
280 
FRACTIONAL PARTS (nr - s), ALMOST ARITHMETIC SEQUENCES, 

AND FIBONACCI NUMBERS [Aug. 

Had Vern Hoggatt been able to coauthor this article he would no doubt have 
found many more results. Perhaps our readers will celebrate his memory by 
looking for further results themselves. 
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To tkd mmosiy o{ \Zznn HoQQeutt, wiAk gsicutvtude, and adbruAxutxon. 

Except where noted otherwise, sequences ian}, {bn}, and {cn} are understood 
to satisfy the following requirements, as stated for {an}i 

(i) the indexing set {n} is the set of all integers; 
(ii) an is an integer for every n; 
(iii) {an} is a strictly increasing sequence; 
(iv) the least positive term of {an} is a±. 

We call {an} almost arithmetic if there exist real numbers u and B such that 

(1) \an - un\ < B 

for all n, and we write an ^ un if (1) holds for some B and all n, 
Suppose r is any irrational number and s is any real number. Put 

cm = [mr - s] = the greatest integer less than or equal to mr - s, 

and let b be any nonzero integer. It is easy to check that cm + b - cm = [br], 
if (mr - s) < (-br), and = [br] + 1, otherwise. 

Let an be the nth term of the sequence of all m satisfying cm+b~ cm= [br]. 
In the following examples, r = (1 + /~5)/2, the golden mean, and s - 1/2. 

Selected values of m and cm arei 
-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 
-9, -7, -6, -4, -3,-1, 1, 2, 4, 5, 7, 9,10,12,14, 15, 17, 18, 20, 22, 23, 25. 

When b = 1 we have [br] = 1, and selected values of n and an are: 

-1, 0, 1, 2, 3, 4, 5, 6 
-4, -2, 1, 3, 6, 9, 11, 14. 

When b = 2 we have [2?r] = 3, and selected values of n and an are: 

-4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 
-5, -4, -3, -2, 0, _1_, 2., _3, 5_9 6, 81, 9, 10, 11, 13_, 14. 

Note here the presence of Fibonacci numbers among the an. Methods given in 
this note can be used to confirm that the Fibonacci sequence is a subsequence 
of {an} in the present case. 
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When i = -2 we have [br] = -4, and selected values of n and an are: 

0S 1, 29 39 4 
-4, 1, 69 9, 14 

The main purpose of this note is to give an elementary and constructive 
method of proving, in general, that the jump-sequence {a n] is almost arithmetic 
To accomplish this9 we must solve the inequality (mr - s) < (-br) for m. The 
method of solution, when applied to the case r = (1 + /5)/29 leads to a number 
of identities involving Fibonacci numbers, Lucas numbers, and the greatest in-
teger function. 

Lmma 1: Suppose an ^ un9 where u > 1. Let {a*} be the complement of {an}9 

that is, the sequence of integers not in {an} 9 indexed according to requirements 
i-iv. Then 

a* ^ rn. 
n u - 1 

Lommci 2: Suppose an ^ un and bn *\> vn* Then the composite on - ban satisfies 
on ^ uvn. 
Lmma. 3: Suppose an ^ un and bn "° vn9 where a^+ bk for all j and k, Let {cn} 
be the union of {an} and {£>n}. Then 

/I , IV 1 

n \u vj 
Proofs of the three lemmas found in [7] for positive n can be extended 

readily to the case of all integers n. 

Th&OtlQJ(n'> Suppose r is an irrational number, s a real number, and b a nonzero 
integer. Let {an} be the sequence of integers m satisfying (mr - s) <. (br). 
Then an ^ n/ (br). 

Vsioofc First, we note that mr - s can be an integer for at most one value 
of nT9 and that whether the sequence {an} is almost arithmetic does not depend 
on whether it contains such an m. Accordingly, we shall assume that all frac-
tional parts which occur in this proof are positive. Also without loss we as-
sume that 0 < r < 1. 

