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ON THE "QX + 1 PROBLEM/' Q ODD 

RAY STEINER 
Bowling Green State University, Bowling Green OH 43403 

Vz&Ldot&d to th<i mmofiy oj$ I/. E. Hoggatt 

INTRODUCTION 

In a previous paper [3] we studied the function 

( (3n + l)/2 n odd > 1 
f(n) = < n/2 n even 

( 1 n = 1 

and showed that there are no nontrivial circuits for this function which are 
cycles. In the present paper we shall consider the analogous problem for 

C (qn + l)/2 n odd > 1, q odd 
h(n) = < n/2 n even 

( 1 n = 1 

for q- 5 and 7 and shall find all circuits which are cycles for these functions. 

1- THE CASE Q = 5 

T <=>t-

' (5n + l)/2 n odd > 1 
fin) - \ n/2 n even 

1 n = 1 
Tho.OK.Qm 1: Let v2irn) be the highest power of 2 dividing m, m e Z and let n be 
an odd integer > 1. Then, n < f(n) < ••• < fk(n), and fk+1(n) < ffe(n), where 
k = v2(3n + 1). 

?K00l- Let n0 = % , n = f'l(n), i > 1. Suppose 7^, n2, . .., ^ j _ x are all 
odd. Then _ , , 0 

5n0 + 1 = 2nx 
5n1 + 1 = 2n2 

By simple recursion, we get 
5^j-i + 1 = 2nj 

2jn, = 5Jn + — 
3 

Thus 

(1) 2(3nd + 1) = 5J'(3n + 1) 

If j < v2(3n + 1), then nj is odd and we may extend the increasing sequence. 
If j = v2(3n + 1), then n3- is even. The result follows. 

Following [2], let us write n—k-> m —^-> n*, where £ = V2(m) 9 n* = tf7/2£, 
Zc = y2(3w + 1) and m is given by 2k (3m + 1) = 5k(3n + 1). 

If we let A be the set of positive odd integers and define T:A -*- A by (Tn) 
= n*, the map from n to n* is called a circuit. Our goal is to prove that 

13 - ^ 208 - ^ 13 and 1 - ^ 8 - ^ 1 

are the only circuits which are cycles under F. We shall accomplish this by 
reducing our problem to aDiophantine equation and then using a result of Baker 
[1] to solve the equation. 

TkdOKom 2: There exists n such that T(n) = n only if there are positive inte-
gers k9 &, and h satisfying 
(2) (2k+£ - 5k)h = 2* - 1. 
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Vnmi} Suppose T(n) == n. Then 2k(3m + 1) = 5k(3n + 1) and 2ln = m. I f we 
w r i t e 

3m + 1 = 5̂ ft 
3n + 1 = 2*ft 

We get 
(2fe + 1 - 5k)h = 2£ - 1 

as required. 
We note that the converse of this theorem is false: k = 1, £ = 2S ft = 1 

yields a solution of (2), but this solution does not yield integer values of m 
and n. 

Tk&QSiQJM 3: The only solutions of equation (2) in positive integers are 

k 
k 
k 

= 
= 
= 

1, 
2 , 
3 , 

£ 
£ 
£ 

= 
= 
= 

2, 
3 , 
2 , 

ft 
ft 
ft 

= 
= 
= 

1 
1 
1 

VKOO^I We reduce (2) to an inequality in the linear forms of algebraic 
numbers and then apply the following theorem of Baker [l,p. 45]: Theorem 3. If 
a15- .... , an9 n _> 2, are nonzero algebraic numbers with degrees and heights at 
most d(>h) and 4(>_4) respectively, and if rational integers b19 . . ., bn exist 
with absolute values at most B such that 

0 < \b1 In ax + ••• + bn In an\ < -e~6B, 

where 0 < 6 < 1 and the logarithms have their principal values, then 

B < ( 4 n 2 6 " 1 ^ log A)i2n + 1)2 . 

Returning to (2) we find that the only solutions for k < 4 are 

k = 1, £ = 2, ft = 1 
k = 2, £ = 3, ft = 1 
fc = 3, £ = 4, ft = 5. 

Thus k >. 4 and (2) yields 
(3) 0 < 2fc + * - 5 k <. 2* - 1. 

Dividing both sides of (3) by 2k + i and using the fact that 

1 . . 2k 
> In for k >_ 1, 

2k - 1 2* - 1 
we get 

(4) 0 < | (k + £) In 2 - k In 5| < 9 and hence 
2k - 1 

0 < £ n 5 
£ " log2 2 

fc In 2(2fe - 1) 

Since In 2(2fe - 1) > 2k for & _> 4, we see that if & _> 4, £/& must be a conver-
gent in the continued fraction expansion of log2(5/2). With the aid of a com-
puter, we find that the first 7 convergents of this continued fraction are 

_1 4 37 78 292 .850 5293 
1' 3s 28' 59' 146' 643' 4004' 

and it is easily verified that if k > 4, none of these convergents satisfy (4). 
Thus we may assume k > 4004. 

Now we derive a loxvTer bound for the partial quotients in the continued 
fraction expansion of log (5/2), using the following theorem of Legendre. 
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Th&Qtim 4: Let 0 be a real number, pn/qn a convergent in the continued frac-
tion expansion of 8, and an the corresponding partial quotient. Then 

which yields 
(an+1 + 2)qn2 

En 

(an + 1 4- 2)k2 

Thus, since k > 4004, 
k In 2(2fc - 1) 

)«t0 0'f 

an+l > In 2 2 > 
4004 

In 2 - 2 > 102750. 

