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AN IMPLICIT TRIANGLE OF NUMBERS 

DAVE LOGOTHETTI 
University of Santa Clara, Santa Clara CA 95053 

Sketch reprinted from California Mathematics 5(2) , October, 1980. 

To Voxn Hoggattt whole common AenAe, plain language, and 
energetic enthiutaAm brought real mathematics into the 

Lives ol div&tte people throughout the would. 

This elementary note introduces a new triangle of numbers that is implicitly 
defined in PascalTs Triangle. It shares many properties with Pascal's Triangle, 
including the generation of Fibonacci numbers. It differs from Pascalfs Tri-
angle in that it is not symmetrical (and therefore is not a special case of the 
Fontene-Ward Triangle [I]). When I asked Vern Hoggatt—who seemed to know ev-
erything there is to know about Pascalfs Triangle—about the Implicit Triangle, 
he surprised me by replying that he did not know of either the triangle or any 
of its properties. Therefore, the following may add to our readers1 list of 
"Neat Little Facts about Integers." 

The question that led to the discovery of the Implicit Triangle is: "How 
do we get the squares out of Pascalfs Triangle?" One fairly well-known way is 
to note that 

0 + 1 = 1, 1 + 3 = 4, 3 + 6 = 9, ..., (" 2 X) + (2) = "*' 

This can be generalized using Eulerian numbers, so that 

0 + 4(0) + 1 = 1, 0 + 4(1) + 4 = 8 , 1 + 4(4) + 10 = 27, ..., 

( » ) + 4 ( » ^ ) + ( " 3 2 ) - » - « ) + i i ( " t 1 ) + i i r i 2 ) + ( " : 3 ) - » ' -
etc. See [2], for example. But there is another way to get the squares out of 
Pascal's Triangle, and this is not so well known: 

( ? ) ' ( S M I ) • ( ; ) - • • ( ! ) • ( ; )•«) *u)-«• 
( j ) + a ) * ( ? ) * a ) - ' . - . ( " : , ) + ( " 2 V ( T ) + ( " ) - - ' -
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These squares are generated by adding rhombuses of entries from Pascal1s 
Triangle. By adding other rhombuses, we generate our new triangle: 

0 — 1 - - 1 — 1 
•/ 2 / 1 / 0 / 

0 — 1 — 0 - 0 0 
/ 2 / 3 / 1 / 0 / 

0—-1 1 0 0 — 0 
/ 2 / 5 / 4 / 1 / 0 / 

0 — 1-—2 1 0 — 0 — 0 
/ 2 / 7 / 9 / 5 / 1 / 0 / 

0 1 3 _ 3 _ i o — 0 — 0 
/ 2 / 9 / 1 6 / 1 4 / 6 / 1 / 0 / 

0 -1 — 4 — 6—4 1—0 — 0 — 0 
/ 2 / l l / 2 5 / 3 0 / 2 0 / 7 / 1 / 0 / 

0 I _ 5 _ I O — 1 0 — 5 1—0 0 0 
/ 1 / 1 3 /36 /55 /55 / 27 / 8 / 1 / 0 / 

0 1—- 6—15 — 20—15 6 — 1 — 0 — 0 — 0 
/ 2 / 1 5 / 4 9 / 9 1 / 1 0 5 / 7 7 / 3 5 / 9 / 1 / 0 / 

0—-1 7—21—35—35—21 7 1 — 0-—0—0 
/ 2 / 1 7 / 6 4 / l 4 0 / l 9 6 / l 8 2 / l l 2 / 4 4 / l 0 / 1 / 0 / 
0 — r — 8 - 2 8 — 5 6 — 7 0 — 5 6 — 2 8 8 — 1 — 0 — 0 — 0 

/ 2 / 19/81/204/336/378/294/156/54/11 / 1 / 0 / 
0 — r — 9 — 36—84-126-126—84 — 36 — 9 — 1 — 0 — 0 0 

Suppressing the entries from Pascal's Triangle, we get the (almost) triangular 
array: 

2 1 

2 3 1 

2 5 4 1 

2 7 9 5 1 

2 9 16 14 6 1 

2 11 25 30 20 7 1 

2 13 36 55 50 27 8 1 

2 15 49 91 105 77 35 9 1 

2 17 64 140 196 182 112 44 10 1 

2 19 81 204 336 378 294 156 54 11 1 

This Implicit Triangle has the generating formula 

where J(n, k) is the Implicit Triangle entry in the nth row, kth diagonal, 

n = 1, 2, 3, ..., Zc = 0, 1, 2, 3, ... . 

(The zeroth row is missing from this new triangle.) 
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Although it lacks the symmetry of Pascalfs Triangle, the Implicit Triangle 
shares many of its properties. 

Tkzonem 1: I(n - 1, k - 1) + I(n - 1, k) = I(n9 k). 

Psioofi:- This version of Pascalfs Identity follows from that identity in 
Pascal's Triangle. 

™-i.>'-»+*<»-i.»-{'l:l)*ti:l)*(i:l) + (r-3 
+ e: ?M\-VC:: D+ (V) 

-(Z:a*'(Z:iHi;:;MV) 
-(£:?)• ( V M S :;)•("*-') 
= T(n, Zc). 

This is not really surprising, since the Implicit entries are linear combina-
tions of Pascal entries, and these linear combinations carry along the proper-
ties of Pascal's Triangle. 

