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4. Lk - Lk_± + Lk-2l L0 = 2, L1 = 1 

Or + 2o?2)(l - x - x 2 ) " 1 = x + 3x2 + 4x3 + 7 ^ + 

or (2 - x)(l - x - a;2)"1 = 2 + a: + 3x2 + 4a?3 + 7x4 + '••• 

(This is the Lucas sequence.) 

5. Uk = rUk_1 + sUk„2\ U0; U-L arbitrary 

(J/jff + £/0s#2)(l - ra - s^2)"1 = £7-̂  + (^ + sUQ)x2 + ••• 

or (£/0 + (U1 - i/0)̂ )(l - 2W - sx2)'1 = [/0 + U±x + (rU1 + s£/Q)x2 + ••• 

6. Tn = p^.3. + sTn_2 - rsTn_3; TQ9 T±s T2 arbitrary 

(T2x2 + (sT1 - rsTQ)x3 - rsT^) (1 - rx - s#2 + rsx3)'1 

= T2x2 + (vT2 + s ^ - PS^Q)^3 + ••• 

or (T0 + (Si -rT0)x + (T2 - r ^ - sT0)x2)(l - rx - sx2 + P 2 X 3 ) - 1 

= T0 + T±x + T2x2 + (rT2 + sTx - r TQ)x3 + •••• 

From the solutions given in [2] and [1], it can be verified that we obtain 
the terms generated above. 

The generating function given in Section 2 can be used to generate terms of 
any given recurrence relation. With specified values for the Ti and the ini-
tial conditions, the problem becomes a division of one polynomial by another. 
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SUMMARY 

In this paper we investigate the residues of nn (mod p) , where 1 <. n .<. p - 1 
and p is an odd prime. We find new upper bounds for the number of distinct 
residues of nn (mod p) that can occur. We also give lower bounds for the num-
ber of quadratic nonresidues and primitive roots modulo p that do not appear 
among the residues of nn (mod p). Further, we prove that given any arbitrarily 
large positive integer M, there exist sets of primes {p^ } and {o-}9 both with 
positive density in the set of primes, such that the congruences 

xx = 1 (mod p^), 1 <. x <_ pi - 1 (1) 

and 
xx = -1 (mod q.), 1 < x <_ q. - 1 (2) 

both have at least M solutions. 
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7. INTRODUCTION 
Roger Crocker [4] and [5] first examined the residues of nn modulo p. It 

is clear that if n 2. 15 then the sequence {nn} reduced modulo p is periodic 
with a period of p(p - 1). This follows from the facts that (p - 1, p) =? 1 and 
that if 

n1 = n2 (mod p) and n1 = n2 (mod p - 1) , 
then 

n*1 = n*2 (mod p) . 

The following theorem shows that every residue appears among the residues of nn 

modulo p, where 1 <_ n <^ p(p .- 1), and counts the number of times a particular 
residue occurs. 

Tfoeo/iem 1: Consider the residues of nn modulo p, where 1 <_ n <_ p(p - 1). Then 
the residue 0 appears p - 1 times. If p ^ 0 (mod p) and the exponent of r mod-
ulo p is <i9 then the number of times the residue v appears is 

X *(^f)((p ~ DJd'). (3) 
d|d'|P-i 

Vft-00{' FirstS it is clear that the residue 0 appears p. - 1 times. Now con-
sider any fixed nonzero residue n. It is raised to the various powers n + kp9 
where 0 <_-k <_ p - 2. These powers form a complete residue system modulo p - 1. 
Thus n is raised to each power ms where 1 £_ m <_ p - .1. Now9 the congruence 

nx •= P (mod p) (4) 
is solvable for & if and only if 

(p - 1, Iijd n)|(p -.1, Ind r), (5) 

where Ind a is the index of a (mod p) with respect to a fixed primitive root. 
This can occur only if 

V - 1 • 

(p - 1, Ind n) (p - 19 Ind v) 
but -

(p - 19 Ind p) 

is the exponent of v (mod p) and 

• -P - 1 _ ^, 

(6) 

(p - 1, Ind 20 

is the exponent of n (mod p). Thus congruence (4) has solutions if and only if 
d divides d \ It is evident that the number of solutions to (4) is then 

(P -• 1/d'). 

However, there are exactly §(df) residues belonging to the expondnt dr (mod p). 
The theorem now follows. 

From here on, we restrict n so that 1 <_ n <. p - 1. Then not every nonzero 
residue of p can appear among the residues of nn (mod p). This follows from 
the fact that the residue 1 appears at least twice, since 

I1 = 1 and (p - i f ' 1 = 1 (mod p) . 

