-
tion in the past few years. The most well-known cases are: perfect numbers 
( U K [1.2], [13], [14], [15]); multiperf ect numbers ([1]) ; quasiperf ect numbers 
([2]); almost perfect numbers ([3], [4], [5]); semiperfect numbers ([16], [17]); 
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and unitary perfect numbers ([11]) . The related issue of amicable, unitary 
amicable, quasiamicable, and sociable numbers ([8], [10], [11], [9]5 [6], [7]) 
has also been investigated extensively. 

The intent of these variations of the classical definition appears to have 
been the desire to obtain a set of numbers, of nontrivial cardinality, whose 
elements have properties resembling those, of the perfect case. However, none 
of the existing definitions generates a rich theory and a solution set having 
structural character emulating the perfect numbers; either such sets are empty, 
or their euclidean distance from zero is greater than some very large number, 
or no particularly unique prime decomposition form for the set elements can be 
shown to exist. 

This is in contrast with the abundance (cardinally speaking) and the crys-
talized form of the n-hyperperfect numbers (n-HP) first introduced in [18]. 
These numbers are a natural extension of the perfect case, and, as such, share 
remarkably similar properties, as described below. 

In this paper we investigate sufficient forms for the hyperperfect numbers. 
The necessity of these forms, though highly corroborated by empirical evidence, 
remains to be established for many cases. 

2. BASIC THEORY 

a. m is n-HP iff m =• I + n[o(m) - m - 1], m and n positive integers. 

b. Mn = {m\rn is n~HP}„ 

c . Let m = p*lpa 1 ^u2 . , . p^i e e o p^o p? be n-HP and be in c a n o n i c a l form 

(Pi < P 2 < ••• < Pj < Pj + i>-
Then p(m) = { p 1 , p 2 , . . . s p . 19 p.} are t he r o o t s of m [ i f m = p 1 , 
p ( m ) . = 0 ] . ' 

d. d1(m) = \p(m)\ = j 9 d2(jn) = k» 
e - nMh,L = im\m i s ^-HP, d^ijn) = h9 d2(m) = L } . 
Note that for n = 1 the perfect numbers are recaptured. Clearly one has 

M„ UA, A , I UnMhtl 
h = 2 

U VnMh.L 
h=l L=2 

a. If m e Un
Mo,L w e s a ^ t h a t m i s a Sublinear HP 0 

L 

b. If m e nM 1 we say that m is a Linear HP. 

c. If 772 e U nMh we say that m is a Superlinear HP. 
h = 2 

d. If m e Q U nMh L w e s a y t t i a t m i s a Nonlinear HP, 
h=l L=2 

It has already been shown [18] that 

?JLOpoA<ition 1: There are no Sublinear n-HPs. 

Table 1 below shows the n-HP numbers less than 1,500,000. In each case, m 
is a Linear HP. We thus give an exhaustive theory for Linear HPs. Superlinear 
and Nonlinear results will be presented elsewhere; however, it appears that the 
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only n-HP are Linear n-HP, 
be impossible. 

In fact, several nonlinear forms have been shown to 

Table 1. n-HP up to 1,500,000, n j> 2 

n 

2 
6 
3 
12 
18 
18 
12 
2 
30 
11 
6 
2 
60 
48 
19 
132 
132 
10 
192 

m 

21 
301 
325 
697 

1,333 
1,909 
2,041 
2,133 
3,901 
10,693 
16,513 
19,521 
24,601 
26,977 
51,301 
96,361 

130,153 
159,841 
163,201 

Prime 
Decomposition 

for 

3 
7 

52 

17 
31 
23 
13 
33 

47 
172 

72 

34 

73 
53 

292 

173 
157 
ll2 

293 

X 
X 

X 
X 

X 
X 
X 
X 

X 
X 
X 

X 
X 
X 
X 
X 
X 

X 
X 

m 

7 
43 
13 
41 
43 
83 
157 
79 
83 
37 
337 
241 
337 
509 
61 
557 
829 
1321 
557 

n 

2 
31 
168 
108 
66 
35 
252 
18 
132 
342 
366 
390 
168 
348 
282 
498 
540 
546 
59 

1 
1 
1 
1 
1 
1 
1 
1 

m 

176,661 
214,273 
250,321 
275,833 
296,341 
306,181 
389,593 
486,877 
495,529 
524,413 
808,861 
,005,421 
,005,649 
,055,833 
,063,141 
,232,053 
,284,121 
,403,221 
,433,701 

Pr Lme 
Decomposition 

j 

35 

472 

193 
133 
67 

532 

317 
79 
137 
499 
463 
479 
1.73 
401 
307 
691 
829 
787 
892 

Eor m 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 
X 

X 
X 

727 
97 
1297 
2441 
4423 
109 
1229 
6163 
3617 
1087 
1747 
2099 
5813 
2633 
3463 
1783 
1549 
1783 
181 

3. LINEAR THEORY 
The fo l lowing b a s i c theorem of L inea r n-HP g ives a s u f f i c i e n t form fo r a 

h y p e r p e r f e c t number. 

