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INTRODUCT ION
In a previous paper [3] we studied the function

Gn + 1)/2 7 odd > 1
fn) = ¢ n/2 n even
1 n =1

and showed that there are no nontrivial circuits for this function which are
cycles. In the present paper we shall consider the analogous problem for

(gn + 1)/2 n odd > 1, g odd
h(n) = < n/2 7 even
1 n =1

for g=5and 7 and shall find all circuits which are cycles for these functions.

. THE CASE ¢ =5

Let (57 + 1)/2 7 odd > 1
fn) = < n/2 7 even
1 n =1

Theorem 1: Let v,(m) be the highest power of 2 dividing m, m € Z and let n be
an odd integer > 1. Then, n < f(n) < +++ < f¥u), and X ) < f¥(n), where
k=v,03n + 1).

Proof: Let my, = ny, n = fi(n),
odd. Then

> 1. Suppose #,, #,, ..., Nj_, are all

7
5np + 1 = 21,
Sny, + 1 = 2n,

5”j—1 + 1 = 27’LJ
By simple recursion, we get
. . J _ od
2‘77’ZJ~ = 5% + 2—5—2—*.
Thus
(D 2(3n; + 1) = 57(3n + 1)
If § <v,(3n + 1), then n; is odd and we may extend the increasing sequence.
If § = v,(3n + 1), then n; is even. The result follows.
Following [2], let us write n—k— m—2—» n¥*, where £ = v, (m), n* = m/2%,
k =v,(3m + 1) and m is given by 2¥(3m + 1) = 5¥(3n + 1).
If we let A be the set of positive odd integers and define T:4 +~ 4 by (In)
= n*, the map from n to n* is called a circuit. Our goal is to prove that

13 =2+ 208 > 13 and 1—2>8—>1
are the only circuits which are cycles under 7. We shall accomplish this by

reducing our problem to a Diophantine equation and then using a result of Baker
[1] to solve the equation.

Theorem 7: There exists »n such that T(n) = n only if there are positive inte-
gers k, %, and h satisfying

(2) (k% - s5kyp = 2% ~ 1,
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Proof: Suppose T(n) = n. Then 2¥(3m + 1) = 5%(3n + 1) and 2*n
write

m. 1f we

3m + 1 = 5%
I+ 1 = 2K

We get

, (2~ s =24 -1
as required.

We note that the converse of this theorem is false: k=1, 8 =2, h =1
yields a solution of (2), but this solution does not yield integer values of m
and n.

Theorem 3: The only solutions of equation (2) in positive integers are

=1,%=2,h=1
2, =3, h=1
3, 8 =2,k =1.

Proof: We reduce (2) to an inequality in the linear forms of algebraic
numbers and then apply the following theorem of Baker [1,p. 45]: Theorem 3. If

xR
1l

O1s +ess Oy, M > 2, are nonzero algebraic numbers with degrees and heights at
most d(>4) and A(>4) respectively, and if rational integers by, ..., b, exist
with absolute values at most B such that

0< |b, Inay +++- + b, In a,| < -e-%8,

where 0 < § < 1 and the logarithms have their principal values, then
B < (4" 87142 log 4) (2D’

Returning to (2) we find that the only solutions for X < 4 are

k=1,0=2,h =1
k=2,2=3,h=1
k=3,82=4, h = 5.
Thus k¥ > 4 and (2) yields
(3) 0 < 2Kt — sk < 2% -1,
Dividing both sides of (3) by 2¥*+% and using the fact that
k
— > 1In _z for k > 1,
2k -1 2k -1
we get
4) 0 < l(k +92) In 2 - k 1n 5[ < ——J;——, and hence
2k -1
0 < %-— log, %— < 1
k 1n 2(2% - 1)

Since 1n 2(2% - 1) > 2k for k > 4, we see that if k > 4, 2/k must be a conver-
gent in the continued fraction expansion of log2(5/2). With the aid of a com-
puter, we find that the first 7 convergents of this continued fraction are

1 4 37 78 193 850 ., 5293

1’ 3° 28 59’ 146’ 643° 40042
and it is easily verified that if kX > 4, none of these convergents satisfy (4).
Thus we may assume Kk > 4004,

Now we derive a lower bound for the partial quotients in the continued

fraction expansion of log2(5/2), using the following theorem of Legendre.
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Theornem 4: Let 6 be a real number, p,/q, a convergent in the continued frac-
tion expansion of 6, and a, the corresponding partial quotient. Then

_._._._l—< 3] _p_n ,
(@psy + 2)gn* "
which yields
p
—]‘______< 6 - _n < 1
(Apeq + 2)K? el k10 202F = 1)
Thus, since k > 4004,
zk -1 2"&00’4 -1 2750
a,., > % ln2-2>—wln2—2>10 .