We shall now address ourselves to determining how many and what types of resi-
dues modulo p can appear among the residues of nn (mod p) , where l<.w<_p-l.-
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2. A MEW UPPER BOUW ¥OR THE MUMBER OF VISTWCT RESIVUES OF n" 
Let A(p) be the number of distinct residues of nn (mod p) , 1 £ n <. p - 1. 

Roger Crocker [5] showed that 

/(p-ny/2 £i4(p) £'p - 4. 
We obtain a much better upper bound for A{p) in the following theorem. 

Tk&QJiQJtn 21 Let p be an odd prime. Let A(p) be the number of distinct residues 
of nn (mod p) , where 1 <_ n £ p - 1« Then 

A(p) < 3p/4 +C1(e)p1/2 + e 

where e is any positive real number and (̂ (e) is a constant depending solely on 

To establish Theorem 2 we shall estimate the number N(p) of quadratic non-
residues not appearing among the residues of nn (mod p) , where l'<_ n <_'p - 1. 
We will in fact show that 

N(p) > p/4 + C2(e)p1/2 + e (7) 

where e is any positive real number and C2(e) is a constant dependent only on 
£. It is easily seen that Theorem 2 then immediately follows. 

The only way that nn, 1 <_ n <_ p - 1, can be a quadratic nonresidue is if n 
is odd. However, if n is odd and n is a quadratic residue, then nn is not a 
quadratic nonresidue of p. Let N1(p) be the number of odd quadratic residues 
modulo p. Then 

tf(p) 2l^i(P). (3) 

since the number of odd integers in the interval (0S p) and the number of quad-
ratic nonresidues are both equal to (p - l)/2. We refine inequality (8) by the 
following lemma. 

Lemma It Let p be an odd prime. Let 1 £ n. <_ p - 1. Let N±(p) be the number of 
integers in the interval (G, p) for which n is an odd quadratic residue modulo 
P-
(i) At least N1(p) quadratic nonresidues do not appear among the residues of 

n.n (mod p). 
(ii) If p > 5 and p E 5 (mod 8) or p > 7 and p E 7 (mod 8), then at least 

N±(p) + 1 quadratic nonresidues (mod p) do not appear. 

PK.00^' The proof of (i) follows from our discussion preceding the lemma. 
To prove (ii) , first assume p = 5 (mod 8). Then (p + l)/2 and p - 2 are both 
odd quadratic nonresidues. Now, using Euler's criterion 

((p + l)/2)(p+1)/2 = iCP + W/z/^P+W/z E 1/(2)2(P-1)/2 = -1/2 (mod p) . (9) 
Also 

(p - 2)P"2 = (-2)P"1/(-2) s -1/2 (mod p). (10) 

Thus the quadratic nonres idues ((p + l)/2)(p + 1)/2 and (p - 2 ) p ' 2 are identical. 
Now nn can be a quadratic nonresidue only if n is already a quadratic nonresi-
due (in fact odd) and two such residues repeat. Thus, by part (i) , at least 
N (p) + 1 residues do not appear among {nn} modulo p, where 1 •< n <_ p - 1. 

Now suppose p E 7 (mod 8). Then (3p - l)/4 and p .- 2 are both odd quad-
ratic nonresidues modulo p. Further, 

((3p - l)/4)(3 p-1 ) A = ~l/4(3p-1)/l* = _i/2(3P-1)/2 

E _ I / 2 3 « P - 1 > / 2 > + 1 E - 1 / 2 (mod p ) . (11) 
Again , 

(p - 2 ) p " 2 E -1/2 (mod p). (12) 
The result now follows as before. 
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According to Lemma 1,. we now need a determination of Nx (p) to establish an 
upper bound for A(p). Lemmas 2, 39 and 4 will provide this information. 

Lemma 2: If p = 1 (mod 4), then N± (p) = (p - l)./4. 

V&QQfa Let r be a quadratic nonresidue modulo p. Then p-p is also a quad-
ratic nonresidue. But exactly one of p and p - r is odd. Hence exactly half of 
the (p - l)/2 quadratic nonresidues of p are odd and Nx(p) = (p - l)/4. 

L^ma_3_t if p E 7 (mod 8) , then ^ (p) = (p - 1 - 2h(-p)) /4, where 7z(-p) is the 
class number of the algebraic number field Q(/^p). 

