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FIBONACCI NUMBERS AND STOPPING TIMES
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For each integer k > 2, let {a,, ;) and {b,,x} be two sequences of integers
defined by au,x =0 for allm =1, ..., k-1, a3 ¢ =1, and

for all n > Kk bl’k = 0, and

1
. g, xbn- ik

-
bn,k = Ay,k + '
;=
for all n > 2.
Let {Y,} be the fair coin-tossing sequence, i.e.,

1
P(Y; =0) = 5= P(Y; = 1)
for all j =1, 2,..., and Y, Y,5 «.. are independent. With respect to the se-

5
quence {Y,}, for each integer k > 1, let {R,,x} and {N,,x} be two sequences of
stopping times defined by

Ry (Y1, Yy, o.u) = dnf {m|¥y = <o+ = Y,_54y = O},
= o if no such m exists, and for all n > 2,
Ry 1x(Yys ¥y, «..) =dinf {m|m>R,_, , +kand ¥, = «++ =Y, ;.. = 0},

= o if no such m exists; N, 3 =Ry, and Ny, = Ry,x - R,_q, 3 for all n > 2.
In this note, we shall prove the following interesting theorems.

Theosem 1: For each integer k > 2,
An,x = Z"P(Nl’k =n) and by,x = 2"P(R,, = n for some integer m > 1).
Theorem 2: For each integer kK > 2,
bu,x = 2b,_1, +1 or 2b, , , -1 or 2b,_ .,

according as n = mk or mk + 1 or mk + j for some integers m > 1 and §j = 2, 3,
cees kK= 1.
H]

Theonem 3: For each integer k > 2, let

W = 92 a,, = EW, ),
then n=1
Bug,x = 127 + 2% = 2}/wy and  Daag,x = 29 7H{2%*L - 2}/,

for alln > 1 and j =1, 2, ..., K = 1.
We start with the following elementary lemmas.

Lemma 1: For each integer kK > 1, let
0, (1) = E(tNy,z) if E([t[Ny ) <
then
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)‘7} for all -1 < t < 1.
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Proo4: For k = 1, it is well known that

ner = (2) [ - (3)]

for all ¢ in [-1,1]. For k > 2, it is easy to see that Nl,k’=N1,k-1*'Z’ where
Z is a random variable such that

P(Z=1)=P@=1+10,,) =%

and Z is independent of Ny t_.,. Hence
t - 1
0 (2) = 510, (£) + 0, (£) }

for all -2 < t < 2. Therefore, for each integer k > 1,

0, (t) = <§> /{1 B zk: (5)}

for all -1 < ¢ < 1. J=1

Lemma 2: For each integer k > 2, let

G (B) =Y tha,
for all ¢ such that m=1

o

E ltlnan,k < =
then n=1

1 1
Gk(t) = 3,(2t) for all-§ <t < E—and k> 2.

Proog: Since a, 3 =0 for alln =1, 2, ..., k - 1, ap,x = 1, and

k
An, k = Zan—j,k
for all n > k, J=1

Go(8) = Y thayy = tF+ Y tEY tlany =t + ) G (D).
n=k i=1 i=1

n=k

k
G (2) = tk/{l - th}
J=1

for all kK > 2 and all ¢ such that

z:ltlnan‘k < .
n=1

Since ap,x < 2" for all » > 1 and all k > 2, G, (¢) exists for all-w% < t<
By Lemma 1, we have

Therefore,

1
>
1

Gy (t) = 0,(2t) for all ¢ in the interval <~5, %) and all k > 2.

For each integer k > 1, let uy 3 = 1, and for all n > 1, let

Up,x = PRy, = n for some integer m > 1}

P{V,,x = n}. Since {¥,} is a sequence of i.i.d. random variables,

and f;’k
1, it is easy to see that

and Uy, %

ihon

n
Un,kx = 9, Fi x%n-j x fOr all 7 2 1 and all k > 1.
Jj=1

Hence we have the following theorem.
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Theorem 1': For each integer k > 2, 2"u, ; = 2"P{R,,x = n for some integer m >
1} = by, and 2"f, ; = 2"P{V, , = n} = a,x for all n > 1.

Let 4 = {(w,, wz,...,wn)lwi =0or1lforalli=1,2,...,7nand w; =1 #

Wiy = *°r =W, = 0 for some j = n - JK and some integer J > 1}.

Let B = {(vy, Uys vees U,_1)|v; =0 0r 1 for all 2 =1, 2, ..., n - 1 and
Vi, =1 # v; = s+ =v, ; =0 for some j = n - Jk for some integer J > 1}.

Lemma 3: For each integer k > 2,
2"y = 2%y g 1 ot 2Mu, o -1 or 2Mu,.; 4

according as n = mk or mk + 1 or mk + § for some integers m > 1 and j = 2, 3,
cees k- 1.

Proog: By the definition of {un,x}, for each integer k > 2,

the number of elements in 4

2"Un, k
and
2"‘1un_1’k = the number of elements in B.