Tko.on.2m 2 {"ChAAJi>£m(U Stocking Tke.on.em")'* 
k+r 

Y, ifa, k) = i(k + v + 1, k + i). 
n = k 

Tke.onem 3 ["Hockey Stick Tke.on.em") ° 
k = n 

I(n9 P ) = £ ( - l ) k " 2 , " 1 J (n + 1, k). 
k = r + l 

Tkconejn 4 ["Ftboncicct UumbeJi. Tke.on.ejm"): 

£ I(n - k, k) =Fn+2. 
k = 0 

(°°  exploits the fact that proceeding up a diagonal we eventually get all O's.) 

Tkconem 5 (" Attcnncuting Row Sam Tkconem"): 

n + 1 

£(-l)*J(n, k) = 0, n = 2, 3, 4, ... . 
k = o 

Vnoo^k*- All of these theorems follow from the fact that the Implicit en-
tries are linear combinations of the Pascal entries. 

And then there are properties different from, but analogous to, properties 
of Pascal's Triangle. For examples, 

Tkconem 6 {"Luc<u Hambcn Tkconem"); 

]T l(n - ks n + 1 - Ik) = Lk+1. 
k = 0 
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Thtohm 7 ["Row Sam Tkzotim"): 

J^I(n9 k) = 2n"1(3). 
k = o 

Vtioofa. Both of t h e s e theorems may be proved j u s t a s t h e i r ana logues a r e 
proved for P a s c a l ' s T r i a n g l e . Theorem 7 may be proved very e a s i l y w i t h t he a i d 
of Theorem 8. 

ThdOKOm S ["Co&&&sL(U.2.nt Tkzotiejfn")'• I(n9 k) i s t he c o e f f i c i e n t of xn~k i n t h e 
expans ion of (2x + 1) (as + l ) n _ 1

e 

VK.OO^i From the identity 

we can see that the Implicit Triangle is formed from the binomial coefficients 
of two overlapping Pascal Triangles: 

«-» = U)+(V)-
The theorem then follows from the fact that 

(2a? + l)(x + l) n ~ 1 = x(x + l ) n _ 1 + (x + l)n. 

We are now in a position to look at a Generalized Implicit Triangle: 

a 1 

a (a + 1) 1 

a (2a + 1) (a + 2) 1 

a (3a + 1) (3a + 3) (a + 3) 1 

a (4a + 1) (6a + 4) (4a + 6) (a + 4) 1 

a (5a + 1) (10a + 5) (10a + 10) (5a + 10) (a + 5) 1 

Here the generating identity is 

G(n9 k) = G(n - 1, k - 1) + G(n - 1, k) 9 G(n9 0) = a9 G(rc, n) = 1; 

for a = 1, this is just Pascalfs Identity. 

IkdoK^m 9 (" Generalized dodijldloiit Thejotiom")'- G(n9 k) is the coefficient of 
xn~k in the expansion of (ax + 1) (x + I)""1. 

P/LOÔ : The Generalized Implicit Triangle is again just the overlap of Pas-
cal flT7frTangle and Pascal's Triangle with every entry multiplied by a - 1. The 
theorem follows from the identity 

(ax + l)(x + I)"1-1 = (x + l)n+ (a - l)x(x + l ) n - 1 . 

Since each entry of the Generalized Implicit Triangle is a linear combina-
tion of entries from Pascal's Triangle9 those foregoing theorems whose proofs 
were based on linear combinations will hold in the general cases with appropri-
ate modifications; for example5 the row sums will be of the form 2n~ (a + 1). 
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Had Vern Hoggatt been able to coauthor this article he would no doubt have 
found many more results. Perhaps our readers will celebrate his memory by 
looking for further results themselves. 
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FRACTIONAL PARTS (nr - s), ALMOST ARITHMETIC SEQUENCES, 

AND FIBONACCI NUMBERS 

CLARK KIMBERLING 
University of Evansville, Evansville IN 47702 

To tkd mmosiy o{ \Zznn HoQQeutt, wiAk gsicutvtude, and adbruAxutxon. 

Except where noted otherwise, sequences ian}, {bn}, and {cn} are understood 
to satisfy the following requirements, as stated for {an}i 

(i) the indexing set {n} is the set of all integers; 
(ii) an is an integer for every n; 
(iii) {an} is a strictly increasing sequence; 
(iv) the least positive term of {an} is a±. 

We call {an} almost arithmetic if there exist real numbers u and B such that 

(1) \an - un\ < B 

for all n, and we write an ^ un if (1) holds for some B and all n, 
Suppose r is any irrational number and s is any real number. Put 

cm = [mr - s] = the greatest integer less than or equal to mr - s, 

and let b be any nonzero integer. It is easy to check that cm + b - cm = [br], 
if (mr - s) < (-br), and = [br] + 1, otherwise. 

Let an be the nth term of the sequence of all m satisfying cm+b~ cm= [br]. 
In the following examples, r = (1 + /~5)/2, the golden mean, and s - 1/2. 

Selected values of m and cm arei 
-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 
-9, -7, -6, -4, -3,-1, 1, 2, 4, 5, 7, 9,10,12,14, 15, 17, 18, 20, 22, 23, 25. 

When b = 1 we have [br] = 1, and selected values of n and an are: 

-1, 0, 1, 2, 3, 4, 5, 6 
-4, -2, 1, 3, 6, 9, 11, 14. 

When b = 2 we have [2?r] = 3, and selected values of n and an are: 

-4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 
-5, -4, -3, -2, 0, _1_, 2., _3, 5_9 6, 81, 9, 10, 11, 13_, 14. 

Note here the presence of Fibonacci numbers among the an. Methods given in 
this note can be used to confirm that the Fibonacci sequence is a subsequence 
of {an} in the present case. 