PJiOOfc It is known (see [3]) that 
ft(_p) = 7 - T, 

where 7 and T denote the number of quadratic residues and quadratic nonresidues 
in the interval (0, p/2) , respectively. To evaluate V - Ts we will make use of 
the sum of Legendre symbols 

S = E (w/p) -
0<n<p/2 

We partition S in two different ways as 

S = S± + S2 = S' + S", (13) 
where 

Si = E ^/p)> 52 - E (n/p) 
0 < n < p / 4 p / 4 < n < p / 2 

5' = E <"/p>. 5" = E («/p>-
0<n<p/2 0 < n < p / 2 

n even n odd 
It is known (see [2]) that S2 = 0. Then 

5 = S' + 5" = (2/p) £ (j/p) + S" = (D^i + S" = S1 + S2. (14) 
0<j<p/h 

Hence 5" = S2 = 0. 
Now let V0 and T0 denote the number of odd quadratic residues and nonresi-

dues in (09 p/2), respectively. Let Ve and Te be the number of even quadratic 
residues and nonresidues in (0, p/2), respectively. Inspection shows that 

V0 + TQ = (p + l)/4 and Fe + Te = (p - 3)/4. 

Since 5" = 0, 
F0 = T0 = (p + l)/8. (15) 

Further5 
fc(_p) = 7 _ T = (70 - TQ) + (7e - Te) = Ve - Te. (16) 

Also , 
(p - 3)/4 = Ve + Te. (17) 

Solving (16) and (17) for Te, we obtain 
Te = (p - 3 - 4fe(-p))/8. 

F ina l ly , 
^ i (p) = l̂ o + Te = (p - 1 - 2fc(-p))M, 

since the number of odd quadratic residues in (p/2, p) equals the number of 
even quadratic nonresidues in (0, p/2). 
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lemma 4: If p = 3 (mod 8), then N1(p) = (p - 1 + 6/z(-p))/4. 

PfLQOJ-: We shall use the same notation as in the proof of Lemma 3. By [3] , 

fc(-p) = 1/3(7- T). 
As in the proof of Lemma 3, we now evaluate the sum of Legendre symbols S. 

S = S' + S" = (2/p) ^ (j7p) + 5" = (-1)^ + 5" = S± + S2. (18) 
0 < 3 < P/4 

However, it is known (see [2]) that S± = 0. Hence, £2 = £" = S and 5X ='S \ 
Examination shows that 

7e + Te = (p - 3)/4 and 70 + TQ = (p + l)/4. 
Since £" = 0, 

7e = Te = (p - 3)/8. (19) 
Thus, 

fc(-p) = (1/3) (7 -T) = (1/3) [(70 ~ T0) + (7e - ̂ e)] = d/3) (70 - TQ) (20) 
and 

(p + l)/4 = 70 + ^oe 

Solving (20) and (21) for 7 0 , we obtain 
70 = (12/z(-p) + p + D / 8 . 

Hence 
^ i (p) = V0 + Te = (p - 1 + 6ft(-p))/4. 

We utilize our results of Lemmas 1-4 in estimating N(p) in the following 
theorem. 

Tke.OH.ejfn 3»* Let p be an odd prime. Let N(p) be the number of quadratic nonresi-
dues not appearing among the residues nn, where I <_ n <_ p - 1. 

(i) 21/(p) >. (p - l)/4 if p = 1 (mod 8 ) . 
(ii) N(p) >_ (p + 3)/4 if p > 5 and p = 5 (mod -8). 

(iii) N(p) >. (p - 1 +-6fe(-p))./4 if p = 3 (mod 8 ) . 
(iv) N(p) >_ (p + 3 - 2fc(-p)>/4 if p > 7 and p E 7 (mod 8 ) . 

VAOO^i This follows from Lemmas 1-4. 

We are now ready for the proof of our main theorem. 

Vnooj 0j Tke.Qtiem 2: By S iege l ' s theorem [1 ] , 
fc(-p) < C2(e)p1/2 + e 

where e is a positive real number and C2(e) is a constant dependent solely on 
e. Note that 

Mp) <P - 1 - tf(p). 
The theorem now follows from Theorem 3. 

3. PRIMITIVE ROOTS NOT APPEARING AMONG THE.RESIDUES OF nn 

In Section 2 we determined lower bounds for the number of quadratic non-
residues not appearing among the residues of nn modulo p. In this section we 
determine lower bounds for the number of primitive roots (mod p). that do not 
appear among the residues of nn (mod p) , where 1 <. n <_ p - 1.. Crocker [4] has 
shown that nn can be congruent to a primitive root (mod p) only If (n, p - 1) = 
1, where 1 £ n <_ p - 1. Using this criterion, we shall prove Theorem 4. 

