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This result has been most useful in developing numerical procedures for 
calculating or approximating the probabilities that a server is busy, which is 
used in finding efficient designs for this class of production systems. 
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0. 1NTR0VUCT10M 

Choose a to be any r-digit integer expressed in base 10 with not all digits 
equal. Let ar be the integer formed by arranging these digits in descending 
order5 and let afl be the integer formed by arranging these digits in ascending 
order. Define T(a) = ar - a!!« When r = 3, repeated applications of T to any 
starting value a will always lead to 495, which is self-producing under T,that 
is5 T(495) = 495. Any r-digit integer exhibiting the properties that 495 ex-
hibits in the 3-digit case will be called a "Kaprekar constant." It is well 
known (see [2]) that 6174 is such a Kaprekar constant in the 4-digit case. 

In this paper we concern ourselves only with self-producing integers. Af-
ter developing some general results which hold for any base g9 we then charac-
terize all decadic self-producing integers. From this it follows that the only 
p-digit Kaprekar constants are those given above for r = 3 and 4. 

1. THE VIGITS OF T[a) 
Let r = 2n + 6, where 

6 = I* r odd 

I 0 r even. 
Let a be an r-digit g-ad±c integer of the form 

a = ^r-i^'1 + ar-29T~2 + ••• + CI-L̂  + a0 (1.1) 
with 

g > ar_i >. ar_2 >. • • • >. ax >. a09 ar_1 > a0. 
Let af be the corresponding reflected integer 

af = a^"-1 + a^"2 + • • • + ar_2g + ar_1. (1.2) 

The operation T(a) = a - af will give rise to a new p-digit integer (permitting 
leading zeros) whose digits can be arranged in descending and ascending order 
as in (1.1) and (1.2). Define 

d-n-i + l = ar-i " ai-l5 ^ = 1S 29 •••» n- (1.3) 
Thus associated with the integer a given in (1.1) is the n-tuple of differences 
D = (dn9 dn_l9 ..., dx) with g > dn >_ dn_1 J> ••• >. dx. Note that T(a) depends 
entirely upon the values of these differences. The digits of T(a) are given by 
the following9 viz.3 
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5 = 0 and d1 + 0 (1.4a) 

ml . . . dz • d± - I g - d1 - 1 g - dz - 1 . . . g - dn_1 - 1 g - dn 

6 - 0 and dx = d2 = •• • = dj_1 = 09 a^ ^ Os I < j <_ n (1.4b) 

2(j - 1) terms 

* » - ! • 

d » - l ' 

. . . d . + 1 ^ - l £ - l . . . £ - l £ - d^ •- l . . . ^ - ^ „ x -

6 = 1 and d 1 ^ 0 

. . d2 dx - 1 g - 1 # - dx - 1 # - d2 - 1 . . . # - dn_± 

6 = 1 and d1 = d2 = • •• = dj_± = 05 dj £ 0, 1 < j <. n 

2 ( j - 1) + 1 terms 

1 

- 1 

# " <4 
(1 ,4c ) 

# " ^n 

(1 .4d) 

dn dn-1 ... dj+ x ^ - 1 # - 1 ... g - 1 g - dd - I . . . g - dn_1 - I- g - dn 

Differences Dr = .(d„, d^„.13 . ••» d-[) can now be assigned to the integers T(a) 
as in (1.3). We say that (dnS dn_±s . .., 6^) is mapped to (d^, dnf„l9 ..., ^ ) 
under T. 

2. PROPERTIES Of OME-CyCLES 

We shall focus attention on the determination of. all a such that T(a) - a. 
Such integers are said to generate a one-cycle a, This is equivalent to find-
ing all n-tuples (dn9 dn„ls . .., dj) that are mapped to themselves under T. 

Thzosiem 2.1: Suppose (<fn, dn_19 . .., 3^) represents a one-cycle with d^ f 09 

J >_ 1, and dk = 0 for k < j . Further suppose that dn f dj. Then 

(i) <in + dj = g if 6 = 1 or if 5 = 0 and j > 1, 
or 

(ii) |dw + 2d1 = g 
I or if 6 = 0 and j = 1 
|dn = g - ls d1 = 1 

V/WOJ: (i) Since either j > 1 or 6 = 1, (1,4a) does not apply. Thus the 
largest digit in T{a) is g - 1. The smallest digit could be one of three: 

Therefores 

<*»' = 

tdj - 1 

I g - dn 

[ g - dn - ] 

( g - dj 
ldn - 1 
\ dn 

i f 

i f 

L i f 

i f 

i f 

i f 

dg 

dj 

dj 

dj 

dg 

dj 

+ dn 

+ dn 

+ dn 

+ dn 

+ d„ 
+ dn 

-
_ 

-
_ 

1 < # 

i >. g, 
1 .> #» 

1 < g 
1 >. 9* 

1 >.<7* 

dn 

dn 

dn 

dn 

+ dn.± 

= <*«-! 