Th&otim 1: m i s a L inea r n-HP i f and only i f 

np 
C t x + l (n - l ) p i - 1 

pa^+1 - (n + Dpi1 + n 

V^iOOJ* (->) m i s a L inea r n-HP, i f m - p^p2; then 

o(m) 
a, + l , 

Pi ~ 1 
— ( 1 + P 2 ) . 

But m n-HP implies that (n + l)m = (1 - n) + no(m). Substituting for aim) and 
solving for p2, we obtain the desired result. Note that p2 must be a prime. 

(«-) if m = p^1 • 
np^ - (n - l)p1 - 1 

p^1+ - (n + l)p"1 + n 

where the second term is prime, then 
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a i + 1 

Pi ™ l 

o(m) = - — — — 
P l - 1 

a-, + 1 , 
wp^ - (n - l ) p 1 - 1 

1 + 
p a i x - (n + l ) p a i + n 

from which one s ee s t h a t t h e c o n d i t i o n for a Linear* n-HP i s s a t i s f i e d . Q.E.D. 
We say t h a t n i s c o nv o l u t i on a r y i f n + 1 i s prime p . 

CosiolZaJiy 1: If n i s c o n v o l u t i o n a r y , a s u f f i c i e n t form fo r m = p * p 2 t o be 
L inea r n-HP i s t h a t fo r some a 1 , p = (n + l ) a i - n i s a p r ime . In t h i s c a s e , 

m = (n + i f 1 * 1 [ (n + l ) a i - n ] . 

CofiollcUiy 11 If m = p±p2 i s a L inea r n-HP, then 

np\ - (n - l ) p 1 - 1 
P2 = — 

p\ - (n + l )p1 + n 

We would expect these n-HPs to be the most abundant, since they have the sim-
plest structure. This appears to be so, as indicated by Table 1. 

ZoKoULcUty 3: If m = p1p2 is a Linear n-HP with p1 = n + 1, then p2 - n2 + n + 
1, so that 

7w = (n + 1) (n2 + n + 1). 

In view of these corollaries, the following issues are of capital importance 
for cardinality considerations of Linear n-HP. 

a. We say that (n + l)a - n, a = 1, 2, 3, . .., is a Legitimate Mersenne 
sequence rooted on n (n-LMS)9 If n + 1 is a prime. 

b. Given an n-LMS, we say that in + l)a -n is an nth-order Mersenne prime 
(n-MP), if (n + l)a - n is prime. 

A 1-LMS is the well-known sequence 2'a - 1. 

QILQJ>&LOVI 7. Does there exist an n-MP for each n? 

QlLQAtAjOyi 2. Do there exist infinitely many n-MP for each n? 

Question 3. Are there infinitely many primes of the form n2 -{- n + 1, where 
n + 1 is prime? 

Extensive computer searches (not documented here) seem to indicate that the 
answer to these questions is affirmative. 

Tfieo/iem 2: If m is a Linear n-HP, then n + 1 <_ px £ In - 1 if n > 1 and px <_ 2 
if n = 1. 

?n.00ji It can be shown that if 772 is n-HP and J|T?I, then j > n. Thus, for a 
Linear n-HP, p > n; equivalently, px >. n + 1. Now, since 

np*1- (n - 1) - l/p1 I 
i 

we let 

then, 

(p1 - n - l)p^x+ n 

p1 = n + 1 + y; 

np*1- (n - 1) - 1/Pl 
^ = P i _ ^_^ _ 

UP!1 ,. + n 
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(Note: ]i = 0 implies p = n + 1 < 2n.) Since we want the second factor of this 
expression larger than ls we must have ]i < n or n < p± <_ 2n, from which we get 
n + 1 1 Pi 1 2n - 1 if n > 1, for primality, and 1 < p± £ 2 if n - 1. Q.E.D. 

Observe that the upper bound is necessary for a Linear n-HP9 but not for a 
general n-HP. 

Co/tollaAy 41 m is a Linear 1-HP iff it is of the form m = 2t"1(2t - 1). 

VHJQQ^I From Theorem 25 p1 = 2. Now we can apply Corollary 1 to obtain the 
necessary part of this result. The sufficiency part follows from the defini-
tion. 

4. BOUNVS FOR LWEAR n-WV 

We now establish important bounds for Linear n-HP. 

Vh.opa6iZi.OVi 11 Let m be Linear n-HP. Consider p2 = F(a) . 
cally increasing on a. 

VKOOki Omitted. 