Tke^OAem 4'- Let p be an odd prime. Let 1 <_ n <_ p - 1. 
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(i) At least one primitive root does not appear among the residues of nn (mod 
P). 

(ii) If p = 1 (mod 8) or p = 3 (mod 8) and p > 3, then at least three primi-
tive roots do not appear among the residues of nn (mod p). 

VKOO^ oj [i] : Note that l1 is not congruent to a primitive root (mod p). 
Now5 nn can be congruent to a primitive root (mod p) only if (n, p - 1) = 1. 
Certainly (1, p - 1) = la Hence at least one primitive root does not appear 
among the residues of nn (mod p) , since nn can be a primitive root only if n 
already is. 

VK.OOJ O{ [Li] : Suppose p E 1 (mod 8). Then ((p + l)/2, p - I) = 1. But 

((p + l)/2)(p + 1)/2 E 1/2 (mod. p). (22) 

However, (2_1/p) = 1. Thus ((p + l)/2)(p+1)/2 is not congruent to a primitive 
root (mod p). Also, (p - 2, p - 1) = 1 and 

(p _ 2 ) p " 2 =-1/2 (mod p). (23) 

Again, ((-2)-1/p) = 1 and (p - 2 ) p " 2 is not congruent to a primitive root (mod 
p) . Hence at least three primitive roots do not appear. 

Now suppose p E 3 (mod 8). As before, (p - 2, p - 1.) = 1, and (p - 2) p ~ 2 

is not congruent to a primitive root (mod p) . Further, ((p + 1) /4, p - 1) = 1 
and 

((p + l)/4)(p + 1)/lt = -1/2 (mod p ) v (24) 

However, ((-2)_1/p) = 1 and consequently ((p + l)/4)(p + 1)/4 is not congruent to 
a primitive root (mod p). Thus at least three primitive roots do not appear 
among the residues of nn (mod p) if p E 3 (mod 8) and p > 3. 

4. THE NUMBER OV TIMES THE RESWUES 1 AW ~l APPEAR 

Theorems 5 and 6 in this section will show that there is no upper bound for 
the number of times that the residues 1 or -1 can appear among the residues of 
nn (mod p), I <_ n <_ p - 1, where p is allowed to vary among all the primes. 

ThzoKQJfn 5» Let M be any positive integer. Let {p^} be the set of primes such 
that 

xx E 1 (mod p^), (25) 

where 1 <_ x £ p. - 1, has at least M solutions. Then {pi } has positive density 
in the set of primes. 

Vtiook1 Let N = M - 1. Let p E 1 (mod 2^) be a prime. Suppose that 2 is a 
2wth power (mod p) . Then, if 0 <_ k <_ 2V - 1, 2fe is a 2kth power (mod p) .. Fur-
ther, if 0 <_ k £ N - 1, (p - l)/2fe is an even integer. Now, if x is a dth power 
(mod p) and p E 1 (mod d), then 

x(P-D/d = ! ( m o d p ) s 
Hence, if 0 <_ k <_ N - 1, 

((p - 1)/2>)CP-1)/2' E (-l)(P-i)/2fc/(2fc)^-1)/2;c E 1/1 E 1 (mod p). (26) 

Thus we now have M solutions to congruence (25); namely, 1 and (p - 1) /2k for 
0 <_ k <_ N - 1. 

We now show that the set of primes pi such that pi E 1 (mod 2^) and 2 is a 
2^th power (mod p) indeed has positive density t in the set of primes. Let £ 
be a primitive 2^th root of unity. Let L be the algebraic number field 

«(21/2\ O. 
Let p E 1 (mod 2^) be a rational prime. Suppose that 2 is a 2^th power (mod p) . 
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By Rummer's theorem, this occurs if and only if, in the field L9 p splits com-
pletely in each of the subfields Q(l,k • 21/2") , where 1 <. k <_ 2N. Let P be a 
prime ideal of L dividing the principal ideal (p) . Let Zp be the decomposition 

field of P. Then Zp D Q(t,k • 21/2#) for l < f c < 2 , since p splits completely 

in each of these subfields,. Hence Zp D Q(£,9 21'2 ) = L9 the compositum of the 

subfields Q(t,k • 21 ), where 1 <. k <_ 2N. Let DP be the decomposition group of 
P. Then Dp = <1> for all prime ideals P dividing (p) . Thus, by the Tchebotarev 
density theorem, the density 

t = l/[L:Q] = i/22iV-2 = l/22M-lt > 0. (27) 

TkzoKQjn 6: Let M be any positive integer. Let {p.} be the set of primes such 
that the congruence 

xx =• -1 (mod p^), (28) 

where 1 <̂  x j£ p. - 1, has at least M solutions. Then {p. } has positive density 
in the set of primes. 

