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refers to a sequence of the fourth level, whose terms consist of ordered s-
tuples of consecutive terms of F^q' p); this F((?>r)in its turn is a sequence of 
the third level, whose terms consist of ordered r-tuples of consecutive terms 
of F^q>> ; and F(c?) is a sequence of the second level whose terms consist of or-
dered ^-tuples of consecutive terms of /. 

The hierarchy results in a generalization of Theorem 1. 

Tfieo/iem li Let f:Z + Z with /Q = 0, Ĵ  = 1, and fn = fn_2 + fn_1. For every 
m e N, let q± , .. . , qm e N - {1} . Let 

Z ( ^ > = { ( / n _ l 5 fn9 .... fn + q i _ 2 ) : n e Z}, 
the set of all ordered q1-tuples of consecutive terms of /. Let F x i Z •+ Z 
with 

Further, let 

^ <•>- {(C\ '-i>. F?1 ,-i>..... c^-q-i))-- - - 4 • 
uples of consecutive terms 

with y . 
p(<7l» ••••<7m) = n ( ? l » •••»<7m-l) r,C?l» •••»<7m-l) T ^ l ' • • • » < 7 m - i ) \ 
r n \ r«-l 5 r n 5 e ' * 9 rn + qm-2 ) ' 

Then F * m constitutes a two-sided sequence with terms Fn *' m , n e Z, 
and the property 

£ n ^ «-2 n-1 

Moreovers the terms of F *' *""' m form an abelian group under the multiplica-
tion 
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1. INTRODUCTION 

We start with a simple algorithm for generating pairs L (left column) and R 
(right column) of Fibonacci numbers. In a slightly modified version we wish to 
investigate the ratios L/R as the number of iterations n -*- °°. This, it turns 
outs involves (ancient) history, geometry, number theory, linear algebra, nu-
merical analysis, etc.! 

2. THE BASIC ALGORITHMS 

Let us consider a "computer project11 (appropriate for the first assignment 
in an Introduction to Programming course): 
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Given a suitable positive integer N9 write a program which generates 
the sum of the first N Fibonacci numbers with even subscripts. 

Of course one can generate F2i and form a cumulative sum. A more imagina-
tive student, however, might use the following algorithm. 

klQOKJXhm I: 

(a) Input N 
(b) L + 1, R +- 0 
(c) L-+- L + R9 R +- L + R, N + N - 1 
(d) If N £ 0, go to step (c); else output L + R - 1 and stop. 

["«-" means "is replaced by."] 

Thus in BASIC PLUS we would write 

10 INPUT N 

20 L = 1 \ R = 0 

30 '•' L = L + R \ R = L + R\ N = N - 1 

kO IF N<>0 THEN 30 ELSE PRINT A + B - 1 

999 END 

Or, on the TI 59 Programmable Calculator, we could enter N, press A9 and 
execute: 

LBL A ST0 00 1 ST0 01 0 ST0 02 

LBL B RCL 02 SUM 01 RCL 01 SUM 02 
DSZ 0 B RCL 01 + RCL 02 - 1 = R/S 

[Here LBL, STO, RCL, SUM, DSZ,andR/S are codes for label, store, recall, sum, 
decrement-and-skip-on-zero, and run-stop, respectively. In particular, N is 
placed in memory location 00 and, after each pair of consecutive Fibonacci num-
bers is generated, the contents of loc. 00 is decreased by 1; if the result ^ 
0, we repeat by going back to "LBL B".] 

The reader is invited to guess (or determine) the values of N for which our 
output doesn't exceed the 10 digits which are displayed on the TI 59. 

If we started with L = R = 1, then the pairs L9R would have ratios L/R ap-
proaching the golden mean (1 + /5)/2. Given a pair L9R let us now generate the 
next pair by slightly modifying the preceding algorithm. 

klQQHJXhm 11: Given N (N > 0) 

(a) L + 1, R -*- 1 
(b) T «- L + NR9 R «- L + R9 L •*- T 
(c) Repeat step (b) if desired; else output L/R. 

We wish to investigate the ratios L/R as the number of iterations n -*- °°. 

3. PRELIMINARY OBSERVATIONS 

Algorithm II can be described by the equations 

Lk+1 = Lk + NRk 

Rk+i = Lk + Rk, k = 0, 1, 29 ...9 

where LQ9 RQ9 and N > 0 are given real numbers. We will use the matrix form 

Lk\ / l N 
= A\ I where A < 

Rk + i/ V?k/ M 1 
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Two examples are: 

^ 0 «2?0 = 

1 
3 
7 

41 

1, N = 

(2) 
1 
2 
5 

29 

2 *o = *o = 

1 
4 

10 
28 

1, N = 3 

(3) 
1 
2 
6 

16 

The ratios L/R in each_row are, indeed, the oonvevgents of the continued frac-
tion expansions of /2 and /J, respectively. (The reader is invited to try 
LQ = RQ = 1, N = 7.) Will this ever happen again? 

4. AN ATTEMPT TO ACCELERATE CONVERGENCE 

After consideration of additional examples, it becomes evident that for 
large N the values L /R •> SN slowly. This suggests that we might be able to 
accelerate convergence by applying the algorithm to l/N and then taking the re-
ciprocal of the final approximation. 

Unfortunately, this doesn?t help. E.g., for LQ = RQ = 1, N = 5, we get 
ratios 1, 3, 2, 7/3, 11/5, 9/4, ..., while IV = 1/5 yields ratios 1, 3/5, 1/2, 
7/15, 5/11, 9/20, ... . 