Suppose b >_ 1, and let p = [br] . If 

(2) (mr - s) £ (br) 9 
then for k = [mr - s], the integer m must lie in the interval 

4 
Ik + s k + s , _ Pi 
\ r s r r J 

Conversely, any m in such an interval satisfies (2) with k = [mr - s]. 
Now let q = [(br)/r]9 the greatest integer £ satisfying £ - 2? + —• < 0. 

Th6n lk + S) > - b + •£ 

for all integers /c, so that for q >_ 1 and £ = 1, 2, ..., q, the integers 

(3) mk = [^"£] + ̂  ^ = °> ±1. ±2> ••-. 
satisfy (2). Each of these sequences imk] is almost arithmetic with slope 1/r. 

If q = 0 then some interval J^ contains no integer. In this case the solu-
tions of (2) are the integers + 1 for which (—-—1 J> 1 - b + -:. If 

\k + si r 
q >_ 1, then the integers — + q + 1, where 
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(4) (K±e)hq+1.b+E.; 

are solutions of (2), along with the solutions given in (3), and by definition 

( k + s\ — 1 are 
t ic tcn e q u x v c i x c u u LU ' 

[/< + s i r/c + s i — + i an(j + q + i a r e aimost arithmetic 

if the sequence of k satisfying (5) is so. By Lemma 1 this is indeed the case 
if the complementary sequence, consisting of all integers k satisfying 

H*) < (?) 
is almost arithmetic. Except for at most one k9 this inequality is equivalent 
to 
(6) (krf - s') 1 (prr)9 
where rr = {IIT) and sr = -~s/r. 

As (6) is of the same form as (2) , we note that with a finite number of ap-
plications of the process from (2) to (6) the integer p decreases to 0, since 
initially 0 <_ p <_ b - 1. When p = 0, the number on the right-hand side of (4) 
is 1, indicating that there are no further values of k to be found. By forming 
the union of the (pairwise disjoint) solution sequences which have been found, 
we get an almost arithmetic sequence, by Lemma 3. 

Suppose now b <_ -1. Then the integers m satisfying (-mr + s) <_ (~br) form 
an almost arithmetic sequence. Thus, by Lemma 1,those integers m satisfying 
(-mr + s) > (-br) = 1 - (br), or equivalently, (mr - s) = 1 - (-mr + s) < (br), 
form an almost arithmetic sequence. 

We have finished proving that {an} is almost arithmetic. It remains to see 
that the number u in (1) is l/(br). 

[k + si If b = 1, then the an are the numbers — + 1, k = 0, ±1, ±2, ..., as 

already proved, and hence an ^ nl(r). For an induction hypothesis, suppose, 
for b >_ 2, that for all d <_ b ~ 1 the sequence {on} of solutions m of 

(7) (mr1 + sf) < (drf) 

satisfies on ^ n/(dr')s for any given positive irrational rr and real sr. Let 
{bn} be the sequence of solutions of (7) where rf = (l/r) , sr = -s/r, and 
d = p = [br] <_b - 1. 

Let ib*} be the complement of {bn}9 so that 

b* ^ - (p(llr)) 1 - (p/r)> 
by Lemma 2. There are no other solutions if q = 0, and if q >_ 1, the remaining 
solutions are simply 

fk,i = FHKl + is ^ = 05 ±15 ±2, ...; i = 1, 2, <?» 

as already proved. Since /., . ̂  /c/r for £ = 1, 2, ..., ̂ , we have, by Lemma 3, 
for q >_ li 

dy, ^ qr + r - r(p/r) [(br)/r]r + r - r([br]/r) 

= TT^)/P]P + 2» - r(-(br)/r) = n/ (2?P)" 
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In case q = 0, we find similarly an <\> 
r - r(p/r) n/ (br). 

Finally9 suppose b <_ -1. The integers m satisfying (-mr + s) > (-br) form 
a sequence {on} satisfying cn ^ nl(-br) » For the complement {an} = {c*}s we 
have an ^ n/ (2?r) , by Lemma 1. 