^ d „ - ! 

- < * » - ! 
Since dn = d£, if dj + dn - 1 < g^ then dM + dj = gm ~Lf d3- + dn - I >_ g9 then 
since d^ = dn ^ dn - 19 it must be that dn = (in_x. This condition restricts 
the second largest digit to be either dn or g - 1, and the second smallest to 
be g - dn if dn + dn„2 or g - dn - 1 if dn = dn.2. Since d^± = dn-\ = d„ ^ #* 
we must have d„ = dn„2» Continuing in this fashion^ one finds that dn = dj9 
which contradicts the hypothesis. Thus dn + dj = g. 

(ii) Suppose first that dn > g - d± - 1, then dn is the largest 
digit in (1.4a). Then 
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[ dn - d1 + 1 if d1 + dn - 1 < g 

2dn - g If d± + dn - I >_ g, dn + dn_1 

2dn - # + 1 if d1 + dn - 1 >_ gs dn = dn_1. 

If dx + dn - 1 < g and g < d± + dn + 19 then # = di + dn. Since d„ = dn9 one 
must have d± = 1 and dn = ̂  - 1. If d± -h dn - I >_ g s then d„ = dn_± as shown 

This cannot occur in a one-cycle in (i). Hence dn = dn_i = d-i = G 
d-, . Thus9 if dn > unless g = 2t in which case dn 

dn = g - 1 and dx = 1. 
Now suppose that dn <_ g - d1 - 1, Then the largest digit in (1.4a) is 

d-L - 1 and the smallest is d\ - 1. Hence 

dn = dn' = (£ - d1 - 1) - (dx - 1) = # - 2d± 

and dn + 2dx = g. 

Tkao/ieyn 2.1' If D = (dns d„_l9 . .., dx) represents a one-cycle with dn = 
= d̂  ̂  09 j _> 15 and dfc = 0 for /c < J9 then d„ = ••• = dj = g/2. Further, 

(i) if g 4- 29 then r E Q (mod 3) and g E 0 (mod 2). In particular 

r/3 terms r/6 terms 

1, 

(|5 | s . . . , ~9 0S 09 . . . , 0 j when r = 0 (mod 2) 

p/3 terms (r~3)/6 terms 

(f. ., f9 Q9 0S •.. » ) when r = 1 (mod 2) 

( i i) if # = 2, then every n-tuple D is a one-cycle. 
P/tOOfj: (i) If # > 29 then j > 1 from (1.4). From (1.4b) and (1.4d), any 

n-tuple (k5 k, . . . , k, 0, 0S . . . , 0) will give rise to.a successor with digits 

(n - j) terms 2 ( j - l ) + 6 terms (.n - j) terms 

k k k k 1 - 1 . . . g - 1 g - k - l . . . g - k - l g - k. 
Clearly the largest digit is g - 1. The smallest is either k - 1, forcing k 
g/2s or g - k - 19 forcing k - (g - k) = k9 which is impossible. Hence 

CXy. — U-y, _ "I — 

Consider 
a terms 

d3 

{n - a) terms 

2" 

D = ( f s Is e"s Is ° 3 ° 5 e"9 ° )9 a = n ~ J° + 1-
The digits of the successor of D are 

(a- 1) terms 2(n-a) + 6 terms (a-1) terms 

2 2 
£ £ 

" 2 2 
# 1 ... g - 1 | £ 

2 1 
r 

(2.1) 

Ordering the digits of (2.1) in descending order, one obtains 

2 (n - a) + 6 terms a terms a terms 
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Differences equal to g/2 will be generated by the pairs (g - 1, g/2 - I), and 
differences will be generated by the pairs (g/2s g/2). Hence9 if D is a one-
cycle, then 2(n - a) + 6 = a9 that is9 r - 2n + 6 = 3a. In addition9 