(i) If n = mk for some integer m > 1, then (0, Uy, Uy, eeus U, 1) and (1, vy,
Vos eoes Up-1) are in 4 if (U1, V2s eees Un-1) is in B, and (0, O, ..., 0), n-
tuple, is also in 4 even (0, O, ..., 0), (n - l)-tuple, is not in B. Hence the
number of elements in 4 > 2 ¢ the number of elements in B + 1. Since each ele-
ment (Wy, Wys «o0s W,) in A such that w; # w;,, for some 1 < j < 7n-1 is a form
of (0, V3, Vys «ves U, ;) or a form of (1, Vys Vpys eoes vn_l) for some element
(V15 VUps eees Vy_q) in B. Hence the number of elements in A < 2+ the number of

elements in B + 1. Therefore, the number of elements in 4 = 2 » the number of
elements in B + 1.
(ii) If n = mk + 1 for some integer m > 1, then (0, Vi, Vss ees, Vy-1) and (1,

Vis Ups eves Upo1) are in A if (U3, Vs s Vy_y) is din B and vy # Vj4, for
some 1 < j <#7n-2and (1, 0, 0,...,0), n-tuple, is also in 4 [(0, O, ..., 0),
(n - 1)-tuple, is in B]. Hence the number of elements in 4 > 2 - the number of
elements in B - 1. Since each element (W;, Wys ..., W,) in A such that w; #
w;4, for some 2 < j<n -1 is a form of (0, vy, Vps .., VUy-y) oOr a form of
(1, Vys Vyy eees Vyoy) for some element (Vy, Vyy ..., Vp.3y) in B. Hence the
number of elements in A < 2 ¢ the number of elements in B - 1. Therefore, the
number of elements in 4 = 2 ¢ the number of elements in B - 1.

(iii) If n = mk + § for some integers m > 1 and 2 < § < k-1, then (0, vy, V,,
cees Up_g)and (1, Uy, Vgs eoey V,.p)arein A if and only if (Vy, Uy, cees Vy_1)
is in B. Therefore, the number of elements in A = 2« the number of elements in
B.

By (i), (ii), and (iii), the proof of Lemma 3 is now complete.

Theonem 2': For each integer k > 2,
box =2byoq,x +1 or 2b,.5 4% =1 or 2b, ;4

according as n = mk or mk + 1 or mk + j for some integersm > 1 and j = 2, 3,
s k=1
o .

Proof: By Theorem 1’ and Lemma 3.
For each integer kK > 1, let
W = B{ ) = EnP(Nl,k =n) = Z”‘fn,k'
n=1 n=1

By Theorem 17,
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Wy = ZnZ'"an’k for each integer k > 2.
ne=l
k k=1 J
(—;—) = Zun_j’k(%) for all n > k and k > 1,
i=0

Since

k-1 :
1)k , 1Y/
(3)" - 3m 2wnsnlz) -
pe

By the Renewal Theorem (see [l, p. 330]), we have

(%)k = {E(Nl'k)}-léié(%)j for all k > 1.

- - k
= = = - [ = gk+1
Wy = B, 0} = D nfu -nz-:lnz "a ;:12'7 = gk+l _ o

n=1

Hence

Theonem 3': For each integer k > 2, let

My =Zn2'”an,k = 2k*l _ 2,
n=1

Bui, 1 = {2™ + 2% = 2}/u, and Dusjy

for all integers m > 1 and Jr=1, 2, ..., K = 1.

then .
2J-1{2mk+1 _ 2}/117(

Proog: By the definition of {bn,x}s bx,x = 1. Hence, by Theorem 2', Theo-
rem 3’ holds when m=1. Suppose that Theorem 3’ holds form =1, 2, ..., M - 1
and j =1, 2, ..., K = 1, where M is an integer > 2. Now, let m = M, then, by
Theorem 2',

= Zka-l,k +1

2k-1{oM-DE+1 _ o} po4 1 = (2MF - 2K 4 2K+l _ oy
= (2% 4 2k = 2y /u,,

Mk, k

since Y, = 2%*1 - 2,

ka+l.k = Zka.k -1 = (2Mk+l + 2k+1 _ 4)/pk -1 = (ZMk+l - 2)/.“’(.

Puksjok = 29 byper, o = 2971 @M*Y - 2) g, for all § =2, 3, ..., k - L.

Hence Theorem 3’ holds for m =M and § =1, 2, ..., Kk = 1. Therefore, Theorem
3" holds for allm > 1 and j =1, 2, ..., kK - 1.

Cornollary to Theorem 3': For each integer k > 2,

Umk, k = uk'l {1 + gmk+k 2-mk+1} = (2k+1 -~ 2)-1{1 + g-mk+k _ 2-mk+1}
and
Unk+jrx = Het {1 = 27m = (2k*1 = 2)"1{] - 2-mK}

for all integers m > 1 and j =1, 2, ..., K - 1.
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