VnjQO^i Let N = M. - 1. Let'p be a prime and suppose that p = 1 (mod 2 • 3^) 
and p E 7 (mod 8). Suppose further that both 2 and 3 are (2 • 3^)th powers (mod 
p). Note that if p = 7 (mod 8), (2/p) = 1, and it is possible that 2 is a 
(2 • 3*)th power (mod p) . Then, if 1 <. k <_ N, 2 • 3k is a (2 • 3fe)th power (mod 
p). Moreover, if 1 <. k < N* (p - l)/(2 • 3fe) is an odd integer. Hence, if 1 < 

((p - l)/(2. 3*))<p-1)/(2'3fc> = (-l)CP-D/C2-3») / ( 2 . 3 )(P-D/(2-3fc) 

E -1/1 E-l (mod p). (29) 

Thus we now have M solutions to congruence (28). 
I now claim that the set of primes {p^} such that pi = 1 (mod 2 • 3 ) , pi = 

7 (mod 8), and both 2 and 3 are (2* 3^)th powers (mod pi) has positive density 
w in the set of primes. Let £ be a primitive (4 • 3^)th root of unity. Let L 
be the algebraic number field 

<?<?, . 21/<2-3'> , 32/<2-3">). 

Suppose that p is a rational prime and that p = 1 (mod 2 • .3̂ ) and p = 7 (mod 8). 
Assume that both 2 and 3 are (2 • 3^)th powers (mod p) . Then, by Kummerfs theo-
rem, p splits completely in each of the subfields 

,e(S2k • 21/<2'3")) and Q^2k ' 3l/t2's,>), 

where 1. <. fc <_ 2 • 3^. Hence p splits completely in 

x = e ( ?
2 , 2 1 ( 2 - 3 J > , 3 X < 2 - 3 J r > ) , 

the compositum of these subfields. Let P be a prime ideal in L dividing (p). 
Then, if ZP is the decomposition field of P, ZP D K. Furthermore, since p•=• 7 
(mod 8), (-l/p) = -l, and p does not split in the subfield §(/-T) of L. Conse-
quently, Zp J) S(/^T). Let a be the automorphism of Gal (L/Q) such that 

a(e) = -c, (30) 

a(21/C2"3*> ) = 21/(2*3iV) , 

and aO 1 " 2 ' 3 ' * ) = 3
1 / ( 2 ' 3">. 

Then <G> is the subgroup of Gal (L/Q) fixing X. It follows that the decomposi-
tion group Dp = <(a>for all prime ideals P dividing (p). By the Tchebotarev 
density theorem, the density 
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u = l/[LiQ] = 1/(8 • 33N-1) = 1/(8 • 33M~4) > 0. (31) 

5. COMCLUVlhlG REMARK 

Further problems concerning the residues of nn (mod p) , where 1 <. n <_ p- 1, 
are obtaining better upper and lower bounds for the number of distinct residues 
appearing among {nn} and determing estimates for the number of times that 
residues other than ±1 may occur. 
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For fixed positive integer k _> 1 s we set 

Tl7l k + A1 + 4 
ak = [k] = ^ s 

a real number with completely periodic continued fraction expansion and period 
of length one. For all integers n _> 1, we use fk(n) to denote the nearest in-
teger to nak. 

Using this notation, we define an array (bit
}-) as follows. The first row 

has 
b£\ = 1 and bl)) = / (&i^-i). for all j > 2. 

After inductively setting fc^^tobe the smallest integer that has not occurred 
in a previous row, we define the remainder of the ith row by 

*>u) =fk0>£)-J> for all j > 2. 
K. Stolarsky [4] developed this array for k• = 1, showed that each positive 

integer occurs exactly once in the array, and proved that any three consecutive 
entries of each row satisfy the Fibonacci recursion. The latter result can be 
viewed as a generalization of a result of V. E. Hoggatt, Jr. [3, Theorem III]. 
In Theorem 1, we prove an analogous result for general k. 

Th<L0HQjn 1 •* Each positive integer occurs exactly once in the array (blk\). More-
over, the rows of the array satisfy 

fr*(,*j + 2 = fc&£*}+i + b£], for all i, j :> 1. 

VK.00^1 By construction, each positive integer occurs at least once. For 
m 4- n we have \{n - m)ak\ > 1 and so fk{m) £ fk{n). Since the first column en-
try is the smallest in any row, every positive integer occurs exactly once. 