CofioLtaAif 1 t Suppose r is an irrational number and s is a real number. Sup-
pose a and b axe. nonzero integers such that (ar) < (br) . Let {an} be the se-
quence of integers m satisfying (ar) < (mr - s) <_ (2?r) . Then 

n (br) - (ar) * 
VtiOO^i Let {fn} and {hn} be the solution sequences of the inequalities 

(mr - s) £ (ar) and (mr - s) <_ (fô ) , respectively. The sequence {an} is, in 
the terminology of [7], the relative complement of {fn} in {hn}. Applying the 
method used in [7]s we conclude that 

n (£r) - (ar)' 

Fraenkel, Mushkin, and Tassa [3] have obtained results indicated in their 
titles "Determination of [nd] by Its Sequence of Differences." The theorem in 
this present note supplements those results. We may ask, for example, for a 
sequence {cn} whose consecutive differences are all l!s and 2!s9 determined by 
the rule cn + 1 - cn = I for exactly those n of the form [m0 - <j)], where 0 and (j) 
are given. The question leads to the following corollary, 

CoftoLtcUiy 2°- Suppose 0 is a positive irrational number and (f is a real number. 
Let h = [6], and let {en} be the sequence determined by cn+1 - on = h for ex-
actly those n of the form [md - <j)] and = h + 1 otherwise. Then 

[n + rih - n/9 - c|)/0], 0 S ± 1, ± 2 S 

Vnoofai We have cn + 1 - cn - h for exactly those n satisfying (nr - s) < (-r), 
where r = 1 + h - 1/0 and s = (j)/0. These n are the integers of the form 
[m/(-p) - s/(-r)]s but this is [mG - (()] . 

The method of proof of the theorem readily shows that for any irrational r 
and any real s 5 the sequences given by 

(8) [ n + i 
(r) and 

(-*) 

are complementary (except that one term, and only ones can be common to the two 
sequences9 as when n = s = 0 ) . This fact is a generalization of the well-known 
result by Beatty [1], obtained here by putting s = 0 and restricting the se-
quences to positive integers and r to the unit interval. 

Corresponding to (8), the jump-sequence {an} of indexes m such that [mr + 

r~YI + £>""] 
r - s] - [mr ~ s] = [r] is given by m = ~7TT~ + lj a n d t h e complementary jumps 

Tyi S~\ 
of size [r] + 1 occur at m of the form ~ r p r ~ + !• 

Explicit results for b = 2 and only positive terms are also easy to state, 
in two cases: If (r) < 1/2, then the three sequences 

n + s 
. (/•> J s 

n + 8 
. (*0 _ + 1, 1 

\n - sl(-r\ 
I (-i/(-*0) 

+ 1 - s 

( _p ) 

are complementary, and if (r) > 1/2, then the sequences 
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(9) L ( •r)\' [n(-r)S\ + U 

\n + s/(r)~| 
L (-!/(*•)) J + 1 + s 

(r) 
are complementary. 

For (r) < 1/2, the jump-sequence of m such that [mr + 2r - s] - [mr - s] = 
I Yh — S ~\ (~n — S~"I 

[2i>] is given by the union of the sequences —?—r- + 1 and -7 . + 2, and 

jumps of size [2r] + 1 occur at integers m = \ , . 4- 1, where k has the form 

\n - s/(-rQ1 
L (-i/(p)) J + x-

It is of historical interest that Hecke [4] first proved the theorem of this 
note in the case s = 0. That (br) must equal (j>) for some integer j in order 
for {cm} to be an almost arithmetic sequence, for the case s = 0, was proved by 
Kesten [6]. 

Taking p in (9) to be (1 + /5)/2 leads to a number of identifies involving 
Fibonacci numbers. For example, with s = 0, the three sequences in (9) may be 
written f r l n -| 

In 1 r 2w 1 I L/5 - lj 
' J- 5 (9') 

.3 - v^. 3 - A 

+ 2 

/J- 1 
It is easy to prove that the first two of these sequences contain all the Fibo-
nacci numbers. In fact, the method of Bergum [2] can be used to show that 

for odd n > 1 
" 2Fn 1 
_3 - ^ J 
r 2Fn 1 
L3 - / 5 _ 

+ 1 for even n 

and 
2F„ 

/5 - 1 
+ 2 

/5 - 1 

Fn + 3 + 1 for odd n _> 1 

F 1 for even n ̂  0. 
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