~ if r E 0 (mod 2) o 

-~-^ if P = 1 (mod 2) . o 

(ii) If g ~ 29 then the. digits of the successor of D ordered in 
descending order, from (2.2), are 

2(?-£-a) + 6 terms a terms a terms 

1 1 ... 1 1 ... i 0 ... 0. (2.3) 

Clearly the first a succeeding differences in (2.3) are equal to 1 and the re-
maining (n- a) differences are equal to 0. Therefores a is a one-cycle for all 
1 £ a £ n. 
Vz^inAjtlon 2.7: For i - 09 1, . „ . , g - 1, let £J be the number of entries in 
~(dn, a^TT^""^"^ ^i) that equal i, and let ĉ  be the number of digits of T(a) 
that equal i. 

For example, if g = 10, 6 - 0S and D = (9, 99 75 79 3S 1, 09 0), then 

A / n ~" fclj R "~" *J $ AJ n °~ •*-• g Ay r ~™ Ay r — ™ h ~" * - '5 Ay q ~~ J - s Ay o ' ^ 9 ^ T ~ •*• J a n CI Ay n ~"~ £. 

From (1.4)s the d i g i t s of £>f are 
9 9 7 7 3 0 9 9 9 9 8 6 2 2 0 1 

giving r i s e to the d i g i t counters 
c3 = 69 c8 = 1, c37 = 2S <?6 = 1, o5 ~ c^ = 09 c3 = 1, <??_ = 2, c1 = 1, and c0 = 2 

Using the results of Section ls we now obtain the following corollary. 

Coxotta/iy 2.1: If dn + dj = gs where dj is the smallest nonzero entry in 

D = (d„, dn-1, ..., d x ) , 

then ag-i = ^g-i + 2^o + ^ 
ci = ^t"^-^~-z:~i ^ = 19 2 9 . . . 9 g - 2 

VK0Q{\* This result follows directly from (1.4). 

3. THE VETERMJMATION OF ALL VECAVK QME-CVCLES 

If one fixes g = 10, then each one-cycle D - (dn, dn_19 ..., <i2» ^i) falls 
into one of four classes. These classes can be described using the difference 
counters £^, i = 0S 1, 29 . .., <y - 1 introduced in Definition 2.1. The follow-
ing conditions on the difference counters must hold for D = (dn, dn_19 . .., d^) 
to be in a given class. 

ClaAA A: £8 = £6 = Ĵ  = &2 = 2£,0 + 6 
7 = 5 == 1 

£9 = 0 iff Zx = 0 
£0 s £x s or 6 is nonzero 

Cl(UA B: £9 = £x = 0 
£7 = 2^o - £8 

£6 = ^ 8 ^ 0 

4 
6 
a 

= 
== 
E 

£2 
0 
0 

= £0 

(mod 

+ 
2) 

£R 
? 
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and 

ClciAA 

ClCLAA 

TkdOKom 3, 

_C: 

V: 

L ! : 

9 = 0 = 0 _ — 1 
A/g A, 3 X/Q ^ 

6 2 = 

£,• = 09 i i 2, 3 3 < 
6 = 0 

£5 = 2£0 + 6 
£^ = 05 i + 05 5 
£0 or 6 i s nonzero 

Let (dn9 dn_l9 . . . 

^8 

>, <ii) be a decadic one-cycle with dn + dj = 10 
and £0 = j - 1. Suppose that dj ^ 5 and either j ^ 1 or 6 ^ 0. Then (d^9 dn_19 
..., 6?x) is in either Glass A or Class B. 

VKOO^I We wish to determine the. difference counters l i 3 i = 05 1 S 2 S . .., 
£7-1. To do this, we shall explore the various ways these differences can be 
computed from the digits in a self-producing integer. From Corollary 2919 

c3 = £9 + 2£0 + 5 

ci - £; + lo^i i = 1, 2, ..., 8 

e0 = £g 

Cer ta in ly . , £9 = minCeg, Co) = OQ „ s i n c e a d i f f e r e n c e of 9 can only be ob ta ined 
from t h e d i g i t s 9 and Q„ Hence 

£8 = min(2£0 + 6S o^) = min(2£0 + 69 £-,_ + £ 8 ) 

(2£ 0 + 6 £i ^ 0 
(3 .1 ) 

£1 = 0 
Thus the value of £8 depends on whether £x is zero or nonzero. If £x ^ 09 then 
there are fewer 9?s than lfs remaining and hence there will be as many differ-
ences of 8 as there are 9?s remaining. If £]_ = 05 then there are fewer lfs in 
the self-producing integer than remaining 9?s9 and there will be as many dif-
ferences of 8 as there are l?s. This technique of evaluating the difference 
counters is used throughout this section. 