Vhopo&ijLLovi 3: 

lim p9 
01-+OO 

npn 
px + n + 1 

p = n + 1 

The p2 is monotoni-

This follows directly from Theorem 1 and Corollary 1. 
obtain 

VKopokAjtlOYl 4: 
np^ (n - l)p npi 

v\ (n + l)p1 + n 

Using Proposition 2S we 

p + n + 1 

+ n + 1 < p <° °  Pi n + 1 

Using these propositions,, we have essentially proved the following impor-
tant theorem. 

T/i&Ô em 3: Given n9 n + 1 <, p <. 2n - 19 if n is not convolutionary, then there 
can be at most finitely many n-HP of the form m - Pilp2» 

Table 2 and Table 3 show the allowable values for p1, given n9 along with 
the bounds for p . We can now obtain results similar to those of Corollary 4. 

CoKolZaAy 5t If 772 is Linear 2-HP, then it can only be of the form 

3*-i(3* _ 2 ) . 

CoKottaAif 6- a) I f m i s L i n e a r 3-HP9 then i t must be of t h e form 

Co/iollaALj 1% 

;-l3 11 

5*"1 + 3 

b) There is exactly one Linear 3-HP (see Tables 2 and 3). 

Ci) There are no Linear 4-HP rooted on 7 (see Tables 2 and 3). 
b) There are Linear 4-HP rooted on 5. For example9 

5 \ 5 4 m = 5 ' O ' - 4) 

There a r e no L inea r 5-HP. 

5 4 (3121) , 

Cosiollcuiy St 

CotLOlloAy 9: There a r e no L i n e a r 7-HP. 
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n 

2 
3 
4 
5 
6 
7 
8 
9 

10 

a 

i 

1 
2 
3 
4 
5 
6 
7 
8 

a 
7 — 

4-
1 
2 
3 
4 
5 
6 
7 
8 

Table 2 . Allowable Values 

3 ( 7 , ») 
5 ( 8 , 15) 
5 ( 2 1 , 00) 
7 (18 , 35) 
7 ( 4 3 , 00) 

11(19, 26) 
11(29, 44) 
11(50, 99) 
11(111 , °°) 

TaMe 3 . 

P] 

n = 3 

8 
13 
14.56 
14.91 
14.98 
14.99 
14.999 
14.999 

n = 7 

19.50 
25 
25„60 
25.66 
25.666 
25.6666 
25.66666 

P 2 

L 

Pi_ 

n 
29 
42 
43 
43 
43 
43 
43 
43 

of p x and Bounds 

Allowable Roots 

7 ( 9 , 14) 

11(13 , 17) 
13(15 , 19) 
13 (21 , 26) 
13(29, 39) 
13(43 , 65) 

as a Functi 

5 

n - 4 
21 
121 
621 
3121 
15621 
78121 
390621 
1953121 

= 11 

= 8 n 

.66 50 

.28 91 

.83 98 

.98 98 
,99 98 
.999 98 
,9999 98 
.99999 98 

17(19, 22) 
17(24, 29) 

.on of p., n, and 

= 

4< 
2< 
9 
9 
9 
9 
9 

Pi " 

n = 4 

9.66 
13.23 
13,88 
13.98 
13.99 
13.999 
13.9999 
13.99999 

9 

3 
9 
99 
999 
9999 

Pi = 

n = 7 

15.33 
17.95 
18.18 
18.19 
18.199 
18.1999 
18.19999 

on p2 

19(21 , 24) 

a 

7 

n = 5 

18 
31.22 
34.41 
34.91 
34.98 
34.99 
34.999 
34.9999 

= 13 

n = 8 

21 
25.56 
25.96 
25.997 
25.9997 
25.99998 

Further bounds are derived below. We have already given one such bound? 

np1 

2 — p - n - 1 
p, - n + 2 

pi = n + 3 

p = n + 4 

for n nonconvolutionary 

p < nz + 2n 
. n(n + 3) 

^2— 2 

r> < n ( n + 4> 
y2 - 3 
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T h e r e f o r e , 

Vh.opo&AjLLovi 5: Let n be noneorivolut±onary. If m i s L inea r n-HP, then 

p2 <. n2 + In. 
More generally, 

?n.opo^AJtiovi 6: Let <2n = p - rc, where p i s t he f i r s t prime l a r g e r than n . Then 

n(n + d n ) 2 - (n - I) (n + d) - I n(n + dw) 
. — _ _ £ p <. —3——\—» 

(n + <2n)2 <_ (n + l ) ( n + d n ) + n 2 a * 

which is valid for dn _> 1. 

Vn.opo6Ajtiovi 7: Let 77z be Linear n-HP, n nonconvolutionary. Then p2 _> 2n + 1. 