Thus, any further solution of (4) corresponds to an extremely large partial quo-
tient in the continued fraction expansion of 6. Finally, we derive an upper
bound for k. To this end, we note that if k > 4004, we have 2/k < 1.33, so

L+ k< 2.33k and 2k -1 > e.00233k N 6.001(2+k[

Thus (4) becomes

0< |(k+2)In2-k1In 5] < zkl_l < gr001E
where B = { + k.

Now we apply Theorem 3, withn = 2, d = 4, A = 4, § = .001, and get
B =20 +k< (4%+10% 4%« 1n 5)25 < (10**' - 10%« 102" < 1021)%° < 10%°L,

Thus k¥ < 102°' also. With the aid of a computer and a multiple precision pack-
age designed by Ellison, we computed log,(5/2) to 1200 decimal places and then
computed the continued fraction expansion of log,(5/2) until q, exceeded 10201,
The largest partial quotient is found to be 5393, so (2) has no solutions in
positive integers other than (1, 2, 1),(2, 3, 1), and (3, 4, 5). Thus the only
circuits which are cycles under f are 1 -2+ 8 —35 1 and 13 -2 208 —— 13,

[Note: n = 17 also gives rise to a cycle under f. But this cycle results
from a double circuit: 17 -+ 108 -2+ 27 and 27 —— 68 —*+ 17.]

It would be of great interest to know if any #n other than 17 and 27 gives
rise to a cycle under f which is the result of a multiple circuit.

11. THE CASE @ = 7

For n € 2%, let

ZEét-L n odd, n > 1
gn) = n/?2 7 even
1 n =1

as in Case I. Then we can prove the following theorem.

Theorem 5: Let v,(m) be the highest power of 2 dividing m, m € Z and let n be
an odd integer > 1. Then n < g(n) < -+ < gk(n) and gk*'(n) < gk(n), where
k=v,(5n+ 1).

Also, the equation corresponding to (1) is
(5) 29Gn; + 1) = 77 (5n + 1.

Now we write n —%+> m —*> n* where % = v,(m), n* =m/28, k =v,(57 + 1), and
2%(5m + 1) = 7%(5n + 1).

Again, if we let A be the set of positive odd integers and define T:4 —+ 4
by T(n) = n*, the map from n to n* is called a circuit. Our goal is to prove:
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" Theonrem 65 The only positive odd integer n such that T(n) = n is n = 1.
E@ggﬁ} As in Case I, we reduce this problem to solving
(6) ' @t -7 r =28 -1
where k, %, and % are positive integers. We shall show that the only solutions
of (6) in positive iptegers are
k=1,0=2,h=3 and k=2,0=4, h=1,

First, if k < 4, we find that the only solutions of (6) are the ones stated
in ‘the theorem and that only the first gives rise to a cyclic circuit, namely,
1254 2,1,

So k > 4, and as in Case I, we find that

(7) 0<2k+2_7k5—22_1,
(8) 0<|(k+2)In2-kin7| < —
2k — 1
and
(9 0 < |F - log, 7| < L :
: k 1n 2(2% - 1)

Since 1n 2(2% - 1) > 2k for k > 4, 2/k must be a convergent in the contin-
ued fraction expansion of log,(7/2).
. Again, we find that the first 7 convergents of log,(7/2) are

1 2 9 47 197 1032 and 4325

1 1° 5% 26 109’ 571° 2393°
Of these, 9/5 does not furnish a solution of (6) and the remainder do not sat-
isfy (9). Thus k > 2393. Further, by Theorem 4, we get

N 22893 _ 1 1n 2
n+l 2393

Finally, we note that if k > 2393, we have %/k < 1.81. So & + k < 2.81k and
2k = 1 > 00281k 5 p00IRHK) - Thyg 0 < (K + 2)1n 2 - k 1n 7| < 7008, where
B =% + k. Again, by Theorem 3, withn = 2, d =4, 4 = 4, § = .001,

B=22 + k< (4%+10%¢ 4" 1n 7)%% < 10298,

With the aid of Ellison's package, we computed log,(7/2) to 1200 decimal
places and then computed the continued fraction expansion of log,(7/2) until g
exceeded 10%2°°, The largest partial quotient is found to be 197, so (6) has
only the solutions stated in the theorem and the only circuit which is a cycle
under g is 1 2+ 4 25 1,

- 2> 101500.

a

In a subsequent paper to be published in this journal, we shall study the
general case for this problem and present the tables generated during the com-
putation of log2(5/2) and log2(7/2) for the two cases presented here.
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