Thus, any further solution of (4) corresponds to an extremely large partial quo-
tient in the continued fraction expansion of 6* Finally, we derive an upper 
bound for k. To this end, we note that if k > 4004, we have i/k < 1.33, so 

l + k < 2.33k and 2k - 1 > e -a 023 ik > e -°  o l U + k). 

Thus (4) becomes 

0 < | Qi + l)±n 2 - k In 51 

where B = I + k. 
Now we apply Theorem 3, with n = 2, d = 

-.0 0 IB 

= I + k < (4" 10d In 5 ) 2 5 < (IO2'41 

2 

A = 

103 

k-1 

4, .001, and get 

io2-41 - i o 2 1 ) 2 5 < io 2 0 1 . 

Thus k < IO201 also. With the aid of a computer and a multiple precision pack-
age designed by Ellison, we computed log2(5/2) to 1200 decimal places and then 
computed the continued fraction expansion of log2(5/2) until qn exceeded IO201. 
The largest partial quotient is found to be 5393, so (2) has no solutions in 
positive integers other than (1, 2, 1),(2, 3, 1), and (3, 4, 5). Thus the only 
circuits which are cycles under / are 1 —̂ -»- 8 — ^ 1 and 13 - 3 »• 208 —̂ -* 13. 

[Note: n = 17 also gives rise to a cycle under /. But this cycle results 
from a double circuit: 17 - ^ 108 - ^ 27 and 27 - ^ 68 -2-+ 17.] 

It would be of great interest to know if any n other than 17 and 27 gives 
rise to a cycle under / which is the result of a multiple circuit. 

\ I . THE CASE 

For n e Z+, let 

gin) = 

In + 1 
2 

n/2 
1 

n odd, n > 1 

n even 
n = 1 

as in Case I. Then we can prove the following theorem. 

TkzofiQjn 5: Let v2(rn) be t he h i g h e s t power of 2 d i v i d i n g m9 m e Z and l e t n be 
an odd i n t e g e r > 1. Then n < g(n) < • • • < gk(n) and gk+1(n) < gk(n), where 
7c = v2(5n + 1 ) . 

Also, the equation corresponding to (1) is 

2J'(5n7- + 1) = 7J'(5n + 1). (5) u3 

where = vAm).9 nk = m/2l9 k = v2(5n + 1), and Now we write n -JL-> m —il->-
2k(5m + 1) = 7fc(5n + 1). 

Again, if we let A be the set of positive odd integers and define TiA -> A 
by T(n) = n*, the map from n to n* is called a circuit. Our goal is to prove: 
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The,QSiem 6: The only positive odd integer n such that Tin) = n is n - 1. 

VK.00^' AS in Case I, we reduce this problem to solving 

(6) (2k + £ - 7 )h = 2l - 1 

where k9 £, and h axe. positive integers. We shall show that the only solutions 
of (6) in positive integers are 

k = 1, £ = 2, h = 3 and & = 2, £ = 4, /z = 1. 

First, Ifk <_ 4, we find that the only solutions of (6) are the ones stated 
in the theorem and that only the first gives rise to a cyclic circuit, namely, 
1 •-!+ 4 -2-> 1. 

So /c _> 4, and as in Case I, we find that 

(7) 0 < 2k + i - 7k < 2l - 1, 

(8) 0 < \{k + £)ln 2 - fc In l\ < —± 
1 ' ok _ i 

and 
(9) 0 < 

£ - 7 
k ~ log^ I 

1 

k In 2(2* - 1) 
Since In 2(2 - 1) > 2k for k > 4, £/& must be a convergent in the contin-

ued fraction expansion of log2(7/2). 
Again, we find that the first 7 convergents of log2(7/2) are 

M _ 9 47 _197 1032 4325 
1' "l9 5' 26' 109' 571 ' 2393* 

Of these, 9/5 does not furnish a solution of (6) and the remainder do not sat-
isfy (9). Thus k > 2393. Further, by Theorem 4, we get 

22 3 9 3 - 1 In 2 1 0
1 5 0 0. 

an+i 2393 . 

Finally, we note that if k > 2393, we have Z/k < 1.81. So£+^<2.81^c and 
2* - 1 > e'00281k > e'001ii + kK Thus 0 < \(k + £)ln 2 - k In 71 < e~'QQ1\ where 
.J5 = £ + k. Again, by Theorem 3, with n = 2 , ^ = 4,^4 = 4, 6 = .001, 

B = £ + k < (44 • 103 • 44 In 7 ) 2 5 < 10203. 

With the aid of EllisonTs package, we computed log2(7/2) to 1200 decimal 
places and then computed the continued fraction expansion of log2(7/2) until q 
exceeded 10203. The largest partial quotient is found to be 197, so (6) has 
only the solutions stated in the theorem and the only circuit which is a cycle 
under q is 

1 _ U 4_2_^ 1. 
In a subsequent paper to be published in this journal, we shall study the 

general case for this problem and present the tables generated during the com-
putation of log2(5/2) and log2(7/2) for the two cases presented here. 
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