In general, 
R2k(l/N) = l/R2k(N) and R2k+1(l/N) =R2k+1(N)/N. 

Thus, i f Ri(N) -> i/N9 then 

R2k(l/N) -> 1//N and R2k + 1(l/N) •> v /̂ZV = 1A//V; 

i . e . , R^(l/N) -> 1///S/" a s i -> °° and, moreover , convergence i s " a t t h e same r a t e . " 
As we w i l l l a t e r s e e , i t i s t h e s i z e of t h e r a t i o 

k o o l - 1 1 - ^ 1 
1 + i/jfif 

which determines the rate of convergence; the smaller the ratio, the faster the 
convergence! Since \g(l/T)\ = \g(T)\ the above idea is fruitless. Put another 
way, the closer IF is to 1, rather than 0, the faster the convergence. 

5. A MATRIX PROOF 

(a) We start with the characteristic polynomial 

f(X) = det(A - AJ) = X1 - 2X + 1 - N 

associated with the matrix yi 

Solving f(X) = 0 we get eigenvalues Ax = 1 + '/N and X2 = 1 - /N. 

(b) Applying the division algorithm to the polynomials X and f(X) (in the 
Euclidean domain R[X] of polynomials with real coefficients) yields 

Xk = (X2 - 2X + 1 - N)g(X) + r(X) 

where r(A) = Bx + 32A. 
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(c) Setting A = Xl9X2 we get 
Ai = &i + e2Ax and A* = Bx + 32A2. 

When solved simultaneously, one finds 

3X = (X2X* - A1X^)/(A2 - Xx) and 32 = (X* - A^)/(A2 - X,). 

(d) Invoking the Cayley-Hamilton theorem produces Ak = 3XJ + 324 (where I 
is, as usual, the 2 x 2 identity matrix). 

(e) Our original matrix equation can easily be written in the form 

Ak[ I, k = 1, 2, 3 

Using (c)9 (d)9 and a little algebra, we get 
fLk\ / ( 3 i + 3 2 ) ^ 0 + 32A% 

2 0 V M 1 H 2 ' 0 

h [ 37 + ^ + m° 
Bk I Hi 

L° + l e 7 + ^ o 
A2 - A1(A2/A1)k 

However, 3 /g = »• -X2 as fc -> °°  (since |X I > |X I). Thus 
(X2/A1)&-1 

Consider 

Lk /NLQ + NRQ 
^ = /W as k ->• °°. 

** L0 + >̂ i?0 

6. SOME ACCIDENTS 

i/NL + 21/i? 

L + T/NR 

(a) Illegal Cancellation 1.1: "Erasing" the first term in the numerator 
and denominator of Q yields Q = NR/(/NR) = /N. 

(b) Illegal Cancellation 1.2: "Erasing" the second term in the numerator 
and denominator yields Q - \^NL/L = /N. 

(c) Illegal Simplification 1.3: Setting L - R = 1, we get 

Q = (v¥ + 210/(1 + /N) = /N. 
(d) Of course, even without multiplying numerator and denominator of Q by 

L - /NR9 

\L + (N//N)R ) 

Moreover, (sL + tR) / (L + si?) = s implies sL + ti? = sL + s2i? or s = /t; thus in 
one sense our accidents are unique! 
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7. ANOTHER MODIFICATION 

Instead of considering the ratios Lk/Rk, suppose we now look at Lk+1/Lk. 
E.g., when N = 2 we get L6/L5 = 239/99 * 2.41414. Thus, in general, one might 
guess Lk + 1/Lk ->l+yNask-*co. Not only is this the case in general, but in 
numerical analysis consideration of "ratios of corresponding components" yields 
the so-called Power Method for computing the numerically largest eigenvalue of 
a matrix. 

To see the essential notions, let T be a 2 x 2 matrix with eigenvalues 

l*il > l*2l > °  
and linearly independent eigenvectors xx, x2. If V is an arbitrary vector, 
then suppose 

As before, define V(m ) = AY0"-1*, m = 1, 2, ... . This yields 

V(0) = o1x1 + o2x2, where c1 ± 0. 

VK } = cnX x + c„X x = X le x + e ( # -
(since Ax^ = Xx^) with the second term •> 0 as m -»- °°. Thus if y(m) x X̂ c]_ f , J , 
then the ratio of, say, first components 

X' m + i 

-, in 

X1c?1a 

approximates X1; moreover, [ h) is a corresponding eigenvector. 

In actual practice this version of the Power Method is usually improved by 
an appropriate scaling (such as normalization) to avoid overflow. Modifications 
for the case of a symmetric matrix and deflation techniques (for approximating 
nondominant eigenvalues) are discussed in [1J. 

8. CONCLUSION 

It is somewhat amusing that for many years one of the authors asked students 
to investigate Algorithm II without being aware that its probable origins go 
back some nineteen centuries. An interesting discussion of its relationship to 
Pell's Equation as well as to the geometry of the ancient Greeks may be found 
in [3]. 

We leave the reader with at least two possible excursions. Suppose N is a 
positive (nonsquare) integer with continued fraction convergents Pk/qk [2]. 

(a) If Lk/Rk = pk/qk for k = 0 and 1, what can you say about Nl 

(b) If the equation in (a) holds for k = 0, 1, and 2, what can be said 
about 21/? (E.g., it holds when N = 7.) 
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