Suppose first that £x ^ 0. Note that if i± + 0S dj = 1, and hence dn = 9. 
Then we have 

£9 = £9 + 0 
£8 - 2£0 + 6 (3.2) 

and £6 = min(2£0 + 6S £2 + £ 7 ) . 

Now i f £2 + £7 < 2£0 + 6S then one f i n d s e i t h e r 

l2 + £7 

™ li. "*~" Ay n* "T" AJ O 

9 = 9 4 - 0 _ 0 
A-q A/q r / v c A/o 

( 3 . 3 ) 

£6 = £2 + £7 
£5 = £3 + lb 
lh = £8 - (&2 + «-7 + «-3 + * 6 ) (3 .4 ) 
£3 = £7 + «,2 
£ 2 ~ £3 

and £-, = min(£ ? + £ 7 S £R - £? - Zn) 
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Equations (3.3) imply that £6 = £8 or £2 + £7 = 2£0 + 69 which is a contradic-
tion. Equations (3.4) imply that £x = 0, again a contradiction. Thus we must 
have 2£0 + 6 <_ £2 + £7 . Continuing in like fashion, 

£6 = 2£0 + S 
£5 = £2 + £7 - (2£0 + 6) 
*\ = 2£0 + 6 
*3 = ^3 (3.5) 
£2 = 2£0 + 5 
&1 ^5 

£0 

\ ~ 5 

Equations (3.5) together with equations (3.2) determine the relations given in 
Class A with £x and £9 nonzero. 

Suppose now that £x = 0. From (3.1)9 

£8 = ̂ 8 
£7 = min(2£0 + 6 - £8, £2 + £ 7), or 

+ 6 - £8 £2 + 0 
(3.6) 

£7 

We first consider the case where £2 f 0. From (3.1) and (3.6) it is clear that 

(3.7) 

If £9 < £ft, then 

£9 = 0 
£ 8 = £ 3 
£7 = 2£0 + 6 - £8 
£6 = min(£8, £2) 

9 = 9 
XJ r ~ X/ p — A/ Q 

£4 = £2 + £7 (3 .8 ) 
XJ Q "— X/ Q T ^ c """* ft *""" 7 

X / o ~™ J v q ~~ ^ A / Q "T* 0 

or 
£6 = £2 

• ^ *•% " " " ^ ft *""" 9 

A/ j . ""~ A/ o "T" Xj q "• ^ £ "~* ^ ft \ --' • -^ / 

XJ q ™" Z X / n i " U ™ A/ q """ A/ r 

XJ r\ —" X/ /* *T" X/ q "™~ X/ o I X*/ q 

or 
£6 = £2 
Xj c — X/ q "T" X/ r 

X / £ , * ~ X > Q " — X / Q — " X / q - - X / c ^ J « 1 U ^ 

X* q ~~ X/ •-? \ XJ n 

X/ Q —• XJ q i X/ r 

In (3.8), £5 = -£7 = 0, so £2 = £8. In (3.9), £3 = 0, which implies £2 = &8« 
In (3.10), £2 = 0, so all three circumstances lead to a contradiction. Hence, 
it must be that £8 <. £2, and, therefore, in (3.7) one finds £6 = £8. In this 
case, there are two possible values for £4 , viz., £4 = £6 + min(£7, £3). 

If li, = £6 + £7s then 

£6 = £8 £2 = £6 = £6 + £5 

£5 = £2 - £8 £x = £5 

£4 = £6 + £7 ^ £6 _ S (3"U) 
£3 - £3 - £7 £Q - -« 
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This implies that £5 = £7 = 09 £8 = £6 = lh = £2 = 2£0 + 6, so (3.11) falls into 
Class A with i± = 0, ' Otherwise, 

£ 6 = £ 8 £ 2 - £ 3 + &6 
^5 = ^2 - A8 £1 - 0 
^ = ^6 + A3 . ^ £ , + £ 5 - 5 l j 

Av 3 A/ y "" A/ o X / Q ~ ~ — — " ~———- ——— 

Equations (3.12) fall into Class B. 
It can easily be checked that there exist no one-cycles with dn = 7 and 

dj = 3 or a7n = 6 and d- = 4 . This completes the proof of the theorem. 