Vtiool* (From the previous general bound on p2, we see that this statement 
is also true for convolutionary n.) The proof involves looking at the expres-
sion for p2 , given that p1 = n + £, 2 <_ i <_ ri - 1. Suppose p = n + 2. Since 
77? is Linear n-HP, we have 

^2 np^ - (n - l)pi - 1 

c1 

But p = n + 2, so that 

p2
± - (n + l)px + 1 

> n ( n + 2^2 " (n " l)(n + 2) - 1 = (n + I)3
 = (n + l)2

 = n2 + In + 1 
^ / . o \ 2 / i i \ / . o \ . 2 (?2 + 1) 2 2 

(n + 2)z - (n + 1) {n + 2) + n K J 

However, n2 > 2n (n > 2) , so that for this case p2 J> 2n or p2 J> 2n + 1. Simi-
lar arguments hold for p = n + 3 , n + 4, ... . We show the case p = 2n - 1. We 
have 

> ??(2n - l)2 - in - l)(2n - 1) - 1 = 2n3 - 3n2 + 2n - 1 
2 (2n - l)2 - in + l)(2n - 1) + n n2 - In + 1 

o , i _, 2n - 2 
= In + 1 + . 

(Note t h a t n + 1.) T h e r e f o r e , a g a i n , p ^ 2n + 1. Q.E.D. 

Pfiopo&AXioyi St I f 772 = p Q l p i s a L inea r n-HP, n n o n c o n v o l u t i o n a r y , then 

l o g 

a i — 

n 2 p 
— + (n - l ) p + 1 
- n - 1 / f r i 

log p x 

Vh.00^1 We have shown that p tends monotonically to e = (nP1)/(P1 - w - 1) 
as a ->- °°. Let ef be the greatest integer smaller than e. Setting 

npa
±

l+1 - (n - l ) P l - 1 

P i 1 ( ? ! - " - ! ) + 
and solving for a , we obtain 
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log 
ne! + (n - l)p1 + 1 

np1 - ef(pi 1) 

However, 
ner + (n - l)p1 + 1 

np1 - er(p1 - n - 1) 

log px 

< n -y + (n - l)pi +. 1, 

and, in fact, the equality holds in many cases. The result follows. Q.E.D. 
The following statement summarizes the bounds for a linear n-HP: 

n + 1 <_p <_ 2n - I; 

(if p = n 4- 1, then n2 + n + 1 <_ p < °°, 

;if px > n + 1, then In + 1 •<. p2 <. n2 + 2n; 

log 

if p1 > n + 1, then ax < 

n2p. 

^1 
+ (n - l)p + 1 

log p-ĵ  

Notwithstanding the fact that no Superlinear and Nonlinear n-HP have been ob-
served, we can still derive sufficient forms for these numbers (if they exist). 
It may be shown that 

PsLOpo&sLtlon 9: m = p\x p^_ . .. P^-t'l P- i s a Superlinear n-HP if and only if 

nUpl' I) + (1 - n)II(p. - 1) 

(n + l)n(p^ - l)IIp"i - nll(pa*" 

3. CONCLUSION 

1) 

Theorem 1 and Proposition 9 guarantee that, if an integer has a specific 
prime decomposition, then it is n-HP. However, no n-HP with these forms was 
observed in the search up to 1,500,000. One reason for such an unavailability 
could be the fact that the search was limited. The last term required by these 
theorems is a fraction or even involves a radical; hence, to ask that this ex-
pression turn out to be an integer and, moreover, a prime, is a strong demand. 
Possibly, very rare combinations of primes could generate the required condi-
tions. It has been shown that indeed some forms are impossible. 

The other explanation is that there are only Linear n-HP, and thus Theorem 
1 is necessary and sufficient for a number to be n-HP, just as in the regular 
perfect number case. Such a statement would have a critical impact on the gen-
eralized perfect number problem. In fact, in view of the corollaries presented 
above, there would be no n-HP for various values of n, 

Computer time (PDP 11/70) for Table 1 was over ten hours. 
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ON RECIPROCAL SERIES RELATED TO FIBONACCI NUMBERS 
WITH SUBSCRIPTS IN ARITHMETIC PROGRESSION 

ROBERT P. BACKSTR0M 
Australians Atomic Energy Commission, Sutherland, NSW 2232 

1. 1MTR0VUCT10M 

Recently, interest has been shown in summing infinite series of reciprocals 
of Fibonacci numbers [1], [2], and [3]. As V. E, Hoggatt, Jr., and Marjorie 
Bicknell state [2]: "It is not easy, in general, to derive the sum of a series 
whose terms are reciprocals of Fibonacci numbers such that the subscripts are 
terms of geometric progressions." It seems even more difficult if the subscripts 
are in arithmetic progression. To take a very simple example, to my knowledge 
the series 

(i.D E f 
has not been evaluated in closed form, although Brother U. Alfred has derived 
formulas connecting it with other highly convergent series [4]. 

In this note, we develop formulas for closely related series of the form 

(1.2) 
0 Fan + b + C 