ThQXJtiom 3 At Let D = (dn, dn_19 <>.«, d ) be a decadic one-cycle with dn = 9, 
d± = 1 and 5 = 0„ Then 

£7 - £5 = £x + 0 • 
)6g — Jog ~ X.. ̂  — X/2 = ^0 = 9 

and this one-cycle falls into Class A* 

Vnoofc This results immediately from Corollary 2.1, since £0 = 6 = 0 . 

TkzoKQjm 3*3°° Let Z) = (dn, dn„19 ..., dx) be a decadic one-cycle with dn + 2d-L 
= 10 and 6 = 0 , Then 

£6 - £ 2 = 1 
£i '= G9 i + 2, 3, 6; 

hence, this one-cycle will fall into Class C, 

fJiOO^t If d± - 1, one obtains the following system of inconsistent equa-
tions: 

£8 - 1 
£7 = £]. - 1 
£6 = 1 
£5 = £7 + £2 

£ 4 = 0 

If dx = 2, then 
-3 ~ ^3 "*" ^6 ™ £3 + 1 

£6 - 1 
£5 = £2 

lh = 0 
£3 - £3 
*2 = 1 

which falls into Class C. It can easily be checked that d1 = 3 implies that 
£3 = £3 - 1, so the proof is complete. 

Since Class D consists of all the remaining one-cycles, namely, those with 
d3- = 5 from Theorem 3.1, this completes the classification of all dedadic one-
cycles. 

4, THE VETERMWATION OF KAPREKAR CONSTANTS 

An r-digit Kaprekar constant Is an r-digit, self -producing integer such that 
repeated iterations of T applied to any starting value a will always lead to 
this integer. Utilizing the results of Section 3, one can now show that only 
for r = 3 and v = 4 does such an Integer exist* 

lojnma, 4*1'. For v = In with n >_ 3, there exist at least two distinct one-cycles. 

Vh.00^i If v = 6S then one finds the one cycles 

Dx = (65 35 2) and 

If v = 2n9 n _> 4, then two distinct one-cycles are 
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D \ £6 = £2 = 1; £3 = n - 2; l i = 0, i £ 2, 3, 6 

D2 : £7 = £5 = £x = 1; £9 = n - 3; £,£ = 0, i + 1, 5, 7, 9. 

Lemma. 4 *1°* For r = 2n + 1 with n _> 7, there exist at least two distinct one-
cycles . 

Vh.00^1 If n = 7S then one finds the. one-cycles: 

£>! = (8, 6, 4, 33 39 3, 2) and D2 = (5, 5, 5, 5, 5, 09 0). 

If p = In + 1, n > 8, then two distinct one-cycles are: 

LJ -\ * X/ Q "™" X/ *y """" Xy r* *™ A/ j- "™" X/ 1, ""*" X/ ̂  "™" A.' -1 "™" J_ & A/ Q "*~ At- "™ / « A/ q ",™~ X/ ̂  *"""* \J 

Dz: £8 - £6 = £4 = £2 = I; £3 = n - 4; £9 = £7 = £5 = £1 = £0 = 0. 
Lemma 4,3: If r = 2, 53 79 9, 11, or 13, then there does not exist a Kaprekar 
constant. 

VKOO^I When r = 2S 5, and 7 there are no one-cycles. When r = 9 there are 
two distinct one-cycles: 

£•!_ - (5, 5, 5, 0) and D?_ = (8, 65 4, 2). 

If p = 11 the only one-cycle is ̂  = (8, 6, 4, 3, 2), but there is also a cycle 
of length four, viz., 

(8, 8, 4, 3, 2) -* (8, 63 5, 4, 2) -> (8, 6, 4, 2, 1) -*• (9, 6, 6, 4, 2). 

If r = 13 the only one-cycle Is Z^ = (8, 6, 4, 39 3, 2),.but there is also a cycle 
of length two, viz., 

(8, 7, 3, 3, 2, 1) + (9, 6, 6, 5, 4, 3). 

Tkcotiom 4.1'* The only decadic Kaprekar constants are 495 and 6174. 

?K,00{\** This follows from Lemmas 4.1-4.3. 
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